SELECTED DATA ON WATER QUALITY AND BOTTOM MATERIAL OF NEW YORK STREAMS, 1987-88 By Jay F. Weigel ## **U.S. GEOLOGICAL SURVEY** Open File Report 92-476 Prepared in cooperation with NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Albany, New York ## **DEPARTMENT OF THE INTERIOR** **BRUCE BABBITT, Secretary** **U.S. GEOLOGICAL SURVEY** **DALLAS L. PECK, DIRECTOR** For additional information write to: U.S. Geological Survey P.O. Box 1669 Albany, N.Y. 12201 Copies of this report may be purchased from: U.S. Geological Survey Books and Open-File Reports-ESIC P.O. Box 25425 Denver, CO 80225 ## **CONTENTS** | | | | Page | |--------|---------|---|------| | | | | 1 | | | | 1 | 1 | | | | and scope | 1 | | | | e basins | 2 | | | | tion and runoff during 1987-88 | 2 | | | | ow during 1987-88 | 2 | | | | on and analysis | 4 | | | | ection network | 4 | | | | e data | 4 | | | | nd bottom-material sampling | 7 | | Lal | borato | ry analysis | 10 | | | | t of selected data on water quality and bottom material | 16 | | | | ıta | 17 | | | | logical Survey | 17 | | | | k State Department of Environmental Conservation | 18 | | Refere | nces ci | ted | 18 | | Glossa | ry | | 19 | | | | ILLUSTRATIONS | Page | | Figure | a 1 9 | Mong of Now York showing | rage | | rigure | S 1-3. | Maps of New York showing: 1. Major drainage basins | 3 | | | | Locations of permanent water-quality-sampling sites | 8 | | | | | 9 | | | | 3. Locations of Rotating Intensive Basin Study sites sampled in 1987-88 | 9 | | | | | | | | | TABLES | | | Table | 1. | A. Permanent sampling sites | 5 | | | | B. Rotating Intensive Basin Study sampling sites, 1987-88 | 6 | | | 2. | Analytical methods, detection limits, and reporting limits for analytes | • | | | | measured by U.S. Geological Survey laboratories | 10 | | | 3. | Analytical methods, detection limits, and reporting limits for analytes | -0 | | | ٠. | measured by New York State Laboratories | 12 | | | 4. | Selected water-quality and bottom-material data from New York | | | | 4. | streams, 1987-88 | 23 | | | 5. | Results of analyses of quality-assurance samples | 245 | | | | y - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - | | ## **CONVERSION FACTORS AND VERTICAL DATUM** | Multiply | Ву | To obtain | |--|-------------------------|----------------------------------| | | Length | | | inch (in.)
foot (ft)
mile (mi) | 25.4
0.3048
1.609 | millimeter
meter
kilometer | | | Area | | | square mile (mi²)
square mile (mi²) | 259.0
2.590 | hectare
square kilometer | | | Volume | | | quart (qt)
gallon (gal) | 0.9464
3.785 | liter
liter | | | Flow | | | cubic foot per second (ft³/s) | 0.02832 | cubic meter per
second | | gallon per minute (gal/min) | 0.06308 | liter per second | | | Mass | | | ton, short | 0.9072 | megagram | | 7 | Temperature | | | degree Celsius (°C) °F = | (1.8 x °C) + 32 | degree Fahrenheit (°F) | Sea level: In this report "sea level" refers to the National Geodetic Vertical Datum of 1929 (NGVD of 1929)—a geodetic datum derived from a general adjustment of the firstorder level nets of both the United States and Canada, formerly called Sea level datum of 1929. ## SELECTED DATA ON WATER QUALITY AND BOTTOM MATERIAL OF NEW YORK STREAMS, 1987-88 by #### Jay F. Welgel #### **ABSTRACT** Growing concern about the availability of clean water has given rise to a need for a water-quality data base that will enable Federal, State, and local agencies to evaluate the current water-quality conditions of New York streams. In 1987, the U.S. Geological Survey began a continuing study in cooperation with the New York State Department of Environmental Conservation to provide a data base on the present water quality of New York streams. This report presents the data collected during 1987-88 and describes the data-collection network, the field procedures, and the laboratory methods used to collect and analyze the data. During 1987, eight water samples and one bottom-material sample were collected at each of 25 sites that together represent four drainage basins. During 1988, 10 water samples and 1 bottom-material sample were collected at each of those 25 sites, and a set of five water samples was collected at each of 23 other sites in 10 other basins. Water samples were analyzed for physical characteristics and concentrations of total recoverable and dissolved heavy metals, major ions, nutrients, volatile organic compounds, sediment, and solids. Bottom-material samples were analyzed for grain size and concentrations of total recoverable heavy metals and organic compounds. #### INTRODUCTION New York State's abundant surface-water resources have been an attraction for recreation, transportation, and industry since the 17th century. The increased use of streams for disposal of municipal and industrial wastes with the growth of population and industry has increased the potential for water pollution. Water-quality deterioration in many streams has caused fish kills, unpleasant odors, and excessive plant growth (New York State Department of Environmental Conservation, 1990, p. 7). As a result, fishing and recreational activities have been restricted in some streams and lakes. The State of New York has done much to protect and improve the quality of its surface waters by regulating municipal and industrial discharges to streams and lakes; yet several sources of contamination persist, including chemical spills, landfills, septic systems, and deposits of contaminants left in streambeds from past activities. Today's concerns about the availability of clean water have prompted awareness of a need for a water-quality data base that will enable Federal, State, and local agencies to evaluate the present water quality of streams. Long-term data are needed to identify trends in water quality; regional water-quality assessments are developed from data collected in large drainage basins, and localized assessments are developed from data from small drainage basins. Both require monitoring and an extensive data-collection network. In 1987, the U.S. Geological Survey (USGS) began a continous study, in cooperation with the New York State Department of Environmental Conservation (NYSDEC), to provide a data base on water quality and bottom material of New York streams. Both agencies are taking part in the data collection and laboratory analyses. The first 2 years of study entailed sampling at a total of 59 sites that together represent 13 major drainage basins in New York. ## Purpose and Scope This report describes the hydrologic characteristics of New York, explains the data-collection network, field procedures, and laboratory methods, and presents tables of water-quality, bottom-material, and quality-assurance data collected during the first 2 years of the study (calendar years 1987-88). #### **Drainage Basins** The study area encompasses 16 drainage basins that together cover the entire State of New York. These basins are the Erie-Niagara, Allegheny, Genesee, Oswego, Susquehanna, Lake Ontario, Black, St. Lawrence, Lake Champlain, upper Hudson, Mohawk, lower Hudson, Delaware, Housatonic, Passaic, and Atlantic drainages (fig. 1). Most basins have areas outside New York State that are not considered part of the study area. Topography ranges from flat and rolling plains to mountains. Lake Erie, Lake Ontario and Lake Champlain, and the St. Lawrence and Mohawk River valleys are bordered by extensive areas of level and rolling plans. Long Island is relatively flat. The Adirondack Mountains rise to more than 5,000 feet above sea level, and the Catskill Mountains rise to about 4,200 feet above sea level. The area that extends west from the Catskill Mountains along the Southern Tier (fig. 1) is fairly rugged terrain. #### Precipitation and Runoff During 1987-88 Mean annual precipitation ranges from about 30 inches in the northwestern and northeastern parts of the State to about 52 inches on the western slopes of the Adirondack and Catskill Mountains (U.S. Geological Survey, 1986, p. 347). Precipitation during 1987 was variable, but the annual total was near normal; precipitation during 1988 was below normal. Precipitation during the winter and spring of 1987 was variable; January, April, and June precipitation was above normal, and precipitation in February, March, and May was below normal. Precipitation in the summer was near normal and, in the fall, was above normal. Precipitation was below normal from November 1987 through June 1988, above normal during the summer, and below normal from September through the rest of the year (Firda and others, 1988, 1989, and 1990; Spinello and others, 1988, 1989, 1990; Coon and others, 1987; Campbell and others, 1988 and 1990). Mean annual runoff ranges from about 10 to 40 inches per year, and its distribution is similar to that of precipitation. Almost half the annual runoff occurs from mid-February through mid-May (U.S. Geological Survey, 1986, p. 347). #### Streamflow During 1987-88 The following is paraphrased from annual reports presenting New York stream data for calendar years 1987-88 (Firda and others, 1988, 1989, and 1990; Spinello and others, 1988, 1989, and 1990; Coon and others, 1987; Campbell and others, 1988 and 1990). Streamflows during 1987 were generally near normal except on Long Island, where they were below normal. Streamflows during 1988 were generally below normal except in the mid-Hudson and lower-Hudson River valley, where they were near normal. Monthly streamflows were variable during most of 1987; monthly streamflows for January and March were near normal, and February and May were below normal. April streamflows were near normal in the western part of the State, above normal in the most of the eastern part. and below normal in the northern and western Adirondack Mountains. June streamflows were near normal in the west, above normal in the
northeast, and below normal in the southeast. July streamflows were above normal except in the northeast, where they were near normal. August streamflows were near normal in the west, below normal in the northeast, and above normal in the southeast. September streamflows were above normal except in the extreme northeastern part of the State, where they were below normal. Streamflows during October 1987 were near normal and remained so through February 1988, then dropped below normal in March and continued below normal through September with few exceptions. May streamflows approached normal in the west and were near normal to above normal in the east. July and August streamflows were above normal in the southeast, and September streamflows were near normal in the east. October and November streamflows were normal in the west, and normal to abovenormal in most of the east. Streamflows in the southeast were below normal, and those on Long Island ranged from normal to below normal. Streamflows across the State were below normal in December. Figure 1.-Major drainage basins in New York. #### DATA COLLECTION AND ANALYSIS Data were collected at 32 permanent sites and 25 intermittently operated sites. The permanent sites represent 13 of the 16 drainage basins in the study. In 1987, data were collected at only nine permanent sites—three in the Erie-Niagara basin, three in the upper Hudson basin, one in the Lake Champlain basin, and two in the Delaware basin. Data collection at the other 23 permanent sites started in 1988. The 25 intermittently operated sites were distributed among four drainage basins—10 in the Erie-Niagara basin, 8 in the upper Hudson basin, 3 in the Lake Champlain basin, and 4 in the Delaware basin. The USGS maintains a network of streamflow gages for continuous discharge; this network was used to provide discharge data for the water-quality samples. The USGS collected all discharge data, and the NYSDEC collected most of the water samples and all of the bottommaterial samples. Both agencies conducted field reviews of sampling procedures to ensure consistent sampling methods. Initially, USGS personnel trained the NYSDEC staff in USGS sampling methods and conducted followup field reviews. Thereafter, USGS and NYSDEC headquarters office staff conducted annual field reviews to ensure consistent sampling procedures. #### **Data-Collection Network** The data-collection network in 1987-88 consisted of 57 sites—32 permanent sites listed in table 1a, and 34 intermittently operated sites listed in table 1b. Nine sites are on both lists. The network was designed to provide continuous representation of 13 large drainage basins and intermittent representation of many small drainage basins. The permanent sites were selected to provide annual data from the entire State and are on the main stem of rivers and large tributaries; the intermittently operated sites were selected to provide additional detail within the major drainage basins. The 32 permanent sites were selected in 13 large drainage basins to provide broad representation of water quality in the State (fig. 2). Five water samples were collected each year at 23 of these sites between late March and early December; none were collected during the winter. The other nine sites were sampled according to a schedule explained below. All samples were analyzed for physical characteristics and concentrations of total recoverable heavy metals, major ions, nutrients, volatile organic compounds, suspended-sediment, and solids. Intermittently operated sites were used for Rotating Intensive Basin Studies (RIBS) and were sampled on a rotating schedule that has a 6-year cycle. The 16 drainage basins in the State were divided into three groups, and sampling sites were selected within each group for 2 years of sampling, followed by 4 years of inactivity before resampling. These sites were selected to provide more detailed water-quality information than the permanent sites (fig. 3). During each year of RIBS sampling, 10 water samples and 1 bottom-material sample were collected between late March and early December at each site and analyzed for the analytes mentioned above; in addition, three of these samples were analyzed each year for dissolved heavy-metals concentration, and the bottom-material sample was analyzed for concentrations of total recoverable heavy metals and organic compounds and for grain size. During RIBS sampling in a basin, the permanent sites in each basin were sampled according to the RIBS sampling schedule, whereby 8 water samples were collected at each site in 1987, and 10 were collected in 1988. In 1988, duplicate samples and field blanks were collected for quality assurance. About 5 percent of the samples were collected in duplicate, and both samples were submitted to the same laboratory for analysis to verify analytical consistency. Deionized water was taken to the field periodically for field blanks, processed as a stream sample, and submitted for analysis to verify that field processing procedures were not introducing contamination. #### **Discharge Data** Sampling sites were established at streamflow gages wherever feasible so that each waterquality sample would have a corresponding discharge. Discharges at sampling sites without streamflow gages were obtained by one of several methods—multiplying data from nearby streamflow gages by a drainage-area-correction factor, making discharge measurements, or obtaining Table 1A.—Permanent sampling sites. [Locations are shown in fig. 2.] | Site Number | Site Name | |-------------|---| | 01304000 | Nissequogue River near Smithtown | | 01305000 | Carmans River at Yaphank | | 01325420 | Hudson River at Corinth* | | 01334805 | Hoosic River at Eagle Bridge* | | 01335770 | Hudson River at Waterford* | | 01342602 | Mohawk River near Utica | | 01349530 | Mohawk River at Fonda | | 01351500 | Schoharie Creek at Burtonsville | | 01357500 | Mohawk River at Cohoes | | 01359560 | Hudson River at Glenmont | | 01367500 | Rondout Creek at Rosendale | | 01372043 | Hudson River at Poughkeepsie | | 01434000 | Delaware River at Port Jervis* | | 01437500 | Neversink River at Godeffroy* | | 01502701 | Susquehanna River at Afton | | 01512850 | Chenango River at Binghamton | | 01514937 | Susquehanna River at Smithboro | | 01531000 | Chemung River at Chemung | | 03011020 | Allegheny River at Salamanca | | 04213500 | Cattaraugus Creek at Gowanda* | | 04215790 | Buffalo River at Ohio Street at Buffalo* | | 04219640 | Niagara River (Lake Ontario) at Fort Niagara* | | 04227510 | Genesee River at Geneseo | | 04232006 | Genesee River at Charlotte Docks at Rochester | | 04237410 | Seneca River at Jacks Reef, near Baldwinsville | | 04248250 | Oswego River at Lock 5 at Minetto | | 04260500 | Black River at Watertown | | 04260712 | St. Lawrence River at Cape Vincent | | 04263000 | Oswegatchie River near Heuvelton | | 04264331 | St. Lawrence River at Cornwall, Ontarionear Massena | | 04266500 | Raquette River at Piercefield | | 04295000 | Richelieu River at Rouses Point* | ^{* 1987-88} Rotating Intensive Basin Study site Table 1B.—Rotating Intensive Basin Study sampling sites, 1987-88. [Locations are shown in fig. 3.] | Site | Site Name | |------------|--| | 01315500 | Hudson River at North Creek | | 01317395 | Schroon River, State Highway 418 at Warrensburg | | 01325420 | Hudson River at Corinth* | | 01327755 | Hudson River at Rogers Island at Fort Edward | | 01329500 | Batten Kill at Battenville | | 01329650 | Hudson River at Schuylerville | | 01329907 | Clover Mill Brook on Shaw Hill Rd near Rock City Falls | | 01330907 | Fish Creek near Grangerville | | 0133335001 | Hoosic River below NY-VT State line, near North Pownal, VI | | 01334805 | Hoosic River at Eagle Bridge* | | 01335770 | Hudson River at Waterford* | | 01420500 | Beaver Kill at Cooks Falls | | 01421000 | East Branch Delaware River at Fishs Eddy (1988 only) | | 01421500 | East Branch Delaware River at Hancock (1987 only) | | 01422642 | West Branch Delaware River at De Lancey | | 01426500 | West Branch Delaware River at Hale Eddy (1988 only) | | 01427000 | West Branch Delaware River at Hancock (1987 only) | | 01434000 | Delaware River at Port Jervis* | | 01437500 | Neversink River at Godeffroy* | | 04213320 | Chautauqua Creek at Barcelona | | 04213378 | Canadaway Creek at Dunkirk | | 04213500 | Cattaraugus Creek at Gowanda* | | 04214020 | Cattaraugus Creek at Irving | | 04214240 | Eighteenmile Creek at Highland-On-The-Lake | | 04214480 | Buffalo Creek near Blossom (1987 only) | | 04214500 | Buffalo Creek at Gardenville (1988 only) | | 04214740 | Cayuga Creek near Alden (1987 only) | | 04215000 | Cayuga Creek near Lancaster (1988 only) | | 04215790 | Buffalo River at Ohio Street at Buffalo* | | 04216060 | Niagara River at Anderson Park, Buffalo | | 04217122 | Tonawanda Creek near East Pembroke | | 04218054 | Tonawanda Creek at Pendleton | | 04218090 | Ransom Creek near Clarance Center | | 04219640 | Niagara River (Lake Ontario) at Fort Niagara* | | 04273500 | Saranac River at Plattsburgh | | 04276500 | Bouquet River at Willsboro | | 04279015 | La Chute at State Highway 22 at Ticonderoga | | 04295000 | Richelieu River at Rouses Point* | ^{*} Permanent site data from dam operators. Several sampling sites had no discharge data because discharge measurements were not feasible. Streamflow gages in the USGS network record the water-surface stage (gage height) of the stream continuously. Discharge measurements are made through the range of gage heights, and discharge ratings are established that relate gage height to discharge at each site. This rating is used with gage-height data to compute instantaneous discharge for each water sample. For sampling sites that are near streamflow gages but not close enough for direct use of the gage data, a correction factor can be applied to
discharge at the gage to compute the discharge for each water sample. This correction factor, obtained by dividing the drainage area at the sampling site by the drainage area at the gage, is multiplied by the concurrent gaged discharge to obtain the discharge value for each water sample. Discharge ratings for sampling sites that are not close to a gage were developed as part of the project. At these sites, stream-stage and discharge measurements were made together to establish a stage-discharge relation. When water samples were collected, stream-stage measurements were made, and the discharge rating was used to compute the instantaneous discharge for each water sample. Several sampling sites are on streams that are highly regulated, in backwater from a lake, or affected by tidal conditions, all of which make discharge measurements difficult to obtain. Records for streams that are highly regulated are generally maintained by the regulating authority. Where necessary, these records were used to obtain discharges for water samples. No discharge data were obtainable from sites in backwater areas of lakes or in tidal areas. #### Water and Bottom-Material Sampling Streams are dynamic systems in which the flow and water quality can vary vertically and horizontally within a given cross section (Horowitz and others, 1989, p. 57-66). To obtain water samples that reflect these variations, samples are collected with depth-integrating samplers and by the Equal-Width-Increment (EWI) sampling method. Depth-integrating samplers are designed to collect water samples that reflect vertical differences in water quality in a water column, and the EWI method collects water samples that reflect horizontal differences across a stream. When depth-integrating samplers are moved vertically at constant rate through the water column, more water enters the sampler where the velocity is high than where it is low, and thus gives a discharge-weighted sample of suspended sediment and water (Edwards and Glysson, 1988, p. 6-20). With the EWI sampling method, a series of water columns are sampled at equal intervals in the stream cross section by moving the sampler at a uniform rate through each water column. These samples are composited to provide a water sample that is discharge weighted vertically and horizontally in the cross section and that is representative of the stream (Edwards and Glysson, 1988, p. 61-64). Water collected at each water column is poured into a churn-splitter and, when sample collection is completed, the water in the churn-splitter is mixed to obtain a homogeneous sample. During mixing, aliquots are drawn off for laboratory analysis; this allows identical water samples to be sent to different laboratories. Water temperature, specific conductance, pH, dissolved oxygen concentration, barometric pressure, and gage height are measured at the time of sampling. When possible, water temperature, specific conductance, pH, and dissolved oxygen concentration are measured in the stream; otherwise the measurements are made from the sample immediately after collection. Specific conductance and pH are also measured in the laboratory. Bottom-material samples are collected at one or more places in the stream cross section. Because streambed conditions differ widely from place to place, bottom material was collected wherever it could be obtained with Teflon¹ scoops and buckets. Care is taken to avoid disturbing the material during sample collection to minimize the washing away of fine material. After collection, the bottom material is mixed to produce a homogeneous sample, which is then split for the various analyses. ¹ Use of trade names is for identification purposes only and does not constitute endorsement by the U.S. Geological Survey. Figure 2.-Locations of permanent water-quality-sampling sites. Figure 3.-Locations of rotating intensive basin study sites sampled in 1987-88. #### Laboratory Analysis Heavy-metal and major-ion analyses were run in the USGS Central Laboratory in Arvada, Colo.; analytical procedures are documented in Fishman and Friedman (1985). Sediment samples were analyzed in the USGS sediment laboratory in Harrisburg, Pa.; analytical procedures are documented in Guy (1969). Analytes, analytical methods, detection limits, and reporting limits are listed in table 2. Analyses for nutrients, bacteria, solids, and organic compounds were run in the New York State Department Health laboratories in Al- bany, Syracuse, or Buffalo. Analyses for volatile halogenated organic compounds were run in the NYSDEC laboratory in Albany. Analytical procedures used by these laboratories are documented in American Public Health Association, American Water Works Association and Water Pollution Control Federation (1980), U.S. Environmental Protection Agency (1983), U.S. Environmental Protection Agency (1982), and Wadsworth Center for Labs and Research, New York State Department of Health (1988). Analytes, analytical methods, detection limits, and reporting limits are listed in table 3. Table 2.—Analytical methods, detection limits, and reporting limits for analytes measured by U.S. Geological Survey laboratories. [Method codes are referenced from Fishman and Friedman (1989). If more than one method was used, the starting date (month and year) of the new method is given in parentheses. Method codes for sediment analyses are by page numbers references in Guy (1969).greater than. ≥ equal to or greater than.] | | | Detection limit | | ing limit | |-----------|-------------------|------------------------|--------------------|---------------| | | | (lowest reported | Number of | Concentration | | Analyte | Method codes | value) | significant digits | range | | | | Heavy Metals | | | | | Total Reco | verable (in micrograms | s per liter) | | | Aluminum | I-3054-85 | 10 | 1 | < 100 | | | | | 2 | ≥ 100 | | Cadmium | I-3135-85 | 10 | 1 | < 100 | | | | | 2 | ≥ 100 | | | I-3136-85 (09-87) | 1 | 1 | < 10 | | | | | 2 | ≥ 10 | | Copper | I-3270-85 | 10 | 1 | < 100 | | | | | 2 | ≥ 100 | | | I-3271-85 (09-87) | 1 | 1 | < 10 | | | | | 2 | ≥ 10 | | Iron | I-3381-85 | 10 | 1 | < 100 | | | | | 2 | ≥ 100 | | Lead | I-3399-85 | 10 | 1 | < 100 | | | | | 2 | ≥ 100 | | | I-3400-85 (05-87) | 5 | 1 | < 10 | | | | | 2 | ≥ 10 | | Manganese | I-3454-85 | 10 | 1 | < 100 | | | | | 2 | ≥ 100 | | Mercury | I-3462-85 | 0.1 | 1 | < 10 | | | | | 2 | ≥ 10 | | Nickel | I-3499-85 | 100 | 1 | < 1,000 | | | | | 2 | ≥ 1,000 | | | I-3500-85 (05-87) | 1 | 1 | < 10 | | | | | 2 | ≥ 10 | | Zinc | I-3900-85 | 10 | 1 | < 100 | | | | | 2 | ≥ 100 | $Table\ 2. — Analytical\ methods,\ detection\ limits,\ and\ reporting\ limits\ for\ analytes$ $measured\ by\ U.S.\ Geological\ Survey\ laboratories\ (continued).$ | | | Detection limit | | ing limit | |---------------|-----------------------|---------------------------|-------------------------|----------------| | | | (lowest reported | Number of | Concentration | | Analyte | Method codes | value) | significant digits | range | | | | Heavy Metals | | | | | Dissection | olved (in micrograms pe | r liter) | | | Aluminum | I-1054-85 | 10 | 1 | < 100 | | | | | 2 | ≥ 100 | | Cadmium | I-1135-85 | 1 | 1 | < 10 | | | | | 2 | ≥ 10 | | Copper | I-1271-85 | 1 | 1 | < 10 | | т | T 1001 05 | 10 | 2 | ≥ 10 | | Iron | I-1381-85 | 10 | 1 | < 100 | | Lead | I-1400-85 | 5 | 2
1 | ≥ 100
< 10 | | Lead | 1-1400-65 | υ | 2 | ≥ 10
≥ 10 | | Manganese | I-1454-85 | 10 | 1 | < 100 | | Manganese | 1-1404-00 | 10 | $\overset{1}{2}$ | ≥ 100 | | Nickel | I-1500-85 | 1 | 1 | < 10 | | | 1 1000 00 | _ | $\stackrel{ ext{-}}{2}$ | ≥ 10 | | Zinc | I-1900-85 | 10 | 1 | < 100 | | | | | 2 | ≥ 100 | | | Total recoverable fro | om bottom material (in n | nicrograms per gram) | | | Aluminum | I-5054-85 | 10 | 1 | < 100 | | . Maiiii aiii | 10004-00 | 10 | $\overset{1}{2}$ | ≥ 100 | | Cadmium | I-5135-85 | 1 | 1 | < 10 | | | | | $\overline{2}$ | ≥ 10 | | Copper | I-5270-85 | 1 | 1 | < 10 | | | | | 2 | ≥ 10 | | Iron | I-5381-85 | 1 | 1 | < 10 | | | | | 2 | ≥ 10 | | Lead | I-5399-85 | 10 | 1 | < 100 | | | | _ | 2 | ≥ 100 | | Manganese | I-5454-85 | 1 | 1 | < 10 | | Nf: .1 1 | I 5 400 05 | • • | 2 | ≥ 10 | | Nickel | I-5499-85 | 10 | $\frac{1}{2}$ | < 100 | | Zinc | I-5900-85 | 1 | | ≥ 100
< 10 | | Zinc | 1-5900-65 | 1 | $ rac{1}{2}$ | ≥ 10
≥ 10 | | | Major ions | s, dissolved (in milligra | | 2 10 | | Allcolinite | • | - | • | . 10 | | Alkalinity | I-2030-85 | 1 | 1
2 | < 10
≥ 10 | | Calcium | I-1152-85 | 0.1 | 1 | < 1.0 | | Calcium | 1-1102-00 | 0.1 | $\frac{1}{2}$ | < 1.0
≥ 1.0 | | Chloride | I-2187-85 | 0.1 | 1 | < 1.0 | | | | V.2 | 2 | ≥ 1.0 | | Fluoride | I-2327-85 | 0.1 | 1 | < 1.0 | | | | | 2 | ≥ 1.0 | | Magnesium | I-1447-85 | 0.1 | 1 | < 1.0 | | | | | 2 | ≥ 1.0 | | Potassium | I-1630-85 | 0.1 | 1 | < 1.0 | | | | | 2 | ≥ 1.0 | Table 2.—Analytical methods, detection limits, and reporting limits for analytes measured by U.S. Geological Survey laboratories (continued). | | | Detection limit | Repo | orting limit | |---------------------------------------|---------------|----------------------------|------------------------------|--------------------------------| | Analyte | Method codes | (lowest reported
value) | Number of significant digits | Concentration range | | | Major ions, o | lissolved (in milligrams | per liter) (continued) | | | Sodium | I-1735-85 | 0.1 | 1 | < 1.0 | | | | | 2 | ≥ 1.0 | | Sulfate | I-2823-85 | 0.2 | 1 | < 1.0 | | | | | 2 | ≥ 1.0 | | | | Solids | | | | Volatile on | I-5753-85 | 1 mg/kg | 1 | < 10 mg/kg | | ignition, total in
bottom material | | | 2 | < 100 & ≥ 10 mg/kg | | Residue on | I-3750-85 | 1 mg/L | 1 | < 10 mg/L | | evaporation at | | | 2 | $< 100 \& \ge 10 \text{ mg/L}$ | | 105° C, total, gravimetic | | | 3 | ≥ 100 mg/L | | | | Sediment | | | | Concentration | (12-13) | 1 mg/L | 1 | < 10 mg/L | | | | - | 2 | < 100 & ≥ 10 mg/L | | Grain size, bottom | (23-38) | 1 percent | 1 | < 10 percent | | material | | , | 2 | ≥ 10
percent | Table 3.—Analytical methods, detection limits, and reporting limits for analytes measured by New York State laboratories (continued). [Method codes for nutrients and phenols are referenced from U.S. Environmental Protection Agency (1983). Method codes for bacteria, solids, and turbidity are referenced from American Public Health Association, American Water Works Association, and Water Pollution Control Federation (1981). Method codes for volatile halogenated organic compounds are referenced from U.S. Environmental Protection Agency (1982). Method codes for organochlorine pesticides, PCBs, and pesticides containing nitrogen or phosphorus are referenced from Wadsworth Center for Labs and Research, New York State Department of Health (1988). < less than. > greater than. ≥ equal to or greater than. NTU Nephelometric turbidity unit.] | | Method codes | Detection limit | Reportin | ng limit | |-------------------------|--------------|-------------------------|------------------------------|------------------------| | Analyte | | (lowest reported value) | Number of significant digits | Concentration
Range | | | Nutrien | ts (in milligrams per | r liter) | | | | | Nitrogen | | | | Total organic | 351.2 | 0.1 | 1 | < 1.0 | | | | | 2 | ≥ 1.0 | | Total ammonia | 350.1 | 0.01 | 1 | < 0.1 | | | | | 2 | ≥ 0.1 | | Total nitrite | 353.2 | 0.05 | 1 | < 0.1 | | | | | 2 | ≥ 0.1 | | Total nitrate + nitrite | 353.2 | 0.05 | 1 | < 0.1 | | | | | 2 | ≥ 0.1 | | | | Phosphorus | | | | Total | 365.2 | 0.01 | 1 | < 0.1 | | | | | 2 | ≥ 0.1 | | Ortho, dissolved | 365.2 | 0.01 | 1 | < 0.1 | | | | | 2 | ≥ 0.1 | $Table~3. \hbox{$--$Analytical methods, detection limits, and reporting limits for analytes} \\ measured~by~New~York~State~laboratories~(continued).$ | | | | Reporting limit | | |----------------------------|------------------|----------------------------------|------------------------------|------------------------| | | | Detection limit (lowest reported | Number of significant digits | Concentratior
Range | | Analyte | Method codes | value) | | range | | | Solids (| in milligrams per lite | r) | | | Total residue at 105°C | 209 A | 1 | 1 | < 10 | | | | | 2 | > 10 &< 100 | | Volatile in ignition | 209 E | 1 | 1 | < 10 | | | 222 | | 2 | > 10 & < 100 | | Total residue fixed | 209 E | 1 | 1 | < 10 | | D: 1- 1 1000G | 000 T | 1 | 2 | > 10 & < 100 | | Dissolved residue at 108°C | 209 E | 1 | 1
2 | < 10
> 10 & < 100 | | | Ractoria (co | lonies per 100 millilit | | > 10 & < 100 | | Fecal Coliform | 909 A | nomes per 100 mmm.
1 | 1 | < 10 | | recai comorm | 303 A | 1 | $\overset{1}{2}$ | ≥ 10 | | Total Coliform | 909 C | 1 | 1 | < 10 | | Total Collidin | 500 0 | • | 2 | ≥ 10 | | Total Volatile | e Halogenated Or | ganic Compounds | (in micrograms per lit | | | 1.1.1 M - 1.1 | CO 1 | 0.02 | 1 | .10 | | 1,1,1-Trichloroethane | 601 | 0.03 | $ rac{1}{2}$ | < 1.0
≥ 1.0 | | 1,1,2,2-Tetrachloroethane | 601 | 0.03 | 1 | ≥ 1.0
< 1.0 | | 1,1,2,2-Tetracmoroethane | 001 | 0.03 | 2 | ≥ 1.0
≥ 1.0 | | 1,1,2-Trichloroethane | 601 | 0.02 | 1 | ≥ 1.0
< 1.0 | | 1,1,2-111cmoroethane | 100 | 0.02 | 2 | ≥ 1.0 | | 1,1-Dichloroethane | 601 | 0.1 | 1 | < 1.0 | | 1,1-Dictior detriane | 001 | 0.1 | 2 | ≥ 1.0 | | 1,1-Dichloroethylene | 601 | 0.1 | 1 | > 1.0 | | 1,1-Dictior detrifferie | 001 | 0.1 | $\overset{1}{2}$ | ≥ 1.0
≥ 1.0 | | 1,2-Dichlorobenzene | 601 | 0.1 | 1 | > 1.0 | | 1,2-Dichlorobelizene | 001 | 0.1 | $\overset{1}{2}$ | ≥ 1.0 | | 1,2-Dichloroethane | 601 | 0.03 | 1 | > 1.0 | | 1,2-Diefffortoefferie | 001 | 0.00 | $\overset{\cdot}{2}$ | ≥ 1.0 | | 1,2-Dichloropropane | 601 | 0.04 | 1 | > 1.0 | | 1,2 2 te op. ope | 00- | | $\overset{ ext{-}}{2}$ | ≥ 1.0 | | 1,2-Transdichloroethene | 601 | 0.1 | 1 | > 1.0 | | ., | | | $\overline{2}$ | ≥ 1.0 | | 1,3-Dichlorobenzene | 601 | 0.3 | 1 | > 1.0 | | - , | | | 2 | ≥ 1.0 | | 1,4-Dichlorobenzene | 601 | 0.2 | 1 | > 1.0 | | , | | | 2 | ≥ 1.0 | | 2-Chloroethylvinyl ether | 601 | 0.1 | 1 | > 1.0 | | | | | 2 | ≥ 1.0 | | Bromoform | 601 | 0.2 | 1 | > 1.0 | | | | | 2 | ≥ 1.0 | | Carbon tetrachloride | 601 | 0.1 | 1 | > 1.0 | | | | | 2 | ≥ 1.0 | | Chlorobenzene | 601 | 0.2 | 1 | > 1.0 | | | | | 2 | ≥ 1.0 | | Chlorodibromomethane | 601 | 0.1 | 1 | > 1.0 | | | | | 2 | ≥ 1.0 | | Chloroethane | 601 | 0.5 | 1 | > 1.0 | | | | | 2 | ≥ 1.0 | Table 3.—Analytical methods, detection limits, and reporting limits for analytes measured by New York State laboratories (continued). | | | (lowest reported | Number of | Concentration | |-----------------------------------|-----------------|--------------------|-------------------------------|----------------------| | Analyte | Method codes | value) | significant digits | Range | | Total Volatil | le Halogenated | d Organic Compou | nds (in micrograms pe | er liter) | | Chloroform | 601 | 0.1 | 1 | > 1.0 | | | | | 2 | ≥ 1.0 | | Cis-1,3-Dichloropropene | 601 | 0.2 | 1 | > 1.0 | | | | | 2 | ≥ 1.0 | | Dichlorobromomethane | 601 | 0.1 | 1 | > 1.0 | | N.C. 43: | CO1 | 0.1 | 2 | ≥ 1.0 | | Methylbromide | 601 | 0.1 | 1 | > 1.0 | | Mathylahlarida | 601 | 0.1 | 2
1 | ≥ 1.0
> 1.0 | | Methylchloride | 001 | 0.1 | $\frac{1}{2}$ | > 1.0
≥ 1.0 | | Methylene chloride | 601 | 0.2 | 1 | ≥ 1.0
> 1.0 | | Methylene chloride | 001 | 0.2 | $\overset{1}{2}$ | ≥ 1.0
≥ 1.0 | | Tetrachloroethylene | 601 | 0.03 | 1 | > 1.0 | | Tetracinor betrigrene | 001 | 0.00 | $\overset{1}{2}$ | ≥ 1.0
≥ 1.0 | | Trans-1,3-Dichloropropene | 601 | 0.3 | 1 | > 1.0 | | 17 and 1,0-Diemoropropene | 001 | 0.0 | $\overset{1}{2}$ | ≥ 1.0
≥ 1.0 | | Trichloroethylene | 601 | 0.1 | 1 | > 1.0 | | 111emorocony ione | 001 | 0.12 | $\hat{\overline{2}}$ | ≥ 1.0 | | Vinyl chloride | 601 | 0.2 | 1 | > 1.0 | | | | | $\overset{-}{2}$ | ≥ 1.0 | | | | Other Analytes | | | | Phenols (in micrograms per liter) | 214 A | 1 | 1 | < 10 | | Thenois (in interograms per nær) | 21411 | 1 | $\overset{1}{2}$ | ≥ 10 | | Turbidity [in Nephelometric Turbi | dity 205 | 0.1 | a | | | Units (NTU)] | | | | | | Organochlori | ne Pesticides t | total in bottom ma | t erial (in micrograms | | | Aldrin | 312.2 | 20 | 2 | < 1,000 | | | | | 3 | ≥ 1,000 | | Alpha BHC | 312.2 | 10 | 2 | < 100 | | | | | 3 | ≥ 100 | | Beta-Benzene hexachloride | 312.2 | 10 | 2 | < 100 | | | 212.0 | 24 | 3 | ≥ 100 | | Chlordane | 312.2 | 30 | 2 | < 1,000 | | DDD | 010.0 | 10 | 3 | ≥ 1,000 | | DDD-para, para | 312.2 | 10 | 2 | < 10,000 | | DDF name name | 210.0 | 10 | $ rac{4}{2}$ | ≥ 10,000
< 10,000 | | DDE-para, para | 312.2 | 10 | 2
4 | < 10,000
≥ 10,000 | | DDT-para, para | 312.2 | 10 | 2 | < 10,000
< 10,000 | | DD1-para, para | 014.4 | 10 | 4 | ≥ 10,000
≥ 10,000 | | Delta Benzene hexachloride | 312.2 | 10 | $\overset{4}{2}$ | < 100 | | Delta Delizene nexacmoride | 0,2.2 | 10 | 3 | ≥ 100 | ^a Report 0.0 to 0.1 NTU to the nearest 0.05; 1 to 10 NTU to the nearest 0.1; 11 to 40 NTU to the nearest 1; ⁴¹ to 100 NTU to the nearest 5; 101 to 400 NTU to the nearest 10; 401 to $1{,}000$ NTU to the nearest 50; over 1,000 NTU to the nearest 100. $Table~3. \hbox{$--$Analytical methods, detection limits, and reporting limits for analytes} \\ measured~by~New~York~State~laboratories~(continued).$ | | | | Reporting limit | | | |---------------------|---------------------|-------------------------|------------------------------|----------------------------|--| | Analyte | Method codes | (lowest reported value) | Number of significant digits | Concentration
Range | | | Organochlo | ine Pesticides tota | l in bottom materi | al (in micrograms per | kilogram) (cont'd) | | | Dieldrin | 312.2 | 10 | 2 | < 1,000 | | | | | | 3 | ≥ 1,000 | | | Endosulfan alpha | 312.2 | 20 | 2 | < 100 | | | | | | 3 | ≥ 100 | | | Endosulfan beta | 312.2 | 20 | 2 | < 100 | | | | | | 3 | ≥ 100 | | | Endosulfan sulfate | 312.2 | 10 | 2 | < 100 | | | D 1: | 010.0 | 10 | 3 | ≥ 100 | | | Endrin | 312.2 | 10 | 2 | < 1,000 | | | 73 1 1 1 1 1 | 010.0 | 00 | 3 | ≥ 1,000 | | | Endrin aldehyde | 312.2 | 20 | 2 | < 100 | | | II. A. alalaa | 010.0 | 00 | 3 | ≥ 100 | | | Heptachlor | 312.2 | 20 | 2 | < 1,000 | | | Hankadalan anada | 010.0 | 00 | 3 | ≥ 1,000 | | | Heptachlor epoxide | 312.2 | 20 | 2 | < 1,000 | | | Titu dan a | 010.0 | 10 | 3 | ≥ 1,000 | | | Lindane | 312.2 | 10 | 2 | < 1,000 | | | Mathamalan | 210.0 | 20 | 3 | ≥ 1,000 | | | Methoxychlor | 312.2 | 30 | 2
3 | < 1,000 | | | Mirex | 312.2 | 10 | 3
2 | ≥ 1,000
< 1,000 | | | Mirex | 312.2 | 10 | 3 | ≥ 1,000
≥ 1,000 | | | Towarhana | 312.2 | 30 | 3
2 | < 1,000
< 1,000 | | | Toxaphene | 312.2 | 30 | 3 | ≥ 1,000
≥ 1,000 | | | | Total PCR's in hot | tom motorial (in m | icrograms per kilogran | | | | PCB, Aroclor 1221 | 312.2 | 1 | 1 | < 10 | | | 1 CB, Alociol 1221 | 012.2 | 1 | $\overset{1}{2}$ | ≥ 10 to < 10 | | | | | | 3 | ≥ 10 to < 10 | | | PCB, Aroclor 1248 | 312.2 | 1 | 1 | < 100 | | | 1 CB, Arocioi 1240 | 012.2 | 1 | $\overset{1}{2}$ | $\geq 10 \text{ to } < 10$ | | | | | | 3 | ≥ 10 to € 10
≥ 100 | | | PCB, Aroclor 1254 | 312.2 | 1 | 1 | < 10 | | | 1 OB, AIOCIOI 1254 | 012.2 | 1 | $\overset{\mathtt{l}}{2}$ | $\geq 10 \text{ to} < 100$ | | | | | | 3 | ≥ 1000 < 100 | | | PCB, Aroclor 1260 | 312.2 | 1 | 1 | < 10 | | | 1 01, 11 00101 1200 | 012.2 | 1 | $\overset{1}{2}$ | $\geq 10 \text{ to} < 100$ | | | | | | 3 | ≥ 1000 < 100 | | | Pesticides contain | ing Nitrogen/Phosr | horus total in bott | tom material (in micr | | | | Atrazine | 312.2 | 30 | 2 | < 1,000 | | | a ava demissio | 914.4 | 30 | 3 | ≥ 1,000 | | | Diazinon | 312.2 | 30 | 2 | < 1,000 | | | ar a constitute | 512.2 | 30 | 3 | ≥ 1,000 | | | Parathion | 312.2 | 30 | $\overset{\circ}{2}$ | < 1,000 | | | ~~~~ | 914.2 | ~~ | 3 | ≥ 1,000 | | | Chlorpyrifos | 312.2 | 30 | $\overset{\circ}{2}$ | ≥ 30 | | | Malathion | 312.2 | 30 | $\overset{2}{2}$ | < 1,000 | | | aramam VAAL VAA | 314.2 | • | 3 | ≥ 1,000 | | | Ethion | 312.2 | 30 | $\overset{\circ}{2}$ | < 1,000 | | | | J.2.2 | • • | 3 | ≥ 1,000 | | ## ARRANGEMENT OF
SELECTED DATA ON WATER QUALITY AND BOTTOM MATERIAL The data for each of the 59 sites in table 4 (at end of report) begins with a site description that gives site location, drainage area, period of record, types of data available from the USGS, and other remarks pertinent to the data. The water-quality and bottom-material data include discharge, field measurements, and results of laboratory analyses. Results of quality-assurance samples are presented in table 5 (at end of report). These data include the analytical results of paired duplicate samples and give the site, date, and time to which they correspond in table 4. Analytical results of field blanks are identified by date and time. Sites listed in table 4 are grouped by drainage basin and presented in downstream order. Since October 1, 1950, the listing order of hydrologic-station records in USGS reports, by convention, is in downstream order along the main stream. All stations on a tributary entering upstream from a mainstream station are listed before that station, and a station on a tributary that enters between two mainstream stations is listed between them. This downstream-order system shows which stations are on tributaries between any two stations. In assigning station numbers, no distinction is made between types of stations (stream-flowgaging stations, water-quality-sampling sites, permanent sites, RIBS sites, etc); therefore, the station number indicates only the downstream order. Gaps are left in the series of numbers to allow for new stations; hence, the numbers are not consecutive. The complete 8-digit number for each station, such as 01335770, comprises the 2-digit basin number (01) plus the 6-digit downstream-order number (335770). The basin number designates the major river basin. The downstream-order numbers for sites in the headwaters of a basin are small and increase downstream. In the few instances where no gaps were left in the 8-digit numbering sequence, one or two digits are added to give a 9- or 10-digit station number. The site descriptions contain the following headings. Not all headings are used for every site. LOCATION.—Information on locations is obtained from the most accurate maps available and includes latitude, longitude, county, and hydrologic-unit number. The location of the site is given in terms of the cultural or physical features in the vicinity and the place mentioned in the station name. DRAINAGE AREA.—Drainage areas are measured from the most accurate maps available and are reported in square miles. Because the type of maps available differ from one drainage basin to another, the accuracy of drainage areas also varies. Drainage areas are updated as improved maps become available. PERIOD OF RECORD.—Period of record indicates periods for which water-quality data are available from the USGS. First, the water years for which data are available are listed, followed by a list of categories of water-quality data with years and frequency-of-sampling codes. The years refer to water years (October through September), and the frequency-of-sampling codes indicate the amount of data available and are defined as follows: - (a) 1 or 2 samples per year - (b) 3 to 5 samples per year - (c) 6 to 9 samples per year - (d) 10 to 20 samples per year - (e) more than 20 samples per year The many types of water-quality analyses available are grouped into eight categories in the "Period of Record" section, as explained below: Chemical Data: Most of the major ions and some or all of the following physical properties: specific conductance, pH, temperature, color, turbidity, and dissolved oxygen concentration. Minor Element Data: The "heavy metals" and some of the "alkaline earth metal" groups. Determinations may include some but not all of the following: aluminum, arsenic, barium, cadmium, chromium, cobalt, copper, lithium, mercury, nickel, selenium, strontium, and zinc. Radiochemical Data: Concentrations of individual radioactive elements, such as radium 226, cobalt 60, strontium 90, and tritium; also included are gross measurements of radioactivity (alpha, beta, gamma) without regard to the radiochemical species that produce the radioactivity. Pesticide Data: Organic compounds (insecticides and herbicides) for control of insects and plants. Routinely, the analyses search for traces of 12 to 22 compounds. Organic Data: Organic compounds other than pesticides, such as organic carbon, PCB's, and PCN's. Nutrient Data: Analytes containing nitrogen or phosphorus. Results commonly include the following: nitrate plus nitrite, phosphorus, ammonia nitrogen, organic nitrogen, ammonia nitrogen plus organic nitrogen (Kjeldahl nitrogen). Biological Data: The identification and concentration of microscopic plant organisms (phytoplankton, periphyton) or enteric bacteria (total coliform, fecal coliform, or fecal streptococ- cal) living in aquatic habitats. Sediment Data: Suspended-sediment concentration, suspended-sediment discharge, and particle-size data for discrete samples. REMARKS.—Additional information pertinent to the collection or analysis of data. Such information could include the method of computing discharge, type of site (RIBS or permanent), or any information that explains departures from procedures described previously. COOPERATION.—Acknowledgment of any government agencies other than NYSDEC or private companies that provided data for a site. #### **SOURCES OF DATA** Access to data in this report and additional data is available through the USGS and the NYSDEC. All data that the USGS has collected are available to the public in published reports and(or) computer retrievals. NYSDEC has additional data that are available in published reports and(or) computer retrievals. #### U.S. Geological Survey The USGS is the principal Federal waterdata agency and, as such, collects and disseminates about 70 percent of the water-data currently being used by numerous State, local, private, and other Federal agencies to develop and manage our water resources. As a part of the USGS program of releasing water data to the public, a large-scale computerized system has been developed for the storage and retrieval of water data collected through its activities. The National Water Data Storage and Retrieval System (WATSTORE) was established in 1972 to provide an effective and efficient means for the processing and maintenance of water data collected through the activities of the USGS and to facilitate release of the data to the public. A variety of useful products, ranging from data tables to complex statistical analyses, can be produced using WATSTORE. The system resides on the central computer facilities of the USGS at its National Center in Reston, Va., and consists of related files and data bases. • Station Header File.—Contains descriptive information on more than 440,000 sites throughout the United States and its territories where the USGS collects or has collected data. - Daily Values File.—Contains more than 220 million daily values of streamflow, stage, reservoir content, water temperature, specific conductance, sediment concentration, sediment discharge, and ground-water level. - Peak Flow File.—Contains about 500,000 maximum (peak) streamflow and gage-height values at surface-water sites. - Water-Quality File.—Contains about 2 million analyses of water samples that describe the chemical, physical, biological, and radiochemical characteristics of both surface and ground water. - Ground-Water-Site Inventory Data Base.—Contains inventory data from more than 900,000 wells, springs, and other sources of ground water. The data include site location, geohydrologic characteristics, well-construction history, and one-time field measurements such as water temperature. In 1976, the USGS opened WATSTORE to the public for direct access. A signed Memorandum of Agreement with the USGS is needed for direct access to WATSTORE. The system can be accessed either synchronously or asynchronously. The requestor will be expected to pay all computer costs incurred. Direct access may be obtained by contacting: U.S. Geological Survey National Water Data Exchange 421 USGS National Center Reston, VA 22092 In addition to providing direct access to WATSTORE, the USGS can provide data in various machine-readable formats on magnetic tape or 51/4 -inch floppy disk, and on CD-ROM disks. Information about the availability of specific types of data or products and user charges can be obtained locally from each of the USGS District offices. (See address on page ii.) ### New York State Department of Environmental Conservation STOrage and RETrieval (STORET) is a computer data system maintained by the U.S. Environmental Protection Agency and used by the NYSDEC for data storage. Water-quality data in WATSTORE are also stored in STORET. Inquiries about STORET data can be directed to: Chief, Quality Assessment Section New York State Department of Environmental Conservation Bureau of Monitoring and Assessment 50 Wolf Road, Room 328 Albany, NY 12233-3503 #### REFERENCES CITED - American Public Health Association, American Water Works Association, and Water Pollution Control Federation, 1981, Standard methods for the examination of water and wastewater: Springfield, Va., Byrd PrePress, 1,134 p. - Campbell, J.B., Coon, W.H., Sherwood, D.A., and Deloff, D.D., 1988, Water resources data—New York, water year 1988. Volume 3, western New York: U.S. Geological Survey Water-Data Report NY-88-3, 198 p. - ____ 1990, Water resources data—New York, water year 1989. Volume 3, western New York: U.S. Geological Survey Water-Data Report NY-89-3, 198 p. - Coon, W.F., Johnston, W.H., Sherwood, D.A., and Deloff, D.D., 1987, Water resources data—New York, water year 1987. Volume 3, western New York: U.S. Geological Survey Water-Data Report NY-87-3, 178 p. - Edwards, T.K., and Glysson, G.D., 1988, Field methods for measurement of fluvial sediment: U.S. Geological Survey Open-File Report 86-531, 118 p. - Fishman, M.J.,
and Friedman, L.C., 1989, Methods for determination of inorganic substances in water and fluvial sediments: Techniques of Water-Resources Investigations of the United States Geological Survey, Book 5, Chapter A1, 545 p. - Firda, G.D., Lumia, Richard, and Burke, P.M., 1988, Water resources data—New York, water year 1987. Volume 1, eastern New York excluding Long Island: U.S. Geological Survey Water-Data Report NY-87-1, 267 p. 1989, Water resources data—New York, - water year 1988. Volume 1, eastern New York excluding Long Island: U.S. Geological Survey Water-Data Report NY-88-1, 259 p. - Firda, G.D., Lumia, Richard, and Murray, P.M., 1990, Water resources data—New York, water year 1989. Volume 1, eastern New York excluding Long Island: U.S. Geological Survey Water-Data Report NY-89-1, 258 p. - Guy, H.P., 1969, Laboratory theory and methods for sediment analysis: Techniques of Water-Resources Investigations of the United States Geological Survey, Book 5, Chapter C1, 58 p. - Horowitz, A.J., Rinella, F.A., Lamothe, Paul, Miller, T.L., Edwards, T.K., Roche, R.L., and Rickert, D.A., 1989, Cross-sectional variability in suspended sediment and associated trace element concentrations in selected rivers in the US: Sediment and the Environment, no. 181, p. 57-66. - New York State Department of Environmental Conservation, 1990, Biennial report rotating intensive basin studies water quality assessment program 1987-1988, 160 p. - Spinello, A.G., Nakao, J.H., Winowitch, R.B., and Simmons, D.L., 1988, Water resources data— New York, water year 1987. Volume 2, Long Island: U.S. Geological Survey Water-Data Report NY-87-2, 218 p. - Spinello, A.G., Nakao, J.H., Busciolano, Ronald, and Winowitch, R.B., 1989, Water resources data—New York, water year 1988. Volume 2, Long Island: U.S. Geological Survey Water-Data Report NY-88-2, 230 p. - Spinello, A.G., Nakao, J.H., Busciolano, Ronald, Winowitch, R.B.and Eagen, V.K., 1990, Water resources data—New York, water year 1989. ## REFERENCES CITED (Continued) Volume 2, Long Island: U.S. Geological Survey Water-Data Report NY-89-2, 196 p. U.S. Environmental Protection Agency, 1982, Methods for organic chemical analysis of municipal and industrial wastewater: Cincinnati, Ohio, U.S. Environmental Protection Agency, EPA-600/4-82-057, 87 p. ____ 1983, Methods for chemical analysis of water and wastes: Cincinnati, Ohio, U.S. Environmental Protection Agency, EPA-600/4-79-020, 356 p. U.S. Geological Survey, 1986, National water summary 1985—hydrologic events and surface-water resources: U.S. Geological Survey Water-Supply Paper 2300, 506 p. Wadsworth Center for Labs and Research, New York State Department of Health, 1988, Analytic handbook—laboratory of organic analytical chemistry: Albany, N.Y., New York State Department of Health, 364 p. #### **GLOSSARY** Terms and abbreviations related to streamflow, water quality, and other hydrologic data, as used herein, are defined below. Bacteria are microscopic unicellular organisms, typically spherical, rodlike, or spiral and threadlike, often clumped into colonies. Some bacteria cause disease; others perform an essential role in nature in the recycling of materials, such as decomposing organic matter into a form available for reuse by plants. Total coliform bacteria are a particular group of bacteria that are used as indicators of possible sewage pollution. They are characterized as aerobic or facultative anaerobic, gramnegative, nonspore-forming, rod-shaped bacteria which ferment lactose and cause gas formation within 48 hours at 35 °C. In the laboratory these bacteria are defined as the organisms that produce colonies within 24 hours when incubated at 35 °C ± 1.0 °C on M-Endo medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample. Fecal coliform bacteria are present in the intestines or feces of warm-blooded animals. They are often used as indicators of the sanitary quality of the water. In the laboratory they are defined as all organisms that produce blue colonies within 24 hours when incubated at 44.5 °C ± 0.2 °C on M-FC medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample. Fecal streptococcal bacteria are bacteria found in intestines of warm-blooded animals. Their presence in water is considered to verify fecal pollution. They are characterized as grampositive, cocci bacteria that are capable of growth in brain-heart infusion broth. In the laboratory they are defined as all organisms that produce red or pink colonies within 48 hours at 35 °C ±1.0 °C on KF medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample. Bed material. See Bottom material. Bottom material is the unconsolidated material of which a streambed, lake, pond, reservoir, or estuary bottom is composed. Also known as bottom or bed sediment. Recoverable from bottom material is the amount of a given analyte that is in solution after a representative sample of bottom material has been digested by a method (usually an acid or mixture of acids) that results in dissolution of only readily soluble substances. Complete dissolution of all bottom material is not achieved by the digestion treatment; thus, the determination represents less than the total amount (that is, less than 95 percent) of the analyte in the sample. To achieve comparability of analytical data, equivalent digestion procedures would be required of all laboratories that perform such analyses because different digestion procedures are likely to produce different analytical results. Total in bottom material is the total amount of a given analyte in a representative sample of bottom material. This term is used only when the analytical procedure assures measurement of at least 95 percent of the analyte determined. A knowledge of the expected form of the analyte in the sample, as well as the analytical methods used, is required for judgment as to when the results should be reported as "total in bottom material." Cells/volume refers to the number of cells of #### GLOSSARY (Continued) any organism that are counted through a microscope and grid or counting cell. Many planktonic organisms are multicellular and are counted according to the number of contained cells per sample (usually milliliters or liters). Cubic foot per second (FT³/S, ft³/s) is the rate at which 1 cubic foot of water passes a given point during 1 second and is equivalent to about 7.48 gallons per second or 448.8 gallons per minute. **Detection limit**. The lowest concentration of an analyte that a laboratory procedure can detect in a sample. Discharge is the volume of water (or volume of fluid plus suspended sediment) that passes a given point within a given period of time. Mean discharge (MEAN) is the arithmetic mean of individual daily mean discharges during a specific period. Instantaneous discharge is the discharge at a particular instant, expressed in ft³/s. Dissolved refers to the material, in a representative water sample, that passes through a 0.45-µm membrane filter. This is a convenient operational definition used by Federal agencies that collect water data. Determinations of "dissolved" analytes are made on subsamples of the filtrate. Dissolved-solids concentration of water is determined either analytically by the "residue-on-evaporation" method, or mathematically as the total of the concentrations of individual analytes reported in a comprehensive chemical analysis. During the analytical determination of dissolved solids, the bicarbonate (generally a major dissolved component of water) is converted to carbonate. Therefore, in the mathematical calculation of dissolved-solids concentration, the bicarbonate value, in milligrams per liter, is multiplied by 0.492 to reflect the change to carbonate on the assumption that half the bicarbonate is volatized to carbon dioxide and water. Drainage area of a stream at a specific location is that area, measured in a horizontal plane, enclosed by a topographic divide from which direct surface runoff from precipitation normally drains by gravity into the river above the specified point. Figures of drainage area given herein include all closed basins, or noncontributing areas, within the area unless otherwise noted. All values are in square miles. Drainage basin is a part of the surface of the earth that is occupied by a drainage system, which consists of a surface stream or a body of impounded surface water, together with all tributary surface streams and bodies of impounded surface water. Gage height (G.H.) is the water-surface elevation referred to some arbitrary gage datum. Gage height is often used interchangeably with the more general term "stage," although gage height is more appropriate when used with a reading on a gage. Gaging station is a particular site on a stream, canal, lake, or reservoir where systematic measurements of hydrologic data are obtained. Grain size. See particle size. Grain-size classification used in this report agrees with recommendation made by the American Geophysical Union Subcommittee on Sediment Terminology. The classification is as follows: | Classification | Size (mm) | Method of Analysis | |----------------|-----------------|------------------------| | Clay | 0.00024 - 0.004 | Sedimentation | | Silt | .004 - 062 | Sedimentation | | Sand | .062 - 2.0 | Sedimentation or sieve | | Gravel | 2.0 - 64.0 | Sieve | The grain-size distributions given in this report are not necessarily representative of all particles in transport in the stream because the sample is subjected to mechanical and chemical dispersion in distilled water before analysis. Hardness of water is a physical-chemical characteristic that is commonly recognized by the increased quantity of soap required to produce lather. It is attributable to the presence of alkaline earth metals (principally calcium and
magnesium) and is expressed as equivalent calcium carbonate (CaCO₂). Hydrologic unit is a geographic area representing part or all of a surface drainage basin or distinct hydrologic feature as delineated by the USGS on the State Hydrologic Unit Maps; each hydrologic unit is identified by an 8-digit number. Measuring point (MP) is an arbitrary permanent reference point from which the distance to the water surface in a well is measured to obtain the water level. Micrograms per gram (µg/g) is a unit express- #### **GLOSSARY** (Continued) ing the concentration of a chemical element as the mass (micrograms) of the element sorbed per unit mass (gram) of sediment. Micrograms per kilogram (µg/kg) is a unit expressing the concentration of a chemical element as the mass (micrograms) of the element sorbed per unit mass (kilogram) of sediment. Micrograms per liter (µG/L, µg/L) is a unit expressing the concentration of chemical analytes in solution as mass (micrograms) of solute per unit volume (liter) of water. One thousand micrograms per liter is equivalent to one milligram per liter. Milligrams per kilogram (mg/kg) is a unit expressing the concentration of a chemical element as the mass (milligrams) of the element sorbed per unit mass (kilogram) of sediment. Milligrams per liter (MG/L, mg/L) is a unit expressing the concentration of chemical analytes in solution. Milligrams per liter represent the mass (milligrams) of solute per unit volume (liter) of water. Concentration of suspended sediment also is expressed in mg/L and is based on the mass of sediment per liter of water-sediment mixture. Organic carbon (OC) is a measure of the organic matter present in aqueous solution and(or) suspension. May be reported in any of three categories (DOC, dissolved organic carbon; SOC, suspended organic carbon; TOC, total organic carbon). **Organism** is any living entity, such as an insect, phytoplankton, or zooplankton. Organism count/area refers to the number of organisms collected and enumerated in a sample and adjusted to the number per area habitat, usually square meters (m²), acres, or hectares. Periphyton, benthic organisms, and macrophytes are expressed in these terms. Organism count/volume refers to the number of organisms collected and enumerated in a sample and adjusted to the number per sample volume, usually milliliters (mL) or liters (L). Numbers of planktonic organisms can be expressed in these terms. Particle size is the diameter, in millimeters (mm), of suspended sediment or bed material determined by either sieve or sedimentation methods. Sedimentation methods (pipet, bottom-withdrawal tube, visual-accumulation tube) determine fall diameter of particles in distilled water (chemically dispersed). Pesticides are chemical compounds used to control undesirable plants and animals. Major categories of pesticides include insecticides, miticides, fungicides, herbicides, and rodenticides. Insecticides and herbicides, which control insects and plants, respectively, are the two categories reported. Polychlorinated biphenyls (PCB's) are industrial chemicals that are mixtures of chlorinated biphenyl compounds having various percentages of chlorine. They are similar in structure to organochlorine insecticides. Polychlorinated naphthalenes (PCN's) are industrial chemicals that are mixtures of chlorinated naphthalene compounds. They have properties and applications similar to those of PCB's and have been identified in commercial PCB preparations. Reporting limit is the number of significant digits reported for a given range of values for an analyte. Runoff is that part of the precipitation that appears in streams. It is the same as streamflow unaffected by artificial diversions, storage, or other works of man in or on the stream channels. Sediment is solid material that originates mostly from disintegrated rocks and is transported by, suspended in, or deposited from, water; it includes chemical and biochemical precipitates and decomposed organic material, such as humus. The quantity, characteristics, and causes of sediment in streams are influenced by environmental factors, some of which are degree of slope, length of slope, soil characteristics, land use, and quantity and intensity of precipitation. Suspended sediment is the sediment that at any given time is maintained in suspension in the water column by the upward components of turbulent currents or that remains in suspension as a colloid. Suspended-sediment concentration is the velocity-weighted concentration of suspended sediment in the sampled zone (from the water surface to a point about 0.3 feet above the bed) expressed as milligrams of dry sediment per liter of water and sediment mixture (mg/L). Suspended-sediment discharge (tons per day) is the rate at which dry weight of sediment passes a section of a stream or is the quantity of sediment, as measured by dry weight or volume, that passes a section in a given time. It is computed ## **GLOSSARY** (Continued) as a product of discharge multiplied by suspended-sediment concentrations, in mg/L, by the factor 0.0027. Total sediment discharge (tons per day) is the sum of the suspended-sediment discharge and the bed-load discharge. It is the total quantity of sediment, as measured by dry weight or volume, that passes a section during a given time. Mean concentration is the time-weighted concentration of suspended sediment passing a stream section during a 24-hour day. Solute is any substance derived from the atmosphere, vegetation, soil, or rocks that is dissolved in water. Specific conductance is a measure of the ability of a water to conduct an electrical current. It is expressed in microsiemens per centimeter (µS/cm) at 25 °C. Specific conductance is related to the type and concentration of ions in solution and can be used to approximate the dissolved-solids concentration of the water. Commonly, the concentration of dissolved solids (in milligrams per liter) is about 65 percent of the specific conductance value (uS/cm). This relation is not constant from stream to stream, and it may vary within the same stream with changes in the composition of the water. Stage-discharge relation is the relation between gage height (stage) and volume of water per unit of time, flowing in a channel. Streamflow is the discharge that occurs in a natural channel. Although the term "discharge" can be applied to the flow of a canal, the word "streamflow" uniquely describes the discharge in a surface stream course. The term "streamflow" is more general than "runoff" because streamflow may be applied to discharge whether or not it is affected by diversion or regulation. Tons per day is the quantity of substance in solution or suspension that passes a stream section during a 24-hour day. Total load (tons) is the total quantity of any individual analyte, as measured by dry mass or volume, that is dissolved in a specific amount of water (discharge) during a given time. It is computed as a product of discharge multiplied by the analyte concentration, in mg/L, by the factor 0.0027, by the number of days. **Total** (as used in tables of chemical analyses): Total is the total amount of a given analyte in a representative water and suspended-sediment sample, regardless of the analyte's physical or chemical form. This term is used only when the analytical procedure assures measurement of at least 95 percent of the analyte present in both the dissolved and suspended phases of the sample. A knowledge of the expected form of the analyte in the sample and of the analytical method used is required for judgment as to when the results should be reported as "total." (The word "total" indicates both that the sample consists of a water and suspended-sediment mixture and that the analytical method detects all of the analyte in the sample.) Total, recoverable is the amount of a given analyte that is in solution after a representative water and suspended-sediment sample has been digested by a method (usually a dilute acid solution is used) that results in dissolution of only readily soluble substances. Complete dissolution of all particulate matter is not achieved by the digestion treatment; thus, the determination represents less than the "total" amount (that is, less than 95 percent) of the analyte present in the dissolved and suspended phases of the sample. To achieve comparability of analytical data, equivalent digestion procedures would be required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results. Water year is the 12-month period from October 1 through September 30. The water year is designated by the calendar year in which it ends. Thus, the year ending September 30, 1980, is called the "1980 water year." [Abbreviations used in table: AL - Aluminum, BOT. - bottom, C6H5OH - Phenol, CA - Calcium, CACO3 - Calcium carbonate, CD - Cadmium, CL - Chloride, COLS. - colonies, CU - Copper, DEG. C. - Degree Celsius, DIAM. - diameter, E - estimated, F - Fluoride, FE - Iron, FM - from, HG - Mercury, IMMED. - immediate M-EDOC medium, INST. - instantaneous, K - Potassium, LAB - laboratory, MAT. - material, MATL. - material, MEM.FIL - membrane filter, MG - Magnesium, MG/KG - milligram per kilogram, MG/L - milligram per liter, ML - milliliter, MM - millimeter, MN - Manganese, N - Nitrogen, NA - Sodium, ND - not detected, NH4 - Ammonia, NI - Nickel, NO2 - Nitrite, NO3 - Nitrate, NTU - nephelometric turbidity unit, P - Phosphorus, PB - Lead, PCB - Polychlorinated biphenyls, PO4 - Orthophosphate, RECOV. - recover, SO4 - Sulfate, T/DAY - tons per day, TOT. - total, UG/G - microgram per gram, UG/KG - microgram per kilogram, UG/L - microgram per liter, US/CM - microsiemens per centimeter, ZN - Zinc.] #### STREAMS ON LONG ISLAND #### 01304000 NISSEOUGGUE RIVER NEAR SMITHTOWN, NY LOCATION.-- Lat 40 50'58", long 73 13'29", Suffolk County, Hydrologic Unit 02030201, on left bank 0.5 mi downstream from New
Mill Pond, 1.0 mi southwest of village of Smithtown Branch. Water-quality sampling sit at discharge station. DRAINAGE AREA. -- 27 mi2. PERIOD OF RECORD--Water years 1967 to 1989. CHEMICAL DATA: 1967-68 (b), 1969-70 (a), 1971-77 (b), 1978-84 (d), 1985-86 (e), 1987 (d), 1988 (c), 1989 (a). MINOR ELEMENT DATA: 1967 (a), 1971-77 (b), 1978 (d), 1979 (c), 1980 (d), 1981-82 (c), 1983-85 (d), 1986 (e), 1987 (d), 1988 (c), 1989 (a). RADIOCHEMICAL DATA: 1981 (c). ORGANIC DATA: 0C--1972 (a), 1977 (b), 1978-81 (d). NUTRIENT DATA: 1967-68 (b), 1969-70 (a), 1971-77 (b), 1978-85 (d), 1986 (e), 1987 (d), 1988 (c), 1989 (a). BIOLOGICAL DATA: Bacteria--1978 (c), 1979-81 (d), 1982 (b), 1983-84 (c), 1985-88 (b), 1989 (a). Phytoplankton--1978-80 (b). SEDIMENT DATA: 1978 (c), 1979-81 (d), 1982-86 (c), 1987-88 (b), 1989 (a). PERIOD OF DAILY RECORD . -- SPECIFIC CONDUCTANCE: December 1978 to September 1981. WATER TEMPERATURES: January 1978 to September 1981. REMARKS.--Water-discharge data obtained from stream-flow gage at this site. #### WATER-QUALITY DATA | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | SPE-
CIFIC
CON-
DUCT-
ANCE
LAB
(US/CM) | PH WATER WHOLE FIELD (STAND- ARD UNITS) | TEMPER-
ATURE
WATER
(DEG C) | TUR-
BID-
ITY
(NTU) | BARO-
METRIC
PRES-
SURE
(MM
OF
HG) | OXYGEN,
DIS-
SOLVED
(MG/L) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | |-----------------------------|--|--|---|--|---|---|--|--|---|--|--|--| | MAY 1988 | | | | | | | | | | | | | | 31
JUN | 1845 | 36 | 121 | 124 | 6.8 | 21.5 | 2.0 | 762 | 8.6 | 97 | 27 | 6 .6 | | 30
AUG | 1530 | 30 | 107 | 123 | 6.8 | 19.0 | 0.30 | 752 | 8.7 | 95 | 28 | 6.9 | | 04 | 1445 | 31 | 121 | 119 | 5.9 | 24.5 | 0.60 | 764 | 7.5 | 89 | 26 | 6.4 | | 25 | 1130 | 32 | 118 | 120 | 6.5 | 18.0 | 1.0 | 761 | 8.6 | 91 | 28 | 6.8 | | OCT
13 | 0800 | 29 | 111 | 120 | 7.1 | 10.0 | | 766 | 10.1 | 89 | 28 | 6.6 | | | | | | | | | | | | | | | | DATE | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K) | ALKA-
LINITY
LAB
(MG/L
AS
CACO3) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | SOLIDS,
RESIDUE
AT 105
DEG. C,
TOTAL
(MG/L) | SOLIDS,
VOLA-
TILE ON
IGNI-
TION,
TOTAL
(MG/L) | RESIDUE
TOTAL
FIXED
(MG/L) | | MAY 1988 | SIUM,
DIS-
SOLVED
(MG/L
AS MG) | DIS-
SOLVED
(MG/L
AS NA) | SIUM,
DIS-
SOLVED
(MG/L
AS K) | LINITY LAB (MG/L AS CACO3) | DIS-
SOLVED
(MG/L
AS SO4) | RIDE,
DIS-
SOLVED
(MG/L
AS CL) | RIDE,
DIS-
SOLVED
(MG/L
AS F) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED | RESIDUE
AT 105
DEG. C,
TOTAL | VOLA-
TILE ON
IGNI-
TION,
TOTAL | TOTAL
FIXED | | MAY 1988
31 | SIUM,
DIS-
SOLVED
(MG/L | DIS-
SOLVED
(MG/L | SIUM,
DIS-
SOLVED
(MG/L | LINITY
LAB
(MG/L
AS | DIS-
SOLVED
(MG/L | RIDE,
DIS-
SOLVED
(MG/L | RIDE,
DIS-
SOLVED
(MG/L | RESIDUE
AT 180
DEG. C
DIS-
SOLVED | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED | RESIDUE
AT 105
DEG. C,
TOTAL | VOLA-
TILE ON
IGNI-
TION,
TOTAL | TOTAL
FIXED | | MAY 1988 | SIUM,
DIS-
SOLVED
(MG/L
AS MG) | DIS-
SOLVED
(MG/L
AS NA) | SIUM,
DIS-
SOLVED
(MG/L
AS K) | LINITY LAB (MG/L AS CACO3) | DIS-
SOLVED
(MG/L
AS SO4) | RIDE,
DIS-
SOLVED
(MG/L
AS CL) | RIDE,
DIS-
SOLVED
(MG/L
AS F) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | RESIDUE
AT 105
DEG. C,
TOTAL
(MG/L) | VOLA-
TILE ON
IGNI-
TION,
TOTAL
(MG/L) | TOTAL
FIXED
(MG/L) | | MAY 1988
31
JUN
30 | SIUM,
DIS-
SOLVED
(MG/L
AS MG) | DIS-
SOLVED
(MG/L
AS NA) | SIUM,
DIS-
SOLVED
(MG/L
AS K) | LINITY
LAB
(MG/L
AS
CACO3) | DIS-
SOLVED
(MG/L
AS SO4) | RIDE,
DIS-
SOLVED
(MG/L
AS CL) | RIDE,
DIS-
SOLVED
(MG/L
AS F) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | RESIDUE
AT 105
DEG. C,
TOTAL
(MG/L) | VOLA-
TILE ON
IGNI-
TION,
TOTAL
(MG/L) | TOTAL
FIXED
(MG/L) | | MAY 1988
31
JUN
30 | SIUM,
DIS-
SOLVED
(MG/L
AS MG)
2.6 | DIS-
SOLVED
(MG/L
AS NA) | SIUM,
DIS-
SOLVED
(MG/L
AS K)
1.1 | LINITY
LAB
(MG/L
AS
CACO3) | DIS-
SOLVED
(MG/L
AS SO4) | RIDE,
DIS-
SOLVED
(MG/L
AS CL) | RIDE,
DIS-
SOLVED
(MG/L
AS F)
0.30
<0.10 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | RESIDUE
AT 105
DEG. C,
TOTAL
(MG/L)
88 | VOLA-
TILE ON
IGNI-
TION,
TOTAL
(MG/L) | TOTAL
FIXED
(MG/L) | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). #### 01304000 NISSEQUOGUE RIVER NEAR SMITHTOWN, NY - continued | DATE
MAY 1988 | NITRO-
GEN,
NITRATE
TOTAL
(MG/L
AS N) | NITRO-
GEN,
NITRITE
TOTAL
(MG/L
AS N) | NITRO-
GEN,
NO2+NO3
TOTAL
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS NH4) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS NH4) | NITRO-
GEN,
ORGANIC
TOTAL
(MG/L
AS N) | NITRO-
GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | NITRO-
GEN,
TOTAL
(MG/L
AS N) | NITRO-
GEN,
TOTAL
(MG/L
AS NO3) | PHOS-
PHORUS
TOTAL
(MG/L
AS P) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P) | |--|---|---|--|---|---|---|--|---|---|---|--|---| | 31 | 1.51 | 0.010 | 1.52 | 0.050 | 0.06 | | 0.76 | 0.81 | 2.3 | 10 | 0.020 | | | JUN
30
AUG | 1.45 | 0.00 | 1.45 | 0.030 | 0.04 | 0.04 | 0.47 | 0.50 | 2.0 | 8.6 | 0.010 | <0.010 | | 04
25 | 1.24 | 0.010
ND | 1.25
1.06 | 0.070
0.040 | 0.09
0.05 | 0.04 | 0.69
0.26 | 0.76
0.30 | 2.0
1.4 | 8.9
6.0 | 0.060
<0.010 | 0.040
<0.010 | | OCT
13 | | ND | 1.57 | 0.010 | 0.01 | | 0.18 | 0.19 | 1.8 | 7.8 | 0.020 | ND | | DATE
MAY 1988 | PHOS-
PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4) | ALUM-
INUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS AL) | ALUM-
INUM,
DIS-
SOLVED
(UG/L
AS AL) | CADMIUM
TOTAL
RECOV-
ERABLE
(UG/L
AS CD) | CADMIUM
DIS-
SOLVED
(UG/L
AS CD) | CHRO-
MIUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS CR) | CHRO-
MIUM,
DIS-
SOLVED
(UG/L
AS CR) | COPPER,
TOTAL
RECOV-
ERABLE
(UG/L
AS CU) | COPPER,
DIS-
SOLVED
(UG/L
AS CU) | IRON,
TOTAL
RECOV-
ERABLE
(UG/L
AS FE) | IRON,
DIS-
SOLVED
(UG/L
AS FE) | LEAD,
TOTAL
RECOV-
ERABLE
(UG/L
AS PB) | | 31 | | 40 | | 1 | | | | 5 | | 260 | | <5 | | JUN
30 | | <10 | <10 | <1 | <1.0 | | 1 | 10 | 1 | 120 | 37 | <5 | | AUG
04 | 0.12 | 10 | | 1 | | | | 8 | | 180 | | 5 | | 25
OCT | | 40 | <10 | <1 | 1.0 | 2 | 1 | 2 | 2 | 120 | 40 | < 5 | | 13 | | 10 | | 1 | | | | 3 | | 120 | | < 5 | | DATE | LEAD,
DIS-
SOLVED
(UG/L
AS PB) | MANGA-
NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN) | MERCURY
TOTAL
RECOV-
ERABLE
(UG/L
AS HG) | NICKEL,
TOTAL
RECOV-
ERABLE
(UG/L
AS NI) | NICKEL,
DIS-
SOLVED
(UG/L
AS NI) | SILVER,
DIS-
SOLVED
(UG/L
AS AG) | ZINC,
TOTAL
RECOV-
ERABLE
(UG/L
AS ZN) | ZINC,
DIS-
SOLVED
(UG/L
AS ZN) | BROMO-
FORM
TOTAL
(UG/L) | CARBON -
TETRA -
CHLO -
RIDE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | | MAY 1988 | : | | | | , | | | | | | | (,-, | | 31
JUN | | 130 | | | | | | | | | | | | 30 | | | | | 4 | | |
<10 | | | | | | AUG | <5 | 80 | 35 | <0.10 | 43 |
<1 | | | | | |
ND | | AUG
04 | | 70 | 35
 | <0.10
<0.10 | 43 | <1
 | 1.0 | <10
70
10 | 88 | ND |
ND
 | ND
 | | AUG
04
25
OCT | <5

<5 | 70
50 | 35 | <0.10 | 43
3
2 | <1 | 1.0 | <10
70
10
60 | 88

12 | ND | ND | ND

ND | | AUG
04
25 | | 70 | 35
 | <0.10
<0.10 | 43 | <1
 | 1.0 | <10
70
10 | 88 | ND |
ND
 | ND
 | | AUG 04 25 OCT 13 | CHLORO-DI-BROMO-METHANETTOTAL (UG/L) | 70
50 | 35
 | <0.10
<0.10 | 43
3
2 | <1
 | 1.0 | <10
70
10
60 | 88

12 | ND | ND | ND

ND | | AUG 04 25 OCT 13 | CHLORO-DI-BROMO-METHANETTOTAL (UG/L) | 70
50
50
CHLORO-
ETHANE
TOTAL | 35 30 CHLORO- FORM TOTAL | <0.10 <0.10 <0.10 CIS 1,3-DI- CHLORO- PROPENE TOTAL | 43 3 2 3 DI- CHLORO- BROMO- METHANE TOTAL | <1 1 METHYL- BROMIDE TOTAL | 1.0

<1.0

METHYL-
CHLO-
RIDE
TOTAL | <10 70 10 60 <10 METHYL- ENE CHLO- RIDE TOTAL | 1,1,1-
TRI-
CHLORO-
ETHANE
TOTAL | ND ND ND 1,1-DI-CHLORO-ETHANE TOTAL | ND ND ND 1,1-DI-CHLORO-ETHYL-ENE TOTAL | ND ND ND 1,1,2- TRI- CHLORO- ETHANE TOTAL | | AUG 04 25 OCT 13 DATE | CHLORO-DI-BROMO-METHANETOTAL (UG/L) | 70
50
50
CHLORO-
ETHANE
TOTAL
(UG/L) | 35 30 CHLORO- FORM TOTAL (UG/L) | <0.10 <0.10 <0.10 CIS 1,3-DI- CHLORO- PROPENE TOTAL (UG/L) | 43 3 2 3 DI- CHLORO- BROMO- METHANE TOTAL (UG/L) | <1 1 METHYL- BROMIDE TOTAL (UG/L) | 1.0 <1.0 METHYL- CHLO- RIDE TOTAL (UG/L) | <10 70 10 60 <10 METHYL- ENE CHLO- RIDE TOTAL (UG/L) | 88 12 1,1,1- TRI- CHLORO- ETHANE TOTAL (UG/L) | ND ND ND 1,1-DI-CHLORO-ETHANE TOTAL (UG/L) | ND ND ND 1,1-DI- CHLORO- ETHYL- ENE TOTAL (UG/L) | ND ND ND 1,1,2- TRI- CHLORO- ETHANE TOTAL | | AUG 04 25 OCT 13 DATE MAY 1988 31 JUN 30 AUG | CHLORO-DI-BROMO-METHANETOTAL (UG/L) | 70
50
50
CHLORO-
ETHANE
TOTAL
(UG/L) | 35 30 CHLORO- FORM TOTAL (UG/L) ND | <0.10 <0.10 <0.10 CIS 1,3-DI- CHLORO- PROPENE TOTAL (UG/L) ND | 43 3 2 3 DI - CHLORO- BROMO- METHANE TOTAL (UG/L) ND | <1 1 METHYL- BROMIDE TOTAL (UG/L) ND | 1.0 <1.0 METHYL- CHLO- RIDE TOTAL (UG/L) ND | <10 70 10 60 <10 METHYL- ENE CHLO- RIDE TOTAL (UG/L) ND | 1,1,1- TRI- CHLORO- ETHANE TOTAL (UG/L) ND | ND ND ND 1,1-DI- CHLORO- ETHANE TOTAL (UG/L) | ND ND 1,1-DI- CHLORO- ETHYL- ENE TOTAL (UG/L) | ND ND 1,1,2- TRI- CHLORO- ETHANE TOTAL (UG/L) | | DATE MAY 1988 31 JUN 30 | CHLORO-
DI-
BROMO-
METHANE
TOTAL
(UG/L) | 70
50
50
CHLORO-
ETHANE
TOTAL
(UG/L) | 35 30 CHLORO- FORM TOTAL (UG/L) | <0.10 <0.10 <0.10 CIS 1,3-DI- CHLORO- PROPENE TOTAL (UG/L) | 43 3 2 3 DI- CHLORO- BROMO- METHANE TOTAL (UG/L) | <1 1 METHYL- BROMIDE TOTAL (UG/L) | 1.0 <1.0 <1.0 METHYL- CHLO- RIDE TOTAL (UG/L) | <10 70 10 60 <10 METHYL- ENE CHLO- RIDE TOTAL (UG/L) | 88 12 1,1,1- TRI- CHLORO- ETHANE TOTAL (UG/L) | ND ND 1,1-DI- CHLORO- ETHANE TOTAL (UG/L) ND | ND ND ND 1,1-DI-CHLORO-ETHYL-ENE TOTAL (UG/L) ND | ND 1,1,2- TRI- CHLORO- ETHANE TOTAL (UG/L) ND | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). ## 01304000 NISSEQUOGUE RIVER NEAR SMITHTOWN, NY - continued #### WATER-QUALITY DATA (continued) | | 1,1,2,2 | | 1,2-DI-
CHLORO- | | 1,2- | | | TETRA- | TRANS- | TRI- | 2-
CHLORO- | | |----------|---------|---------|--------------------|---------|---------|---------|---------|---------|---------|---------|---------------|--------| | | TETRA- | 1,2-DI- | ETHANE | 1,2-DI- | TRANSDI | 1,3-DI- | 1,4-DI- | CHLORO- | 1,3-DI- | CHLORO- | ETHYL- | VINYL | | | CHLORO- | CHLORO- | WATER | CHLORO- | CHLORO- | CHLORO- | CHLORO- | ETHYL- | CHLORO- | ETHYL- | VINYL- | CHLO~ | | | ETHANE | BENZENE | WHOLE | PROPANE | ETHENE | BENZENE | BENZENE | ENE | PROPENE | ENE | ETHER | RIDE | | DATE | TOTAL | | (UG/L) | MAY 1988 | | | | | | | | | | | | | | 31 | | | | | | | | | | | | | | JUN | | | | | | | | | • | | | | | 30 | ND | AUG | | | | | | | | | | | | | | 04 | ~- | | | | | | | ~- | | | | | | 25 | ND | OCT | | | | | | | | | | | | | | 13 | ND #### SUSPENDED SEDIMENT DISCHARGE | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND | SEDI-
MENT,
SUS-
PENDED
(MG/L) | SEDI-
MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY) | |----------------|------|--|--|--| | JUN 1988
30 | 1530 | 30 | 1 | 0.10 | | AUG
25 | 1130 | 32 | 3 | 0.25 | #### 01305000 CARMANS RIVER AT YAPHANK, NY LOCATION.--Lat 40 49'49", long 72 54'24", Suffolk County, Hydrologic Unit 02030202, on left bank 50 ft upstream from Long Island Railroad bridge, 0.6 mi northeast of Yaphank Station, and 0.7 mi southeast of Yaphank. DRAINAGE AREA. -- About 71 mi2. PERIOD OF RECORD.--Water years 1966 to current year. CHEMICAL DATA: 1966 (a), 1967-69 (b), 1970 (a), 1971 (d), 1972 (c), 1973-76 (d), 1977 (b), 1978 (c), 1979-82 (d), 1983-86 1987 (d), 1988 (c), 1989 (a). 1907 (d), 1988 (c), 1989 (a). MINOR ELEMENT DATA. 1966 (a), 1967-69 (b), 1970 (a), 1971 (d), 1972 (c), 1973-76 (d), 1977 (b), 1978-79 (c), 1980 (d), 1981-86 (c), 1987 (d), 1988 (c), 1989 (a). RADIOCHEMICAL DATA: 1981 (b), 1986 (a). PESTICIDE DATA: 1988 (b), 1989 (a). ORGANIC DATA: 05-1972 (a), 1977-78 (b), 1979 (c), 1980 (d), 1981 (b), 1986 (a). NUTRIENT DATA: 1966 (a), 1967-69 (b), 1970 (a), 1971 (d), 1972 (c), 1973-76 (d), 1977 (b), 1978 (c), 1979-82 (d), 1983-88 (c), 1989 (a). BIOLOGICAL DATA: Bacteria--1978 (a), 1979 (b), 1980 (d), 1981-82 (c), 1983-87 (b), 1989 (a). Phytoplankton--1979-81 (d). Periphyton--1979 (a), 1980 (b). SEDIMENT DATA: 1979 (b), 1980 (d), 1981-82 (c), 1983-88 (b), 1989 (a). PERIOD OF DAILY RECORD. SPECIFIC CONDUCTANCE. -- December 1979 to September 1981. WATER TEMPERATURES. -- December 1979 to September 1981. REMARKS. -- Water-discharge data obtained from stream-flow gage at this site. #### WATER-QUALITY DATA | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | SPE-
CIFIC
CON-
DUCT-
ANCE
LAB
(US/CM) | PH WATER WHOLE FIELD (STAND- ARD UNITS) | TEMPER-
ATURE
WATER
(DEG C) | TUR-
BID-
ITY
(NTU) | BARO-
METRIC
PRES-
SURE
(MM
OF
HG) | OXYGEN,
DIS-
SOLVED
(MG/L) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | |------------------|--|--|--|--|--|---|--|---|---|--|--|---| | MAY 1988 | 1415 | 17 | 122 | 100 | 6.5 | 24.0 | 2.0 | 7.63 | 0.7 | 115 | 22 | 7.6 | | 31
JUN | 1415 | 17 | 122 | 123 | | 24.0 | | 763 | 9.7 | 115 | 32 | | | 30
AUG | 1200 | 15 | 218 | 131 | 6.9 | 22.0 | 0.60 | 752 | 10.1 | 117 | 34 | 8.2 | | 04
25 | 1130
1 4 30 | 13
15 | 123 | 132
132 | 7.2 | 26.0 | 0.90
0.90 | 764
 | 10.5 | 129
 |
3 5 | 8.2 | | OCT
12 | 1300 | 13 | 118 | 132 | 6.4 | 13.0 | 0.70 | 761 | 10.3 | 98 | 33 | 7.9 | | 12 | 1300 | 13 | 118 | 132 | 6.4 | 13.0 | 0.70 | 761 | 10.3 | 98 | 33 | 7.9 | | DATE
MAY 1988 | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K) | ALKA-
LINITY
LAB
(MG/L
AS
CACO3) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | SOLIDS,
RESIDUE
AT 105
DEG. C,
TOTAL
(MG/L) | SOLIDS,
VOLA-
TILE ON
IGNI-
TION,
TOTAL
(MG/L) | RESIDUE
TOTAL
FIXED
(MG/L) | | 31 | 3.2 | 10 | 1.0 | 18 | 14 | 15 | 0.30 | 66 | 62 | 100 | 54 | | | JUN
30
AUG | 3.3 | 11 | 0.80 | 18 | 15 | 16 | <0.10 | 72 | 84 | 113 | 58 | 55 | | 04 | 3.4 | 11 | 0.90 | 18
17 | 15
14 | 15
15 | 0.10
0.10 | 51
91 |
79 | 89
83 | 24
51 | 65
32 | | OCT | | | | | | | | | | | | | | 12 | 3.3 | 11 | 1.2 | 16 | 15 | 15 | 0.10 | 74 | 63 | 90 | 42 | 48 | | DATE | NITRO-
GEN,
NITRATE
TOTAL
(MG/L
AS N) | NITRO-
GEN,
NITRITE
TOTAL
(MG/L
AS N) | NITRO-
GEN,
NO2+NO3
TOTAL
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS NH4) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS NH4) | NITRO-
GEN,
ORGANIC
TOTAL
(MG/L
AS N) | NITRO-
GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | NITRO-
GEN,
TOTAL
(MG/L
AS N) | NITRO-
GEN,
TOTAL
(MG/L
AS NO3) | PHOS-
PHORUS
TOTAL
(MG/L
AS P) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P) | | MAY 1988 | 1.02 | 0.00 | 1.02 | 0.010 | 0.01 | | 0.61 | 0.62 | 1.6 | 7.3 | 0.020 | | | 31
JUN | | | | | | | | | | | | | | 30
AUG | 0.960 | 0.00 | 0.960 | 0.030 | 0.04 | 0.04 | 1.4 | 1.4 | 2.4 | 10 | 0.020 | 0.050 | | 04
25 | 1.10 | ND
0.00 | 0.730
1.10 | 0.010
0.040 | 0.01
0.05 | 0.03 | 0.30
0.26 | 0.31 |
1.0
1.4 | 4.6
6.2 | 0.010
0.010 | 0.00
<0.010 | | OCT 12 | | ND | 1.32 | 0.020 | 0.03 | | 0.15 | 0.17 | 1.5 | 6.6 | 0.010 | 0.00 | | | | | | | | | | | | | | | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). #### 01305000 CARMANS RIVER AT YAPHANK, NY - continued | DATE | PHOS-
PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4) | ALUM-
INUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS AL) | ALUM-
INUM,
DIS-
SOLVED
(UG/L
AS AL) | CADMIUM
TOTAL
RECOV-
ERABLE
(UG/L
AS CD) | CADMIUM
DIS-
SOLVED
(UG/L
AS CD) | CHRO-
MIUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS CR) | CHRO-
MIUM,
DIS-
SOLVED
(UG/L
AS CR) | COPPER,
TOTAL
RECOV-
ERABLE
(UG/L
AS CU) | COPPER,
DIS-
SOLVED
(UG/L
AS CU) | IRON,
TOTAL
RECOV-
ERABLE
(UG/L
AS FE) | IRON,
DIS-
SOLVED
(UG/L
AS FE) | LEAD,
TOTAL
RECOV-
ERABLE
(UG/L
AS PB) | |------------------|---|---|---|---|---|--|---|---|--|---|---|--| | MAY 1988
31 | | 20 | | <1 | | | | 3 | | 410 | | <5 | | JUN
30
AUG | 0.15 | 40 | <10 | 1 | 2.0 | | 1 | 4 | 2 | 280 | 170 | <5 | | 04 | 0.0 | <10 | | 2 | | | | 12 | | 310 | | <5 | | 25
OCT | | 30 | <10 | <1 | <1.0 | 2 | 1 | 2 | 1 | 340 | 140 | 34 | | 12 | 0.0 | <10 | | 1 | | | | 3 | | 270 | | < 5 | | DATE | LEAD,
DIS-
SOLVED
(UG/L
AS PB) | MANGA-
NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN) | MERCURY
TOTAL
RECOV-
ERABLE
(UG/L
AS HG) | NICKEL,
TOTAL
RECOV-
ERABLE
(UG/L
AS NI) | NICKEL,
DIS-
SOLVED
(UG/L
AS NI) | SILVER,
DIS-
SOLVED
(UG/L
AS AG) | ZINC,
TOTAL
RECOV-
ERABLE
(UG/L
AS ZN) | ZINC,
DIS-
SOLVED
(UG/L
AS ZN) | BROMO-
FORM
TOTAL
(UG/L) | CARBON-
TETRA-
CHLO-
RIDE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | | MAY 1988
31 | | 80 | | <0.10 | 4 | | | <10 | | | | | | JUN | | | | | | | | | | | | | | 30
AUG | < 5 | 70 | 59 | <0.10 | 1 | <1 | <1.0 | <10 | 86 | ND | ND | ND | | 04
25 |
5 | 40
70 |
53 | <0.10
<0.10 | 3
1 | 2 |
<1.0 | 10
20 | 6 | ND
ND | ND
ND | ND
ND | | OCT | 3 | | 33 | | | 2 | | | | | | | | 12 | | 70 | | | 2 | | | 10 | | ND | ND | ND | | DATE
MAY 1988 | CHLORO-
DI-
BROMO-
METHANE
TOTAL
(UG/L) | CHLORO-
ETHANE
TOTAL
(UG/L) | CHLORO-
FORM
TOTAL
(UG/L) | CIS
1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | DI-
CHLORO-
BROMO-
METHANE
TOTAL
(UG/L) | METHYL-
BROMIDE
TOTAL
(UG/L) | METHYL-
CHLO-
RIDE
TOTAL
(UG/L) | METHYL-
ENE
CHLO-
RIDE
TOTAL
(UG/L) | 1,1,1-
TRI-
CHLORO-
ETHANE
TOTAL
(UG/L) | 1,1-DI-
CHLORO-
ETHANE
TOTAL
(UG/L) | 1,1-DI-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 1,1,2-
TRI-
CHLORO-
ETHANE
TOTAL
(UG/L) | | 31 | | | | | | | | ~- | | | | | | JUN
30
AUG | ND | 04 | ND N D | ND | ND | | 25
OCT | ND | 12 | ND | DATE
MAY 1988 | | 1,2-DI-
CHLORO-
BENZENE
TOTAL
(UG/L) | 1,2-DI-
CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L) | 1,2-DI-
CHLORO-
PROPANE
TOTAL
(UG/L) | 1,2-
TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L) | 1,3-DI-
CHLORO-
BENZENE
TOTAL
(UG/L) | 1,4-DI-
CHLORO-
BENZENE
TOTAL
(UG/L) | TETRA-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | TRANS-
1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | TRI-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 2-
CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L) | VINYL
CHLO-
RIDE
TOTAL
(UG/L) | | 31
JUN | | | | | | | | ~- | | | | | | 30 | ND | 04 | ND | 25
OCT | ND | 12 | ND N D | ND | ND | ND | ND | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). #### 01305000 CARMANS RIVER AT YAPHANK, NY - continued #### SUSPENDED SEDIMENT DISCHARGE | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND | SEDI-
MENT,
SUS-
PENDED
(MG/L) | SEDI-
MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY) | |-----------|------|--|--|--| | JUN 1988 | 1200 | 15 | 2 | 0.10 | | 30
AUG | 1200 | 15 | 3 | 0.10 | | 25 | 1430 | 15 | 2 | 0.08 | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). #### 01315500 HUDSON RIVER AT NORTH CREEK, NY LOCATION.--Lat 43 42'03", long 73 59'02", Warren County, Hydrologic Unit 02020001, on left bank 125 ft upstream from bridge on State Highway 28N in village of North Creek, 500 ft upstream from North Creek, and 26 mi downstream from Indian Lake. DRAINAGE AREA. -- 792 mi 2 . PERIOD OF RECORD.--Water years 1969-75, 1987 to 1989. CHEMICAL DATA: 1969 (c), 1970-74 (d), 1975 (c), 1987 (b), 1988 (c), 1989 (a). MINOR ELEMENTS DATA: 1969 (c), 1970-74 (d), 1975 (c), 1987 (b), 1988 (c), 1989 (a). PESTICIDE DATA: 1987 (b), 1988 (c), 1989 (a). ORGANIC DATA: PCB--1988 (a). BIOLOGICAL DATA: Bacteria--1987 (a), 1988 (c), 1989 (a). NUTRIENT DATA: 1969 (c), 1970-74 (d), 1975 (c), 1987 (b), 1988 (c), 1989 (a). SEDIMENT DATA: 1988 (b), 1989 (a). REMARKS.--Water-discharge data obtained from gage at this location. Appreciable regulation of flow by Indian Lake and other reservoirs upstream from station. #### WATER-OUALITY DATA | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | SPE-
CIFIC
CON-
DUCT-
ANCE
LAB
(US/CM) | PH WATER WHOLE FIELD (STAND- ARD UNITS) | TEMPER-
ATURE
WATER
(DEG C) | TUR-
BID-
ITY
(NTU) | BARO-
METRIC
PRES-
SURE
(MM
OF
HG) | OXYGEN,
DIS-
SOLVED
(MG/L) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION) | COLI-
FORM,
TOTAL,
IMMED.
(COLS.
PER
100 ML) | FECAL
COLI-
FORM
24-HR
MEM.FIL
(COLS./ | |-----------|------|--|---|--|---|--------------------------------------|------------------------------|--|-------------------------------------|--|--|---| | APR 1987 | | | | | | | | | | | | | | 23
MAY | 1130 | 1670 | | | 7.3 | 12.5 | 0.90 | | 14.2 | | | | | 13 | 1045 | 652 | | 52 | 7.8 | 14.5 | 0.30 | | 10.2 | | | | | JUN
22 | 1100 | 549 | | 51 | 7.2 | 20.0 | 0.30 | | 8.1 | | | | | JUL
27 | 1045 | 814 | | | 7.5 | 23.0 | 0.40 | | 9.2 | | ND | ND | | SEP 23 | 1030 | 2430 | | 46 | 7.5 | 14.0 | 1.1 | | 10.6 | | 20 | 10.0 | | oct | 1050 | 2430 | | | | | *** | | | | | | | 29
DEC | 1100 | 4800 | | 46 | 7.0 | 6.0 | 1.9 | | 12.4 | | 480 | 40.0 | | 10 | 1130 | 1340 | | 57 | 7.2 | 2.0 | 0.80 | | 18.0 | | 200 | ND | | MAR 1988 | 1045 | 2210 | 40 | 47 | 0.0 | 2.0 | 1 2 | 7.00 | 14.0 | 101 | 110 | 110 | | 30
APR | 1045 | 3210 | 49 | 47 | 8.0 | 2.0 | 1.2 | 768 | 14.0 | 101 | 110 | ND | | 14 | 1045 | 1970 | 42 | 44 | 6.3 | 7.5 | 0.60 | 763 | 11.8 | 98 | 80 | ND | | 27 | 1100 | 1110 | 47 | 47 | 8.0 | 8.0 | 0.50 | 760 | 11.2 | 95 | 40 | ND | | MAY
12 | 1045 | 1220 | 47 | 44 | 6.6 | 12.5 | 0.50 | 760 | 10.6 | 100 | ND | ND | | 25 | 1030 | 1800 | 41 | 44 | 7.6 | 15.5 | 1.1 | 749 | 9.2 | 94 | 140 | ND | | JUN | | | | | | | | | | | | | | 15 | 1040 | 312 | 54 | 54 | 7.8 | 22.5 | 0.50 | 766 | 6.6 | 76 | 60 | ND | | AUG
18 | 1100 | 330 | 48 | 48 | 7.1 | 22.0 | 0.50 | | 8.8 | | | | | ОСТ
05 | 1030 | 457 | 49 | 46 | 7.5 | 11.5 | 0.30 | 765 | 10.6 | 97 | 80 | 10.0 | | NOV | 1030 | 4.5/ | 49 | 40 | 7.5 | 11.5 | 0.30 | 763 | 10.6 | 31 | 80 | 10.0 | | 03 | 1000 | 2070 | 47 | 45 | 6.6 | 2.5 | 0.60 | | 13.1 | | 100 | 10.0 | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). #### 01315500 HUDSON RIVER AT NORTH CREEK, NY - continued | DATE | HARD-
NESS
TOTAL
(MG/L
AS
CACO3) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K) | ALKA-
LINITY
LAB
(MG/L
AS
CACO3) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | SOLIDS,
RESIDUE
AT 105
DEG. C,
TOTAL
(MG/L) | |---
---|---|--|---|--|---|--|--|--|---|--|---| | APR 1987 | 14 | 4 5 | 0.70 | | | | | | | 13 | | 31 | | 23
MAY | | 4.5 | | | | | | | | 13 | | | | 13
JUN | 20 | 6.7 | 0.90 | | | | | | | 25 | | 39 | | 22
JUL | 19 | 6.2 | 0.90 | | | | | | | 24 | | 58 | | 27
SEP | 17 | 5.3 | 0.80 | | | | | | | 40 | | 57 | | 23
OCT | 16 | 5.1 | 0.80 | | | | | | | 39 | | 49 | | 29
DEC | 16 | 5.1 | 0.70 | | | | | | | 39 | | 60 | | 10
MAR 1988 | 17 | 5.2 | 0.90 | | | | | | | 37 | | 54 | | 30 | 16 | 4.9 | 0.80 | 1.7 | 0.40 | 7.0 | 11 | 1.9 | 0.10 | 42 | 25 | 50 | | APR
14 | 14 | 4.4 | 0.69 | 1.5 | 0.40 | 7.0 | 11 | 1.8 | 0.10 | 38 | 24 | 44 | | 27
MAY | 16 | 5.0 | 0.84 | 1.8 | 0.40 | 8.0 | 10 | 2.3 | 0.10 | 37 | 25 | 40 | | 12
25 | 15
15 | 4.8
4.9 | 0.73
0.77 | 1.6
1.6 | 0.30
0.40 | 9.0
9.0 | 9. 4
1 1 | 1.8
2.1 | 0.20
0.20 | 58
37 | 24
27 | 63
43 | | JUN
15 | 19 | 6.1 | 0.99 | 2.1 | 0.40 | 13 | 8.7 | 2.5 | 0.10 | 43 | 29 | 45 | | AUG
18 | 18 | 5.4 | 1.0 | 2.2 | 0.40 | 11 | 8.4 | 2.4 | 0.10 | 42 | 26 | 43 | | ОСТ
05 | 17 | 5.1 | 0.97 | 1.9 | 0.50 | 10 | 8.8 | 2.3 | 0.10 | 43 | 26 | 45 | | NOV 03 | 16 | 4.8 | 0.87 | 1.8 | 0.40 | 8.0 | 11 | 2.2 | 0.10 | 31 | 26 | 36 | DATE | SOLIDS,
VOLA-
TILE ON
IGNI-
TION,
TOTAL
(MG/L) | RESIDUE
TOTAL
FIXED
(MG/L) | NITRO-
GEN,
NITRITE
TOTAL
(MG/L
AS N) | NITRO-
GEN,
NO2+NO3
TOTAL
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS NH4) | NITRO-
GEN,
ORGANIC
TOTAL
(MG/L
AS N) | NITRO-
GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | NITRO-
GEN,
TOTAL
(MG/L
AS N) | NITRO-
GEN,
TOTAL
(MG/L
AS NO3) | PHOS-
PHORUS
TOTAL
(MG/L
AS P) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P) | | APR 1987 | VOLA-
TILE ON
IGNI-
TION,
TOTAL
(MG/L) | TOTAL
FIXED
(MG/L) | GEN,
NITRITE
TOTAL
(MG/L
AS N) | GEN,
NO2+NO3
TOTAL
(MG/L
AS N) | GEN,
AMMONIA
TOTAL
(MG/L
AS N) | GEN,
AMMONIA
TOTAL
(MG/L | GEN,
ORGANIC
TOTAL
(MG/L | GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | GEN,
TOTAL
(MG/L
AS N) | GEN,
TOTAL
(MG/L
AS NO3) | PHORUS
TOTAL
(MG/L | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P) | | | VOLA-
TILE ON
IGNI-
TION,
TOTAL | TOTAL
FIXED | GEN,
NITRITE
TOTAL
(MG/L | GEN,
NO2+NO3
TOTAL
(MG/L | GEN,
AMMONIA
TOTAL
(MG/L | GEN,
AMMONIA
TOTAL
(MG/L | GEN,
ORGANIC
TOTAL
(MG/L | GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L | GEN,
TOTAL
(MG/L | GEN,
TOTAL
(MG/L | PHORUS
TOTAL
(MG/L | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L | | APR 1987
23 | VOLA-
TILE ON
IGNI-
TION,
TOTAL
(MG/L) | TOTAL
FIXED
(MG/L) | GEN,
NITRITE
TOTAL
(MG/L
AS N) | GEN,
NO2+NO3
TOTAL
(MG/L
AS N) | GEN,
AMMONIA
TOTAL
(MG/L
AS N) | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4) | GEN,
ORGANIC
TOTAL
(MG/L
AS N) | GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | GEN,
TOTAL
(MG/L
AS N) | GEN,
TOTAL
(MG/L
AS NO3) | PHORUS
TOTAL
(MG/L
AS P) | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P) | | APR 1987
23
MAY
13
JUN
22 | VOLA-
TILE ON
IGNI-
TION,
TOTAL
(MG/L) | TOTAL
FIXED
(MG/L) | GEN, NITRITE TOTAL (MG/L AS N) | GEN,
NO2+NO3
TOTAL
(MG/L
AS N) | GEN, AMMONIA TOTAL (MG/L AS N) ND | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4) | GEN,
ORGANIC
TOTAL
(MG/L
AS N) | GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | GEN,
TOTAL
(MG/L
AS N) | GEN,
TOTAL
(MG/L
AS NO3) | PHORUS
TOTAL
(MG/L
AS P) | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P) | | APR 1987
23
MAY
13
JUN
22
JUL
27 | VOLA-
TILE ON
IGNI-
TION,
TOTAL
(MG/L) | TOTAL
FIXED
(MG/L)
22
23 | GEN, NITRITE TOTAL (MG/L AS N) ND | GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
0.420
0.210 | GEN, AMMONIA TOTAL (MG/L AS N) ND 0.020 | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4) | GEN,
ORGANIC
TOTAL
(MG/L
AS N) | GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
0.16 | GEN,
TOTAL
(MG/L
AS N)
0.58 | GEN,
TOTAL
(MG/L
AS NO3)
2.6
1.5 | PHORUS
TOTAL
(MG/L
AS P)
0.00 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P) | | APR 1987 23 MAY 13 JUN 22 JUL 27 SEP 23 | VOLA-
TILE ON
IGNI-
TION,
TOTAL
(MG/L)
8
18 | TOTAL
FIXED
(MG/L)
22
23
37 | GEN, NITRITE TOTAL (MG/L AS N) ND ND ND | GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
0.420
0.210 | GEN,
AMMONIA
TOTAL
(MG/L
AS N)
ND
0.020 | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4) | GEN,
ORGANIC
TOTAL
(MG/L
AS N) | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.16 0.12 | GEN,
TOTAL
(MG/L
AS N)
0.58
0.33 | GEN,
TOTAL
(MG/L
AS NO3)
2.6
1.5 | PHORUS
TOTAL
(MG/L
AS P)
0.00
0.00 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
0.00
ND | | APR 1987 23 MAY 13 JUN 22 JUL 27 SEP 23 OCT 29 | VOLA- TILE ON IGNI- TION, TOTAL (MG/L) 8 18 23 | TOTAL
FIXED
(MG/L)
22
23
37
37 | GEN, NITRITE TOTAL (MG/L AS N) ND ND ND ND | GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
0.420
0.210
0.170 | GEN, AMMONIA TOTAL (MG/L AS N) ND 0.020 0.010 | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4) | GEN,
ORGANIC
TOTAL
(MG/L
AS N)

0.10
0.11 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.16 0.12 0.12 | GEN,
TOTAL
(MG/L
AS N)
0.58
0.33
0.29 | GEN,
TOTAL
(MG/L
AS NO3)
2.6
1.5
1.3 | PHORUS
TOTAL
(MG/L
AS P)
0.00
0.00
0.00 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
0.00
ND
0.00 | | APR 1987 23 MAY 13 JUN 22 JUL 27 SEP 23 OCT 29 DEC 10 | VOLA- TILE ON IGNI- TION, TOTAL (MG/L) 8 18 23 20 39 | TOTAL FIXED (MG/L) 22 23 37 37 6 | GEN, NITRITE TOTAL (MG/L AS N) ND ND ND ND ND | GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
0.420
0.210
0.170
0.170
0.160 | GEN,
AMMONIA
TOTAL
(MG/L
AS N)
ND
0.020
0.010
0.010 | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4)

0.03
0.01
0.01 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)

0.10
0.11 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.16 0.12 0.12 0.13 | GEN,
TOTAL
(MG/L
AS N)
0.58
0.33
0.29
0.30 | GEN,
TOTAL
(MG/L
AS NO3)
2.6
1.5
1.3
2.1 | PHORUS
TOTAL
(MG/L
AS P)
0.00
0.00
0.00
0.00 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
0.00
ND
0.00 | | APR 1987 23 MAY 13 JUN 22 JUL 27 SEP 23 OCT 29 DEC 10 MAR 1988 30 | VOLA- TILE ON IGNI- TION, TOTAL (MG/L) 8 18 23 20 39 30 | TOTAL
FIXED
(MG/L)
22
23
37
37
6
28 | GEN, NITRITE TOTAL (MG/L AS N) ND ND ND ND ND ND ND ND ND | GEN, NO2+NO3 TOTAL (MG/L AS N) 0.420 0.210 0.170 0.170 0.160 0.260 | GEN, AMMONIA TOTAL (MG/L AS N) ND 0.020 0.010 0.010 ND 0.000 | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4)

0.03
0.01
0.01

0.0 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)

0.10
0.11
0.12

0.18 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.16 0.12 0.12 0.13 0.32 0.18 | GEN,
TOTAL
(MG/L
AS N)
0.58
0.33
0.29
0.30
0.48 | GEN,
TOTAL
(MG/L
AS NO3)
2.6
1.5
1.3
2.1 | PHORUS TOTAL (MG/L AS P) 0.00 0.00 0.00 0.00 0.00 0.00 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
0.00
ND
0.00
ND
0.00 | | APR 1987 23 MAY 13 JUN 22 JUL 27 SEP 23 OCT 29 DEC 10 MAR 1988 30 APR 14 | VOLA- TILE ON IGNI- TION, TOTAL (MG/L) 8 18 23 20 39 30 26 8 17 | TOTAL FIXED (MG/L) 22 23 37 37 6 28 28 42 27 | GEN, NITRITE TOTAL (MG/L AS N) ND | GEN, NO2+NO3 TOTAL (MG/L AS N) 0.420 0.210 0.170 0.170 0.160 0.260 0.390 0.750 0.630 | GEN, AMMONIA TOTAL (MG/L AS N) ND 0.020 0.010 0.010 ND 0.000 0.010 0.000 0.010 | GEN, AMMONIA TOTAL (MG/L AS NH4) 0.03 0.01 0.0 0.01 0.0 0.01 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)

0.10
0.11
0.12

0.18
0.25
0.28 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.16 0.12 0.12 0.13 0.32 0.18 0.26 0.30 0.14 | GEN,
TOTAL
(MG/L
AS N)
0.58
0.33
0.29
0.30
0.48
0.44
0.65 | GEN,
TOTAL
(MG/L
AS NO3)
2.6
1.5
1.3
2.1
1.9
2.9
4.6 | PHORUS TOTAL (MG/L AS P) 0.00 0.00 0.00 0.00 0.010 0.010 0.020 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS
P)
0.00
ND
0.00
ND
0.00
0.00
0.00 | | APR 1987 23 MAY 13 JUN 22 JUL 27 SEP 23 OCT 29 DEC 10 MAR 1988 30 APR 14 27 MAY | VOLA- TILE ON IGNI- TION, TOTAL (MG/L) 8 18 23 20 39 30 26 8 17 12 | TOTAL
FIXED
(MG/L)
22
23
37
37
6
28
28
42
27
28 | GEN, NITRITE TOTAL (MG/L AS N) ND | GEN, NO2+NO3 TOTAL (MG/L AS N) 0.420 0.210 0.170 0.170 0.160 0.260 0.390 0.750 0.630 0.480 | GEN, AMMONIA TOTAL (MG/L AS N) ND 0.020 0.010 ND 0.010 0.010 0.000 0.010 | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4)

0.03
0.01

0.0
0.01
0.01 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)

0.10
0.11
0.12

0.18
0.25
0.28 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.16 0.12 0.12 0.13 0.32 0.18 0.26 0.30 0.14 0.35 | GEN,
TOTAL
(MG/L
AS N)
0.58
0.33
0.29
0.30
0.48
0.44
0.65
1.0 | GEN,
TOTAL
(MG/L
AS NO3)
2.6
1.5
1.3
2.1
1.9
2.9
4.6
3.4
3.7 | PHORUS TOTAL (MG/L AS P) 0.00 0.00 0.00 0.00 0.00 0.010 0.000 0.010 0.020 0.000 | PHORUS ORTHO, DIS- SOLVED (MG/L AS P) 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 | | APR 1987 23 MAY 13 JUN 22 JUL 27 SEP 23 OCT 29 DEC 10 MAR 1988 30 APR 14 27 MAY | VOLA- TILE ON IGNI- TION, TOTAL (MG/L) 8 18 23 20 39 30 26 8 17 | TOTAL FIXED (MG/L) 22 23 37 37 6 28 28 42 27 | GEN, NITRITE TOTAL (MG/L AS N) ND | GEN, NO2+NO3 TOTAL (MG/L AS N) 0.420 0.210 0.170 0.170 0.160 0.260 0.390 0.750 0.630 | GEN, AMMONIA TOTAL (MG/L AS N) ND 0.020 0.010 0.010 ND 0.000 0.010 0.000 0.010 | GEN, AMMONIA TOTAL (MG/L AS NH4) 0.03 0.01 0.0 0.01 0.0 0.01 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)

0.10
0.11
0.12

0.18
0.25
0.28 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.16 0.12 0.12 0.13 0.32 0.18 0.26 0.30 0.14 | GEN,
TOTAL
(MG/L
AS N)
0.58
0.33
0.29
0.30
0.48
0.44
0.65 | GEN,
TOTAL
(MG/L
AS NO3)
2.6
1.5
1.3
2.1
1.9
2.9
4.6 | PHORUS TOTAL (MG/L AS P) 0.00 0.00 0.00 0.00 0.010 0.010 0.020 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
0.00
ND
0.00
ND
0.00
0.00
0.00 | | APR 1987 23 MAY 13 JUN 22 JUL 27 SEP 23 OCT 29 DEC 10 MAR 1988 30 APR 14 27 MAY 12 25 JUN 15 | VOLA- TILE ON IGNI- TION, TOTAL (MG/L) 8 18 23 20 39 30 26 8 17 12 31 | TOTAL FIXED (MG/L) 22 23 37 37 6 28 28 42 27 28 32 | GEN, NITRITE TOTAL (MG/L AS N) ND | GEN, NO2+NO3 TOTAL (MG/L AS N) 0.420 0.210 0.170 0.170 0.160 0.260 0.390 0.750 0.630 0.480 0.080 | GEN, AMMONIA TOTAL (MG/L AS N) ND 0.020 0.010 ND 0.000 0.010 0.000 0.010 0.000 0.000 ND | GEN, AMMONIA TOTAL (MG/L AS NH4) 0.03 0.01 0.0 0.01 0.03 0.01 0.03 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)

0.10
0.11
0.12

0.18
0.25
0.28
0.14
 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.16 0.12 0.13 0.32 0.18 0.26 0.30 0.14 0.35 0.14 | GEN,
TOTAL
(MG/L
AS N)
0.58
0.33
0.29
0.30
0.48
0.44
0.65
1.0
0.77
0.83 | GEN,
TOTAL
(MG/L
AS NO3)
2.6
1.5
1.3
2.1
1.9
2.9
4.6
3.4
3.7 | PHORUS TOTAL (MG/L AS P) 0.00 0.00 0.00 0.00 0.010 0.010 0.020 0.00 0.0 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
0.00
ND
0.00
ND
0.00
0.00
0.00 | | APR 1987 23 MAY 13 JUN 22 JUL 27 SEP 23 OCT 29 DEC 10 MAR 1988 30 APR 14 27 MAY 12 25 JUN | VOLA- TILE ON IGNI- TION, TOTAL (MG/L) 8 18 23 20 39 30 26 8 17 12 31 8 | TOTAL FIXED (MG/L) 22 23 37 37 6 28 28 42 27 28 32 35 | GEN, NITRITE TOTAL (MG/L AS N) ND | GEN, NO2+NO3 TOTAL (MG/L AS N) 0.420 0.210 0.170 0.170 0.160 0.260 0.390 0.750 0.630 0.480 0.080 0.260 | GEN, AMMONIA TOTAL (MG/L AS N) ND 0.020 0.010 ND 0.000 0.010 0.020 0.000 ND 0.000 0.000 ND | GEN, AMMONIA TOTAL (MG/L AS NH4) 0.03 0.01 0.0 0.01 0.01 0.03 0.0 0.0 0.01 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)

0.10
0.11
0.12

0.18
0.25
0.28
0.14
 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.16 0.12 0.12 0.13 0.32 0.18 0.26 0.30 0.14 0.35 | GEN,
TOTAL
(MG/L
AS N)
0.58
0.33
0.29
0.30
0.48
0.44
0.65
1.0
0.77
0.83
0.22
0.50 | GEN,
TOTAL
(MG/L
AS NO3)
2.6
1.5
1.3
2.1
1.9
2.9
4.6
3.4
3.7 | PHORUS TOTAL (MG/L AS P) 0.00 0.00 0.00 0.00 0.010 0.00 0.010 0.020 0.00 0.0 | PHORUS
ORTHO,
ORTHO,
ORTHO,
ORTHO,
ORTHO,
MG/L
AS P)
0.00
ND
0.00
ND
0.00
0.00
ND
0.00
ND | | APR 1987 23 MAY 13 JUN 22 JUL 27 SEP 23 OCT 29 DEC 10 MAR 1988 30 APR 14 27 MAY 12 JUN 15 AUG | VOLA- TILE ON IGNI- TION, TOTAL (MG/L) 8 18 23 20 39 30 26 8 17 12 31 8 34 | TOTAL FIXED (MG/L) 22 23 37 37 6 28 28 42 27 28 32 35 11 | GEN, NITRITE TOTAL (MG/L AS N) ND | GEN, NO2+NO3 TOTAL (MG/L AS N) 0.420 0.210 0.170 0.170 0.160 0.260 0.390 0.750 0.630 0.480 0.080 0.260 0.200 | GEN, AMMONIA TOTAL (MG/L AS N) ND 0.020 0.010 0.010 0.000 0.010 0.000 0.010 0.000 0.000 0.000 0.000 0.000 0.000 | GEN, AMMONIA TOTAL (MG/L AS NH4) 0.03 0.01 0.0 0.01 0.03 0.0 0.0 0.01 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)

0.10
0.11
0.12

0.18
0.25
0.28
0.14

0.14
0.23 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.16 0.12 0.13 0.32 0.18 0.26 0.30 0.14 0.35 0.14 0.24 | GEN,
TOTAL
(MG/L
AS N)
0.58
0.33
0.29
0.30
0.48
0.44
0.65
1.0
0.77
0.83
0.22
0.50 | GEN,
TOTAL
(MG/L
AS NO3)
2.6
1.5
1.3
2.1
1.9
2.9
4.6
3.4
3.7
0.97
2.2 | PHORUS TOTAL (MG/L AS P) 0.00 0.00 0.00 0.00 0.010 0.010 0.020 0.00 0.0 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
0.00
ND
0.00
ND
0.00
0.00
ND
0.00
ND
ND
ND
ND | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). #### 01315500 HUDSON RIVER AT NORTH CREEK, NY - continued | | PHOS- | ALUM- | AT 1714 | CARMIUM | | CODDED | | TROM | | | | MANGA- | |--|---|---|---|---|--|---|---|--|--|---|--|---| | DATE | PHATE,
ORTHO,
DIS-
SOLVED
(MG/L | INUM,
TOTAL
RECOV-
ERABLE
(UG/L | ALUM-
INUM,
DIS-
SOLVED
(UG/L | CADMIUM
TOTAL
RECOV-
ERABLE
(UG/L | CADMIUM
DIS-
SOLVED
(UG/L | COPPER,
TOTAL
RECOV-
ERABLE
(UG/L | COPPER,
DIS-
SOLVED
(UG/L | IRON,
TOTAL
RECOV-
ERABLE
(UG/L | IRON,
DIS-
SOLVED
(UG/L | LEAD,
TOTAL
RECOV-
ERABLE
(UG/L | LEAD,
DIS-
SOLVED
(UG/L | NESE,
TOTAL
RECOV-
ERABLE
(UG/L | | | AS PO4) | AS AL) | AS AL) | AS CD) | AS CD) | AS CU) | AS CU) | AS FE) | AS FE) | AS PB) | AS PB) | AS MN) | | APR 1987 | | | | | | | | | | | | | | 23
May | 0.0 | | | <10 | | <10 | | 130 | | <100 | | <10 | | 13 | | | | <10 | | <10 | | 120 | | < 5 | | <10 | | JUN
22 | 0.0 | | | <10 | | 20 | | 200 | | 6 | | <10 | | JUL
27 | 0.0 | | | <10 | 1.0 | 30 | 3 | 270 | | <5 | <5 | 20 | | SEP
23 | | | | <1 | | 1 | | <10 | | < 5 | | <10 | | ⊙ст
29 | 0.0 | | | <1 | 1.0 | 4 | 6 | 460 | | < 5 | <5 | 40 | | DEC 10 | 0.0 | | | <1 | | 5 | | 170 | | <5 | | <10 | | MAR 1988 | | | | | | | | | | | _ | | | 30
APR | 0.0 | 180 | 100 | 1 | <1.0 | 53 | 1 | 280 | 90 | 56 | < 5 | 30 | | 14
27 | | 290
200 | 70 | <1
1 |
<1.0 | 1
4 | 1 | 330
230 |
59 | 5
800 |
<5 | 20
20 | | MAY | | | | | | | | | | | 10 | | | 12
25 | 0.0 | 130
120 |
60 | 2
1 |
<1.0 | 3
14 | 2 | 150
140 | 65 | <5
6 | <5 | 20
20 | | JUN
15 | | 80 | | 1 | | 21 | | 130 | | < 5 | | 10 | | AUG
18 | | 50 | | 1 | | 5 | | 100 | | <5 | | 20 | | ост
05 | | 50 | | <1 | | 5 | | 150 | | <5 | | <10 | | NOV | | | | | | | | | | | | | | 03 | | 90 | 60 | <1 | 1.0 | 5 | 2 | 180 | 100 | <5 | < 5 | 30 | MANGA- | MERCURY | NICKEL, | NICKEL | ZINC, | 7 INC | DUENOI | | CARBON- | | CHLORO- | | | | NESE,
DIS- | TOTAL
RECOV- | TOTAL
RECOV- | NICKEL, | ZINC,
TOTAL
RECOV- | ZINC,
DIS- | PHENOL
(C6H- | BROMO- | CARBON-
TETRA-
CHLO- | CHLORO- | CHLORO-
DI-
BROMO- | CHLORO- | | DATE | NESE,
DIS-
SOLVED | TOTAL
RECOV-
ERABLE | TOTAL
RECOV-
ERABLE | DIS-
SOLVED | TOTAL
RECOV-
ERABLE | DIS-
SOLVED | (C6H-
5OH) | FORM | TETRA-
CHLO-
RIDE | BENZENE | DI-
BROMO-
METHANE | ETHANE | | DATE | NESE,
DIS- | TOTAL
RECOV- | TOTAL
RECOV- | DIS- | TOTAL
RECOV- | DIS- | (C6H- | | TETRA-
CHLO- | | DI-
BROMO- | | | DATE
APR 1987 | NESE,
DIS-
SOLVED
(UG/L | TOTAL
RECOV-
ERABLE
(UG/L | TOTAL
RECOV-
ERABLE
(UG/L | DIS-
SOLVED
(UG/L | TOTAL RECOV- ERABLE (UG/L | DIS-
SOLVED
(UG/L | (C6H-
5OH)
TOTAL | FORM
TOTAL | TETRA-
CHLO-
RIDE
TOTAL | BENZENE
TOTAL | DI-
BROMO-
METHANE
TOTAL | ETHANE
TOTAL | | APR 1987
23 | NESE,
DIS-
SOLVED
(UG/L | TOTAL
RECOV-
ERABLE
(UG/L | TOTAL
RECOV-
ERABLE
(UG/L |
DIS-
SOLVED
(UG/L | TOTAL RECOV- ERABLE (UG/L | DIS-
SOLVED
(UG/L | (C6H-
5OH)
TOTAL | FORM
TOTAL | TETRA-
CHLO-
RIDE
TOTAL | BENZENE
TOTAL | DI-
BROMO-
METHANE
TOTAL | ETHANE
TOTAL | | APR 1987
23
MAY
13 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL
RECOV-
ERABLE
(UG/L
AS HG) | TOTAL
RECOV-
ERABLE
(UG/L
AS NI) | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV- ERABLE (UG/L AS ZN) | DIS-
SOLVED
(UG/L
AS ZN) | (C6H-
5OH)
TOTAL
(UG/L) | FORM
TOTAL
(UG/L) | TETRA-
CHLO-
RIDE
TOTAL
(UG/L) | BENZENE
TOTAL
(UG/L) | DI-
BROMO-
METHANE
TOTAL
(UG/L) | ETHANE
TOTAL
(UG/L) | | APR 1987
23
MAY
13
JUN
22 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL
RECOV-
ERABLE
(UG/L
AS HG) | TOTAL
RECOV-
ERABLE
(UG/L
AS NI) | DIS-
SOLVED
(UG/L
AS NI) | TOTAL
RECOV-
ERABLE
(UG/L
AS ZN) | DIS-
SOLVED
(UG/L
AS ZN) | (C6H-
5OH)
TOTAL
(UG/L) | FORM TOTAL (UG/L) | TETRA-
CHLO-
RIDE
TOTAL
(UG/L) | BENZENE
TOTAL
(UG/L)
ND | DI-
BROMO-
METHANE
TOTAL
(UG/L) | ETHANE
TOTAL
(UG/L) | | APR 1987
23
MAY
13
JUN
22
JUL
27 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL
RECOV-
ERABLE
(UG/L
AS HG)
<0.10 | TOTAL
RECOV-
ERABLE
(UG/L
AS NI)
<100 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV- ERABLE (UG/L AS ZN) 10 | DIS-
SOLVED
(UG/L
AS ZN) | (C6H-
5OH)
TOTAL
(UG/L) | FORM TOTAL (UG/L) ND | TETRA-
CHLO-
RIDE
TOTAL
(UG/L)
ND | BENZENE
TOTAL
(UG/L)
ND | DI-
BROMO-
METHANE
TOTAL
(UG/L)
ND | ETHANE
TOTAL
(UG/L)
ND
ND | | APR 1987
23
MAY
13
JUN
22
JUL | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV- ERABLE (UG/L AS HG) <0.10 <0.10 <0.10 | TOTAL RECOV- ERABLE (UG/L AS NI) <100 <1 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL
RECOV-
ERABLE
(UG/L
AS ZN) | DIS-
SOLVED
(UG/L
AS ZN) | (C6H-
50H)
TOTAL
(UG/L) | FORM TOTAL (UG/L) ND ND | TETRA-CHLO-RIDE TOTAL (UG/L) ND ND | BENZENE
TOTAL
(UG/L)
ND
ND | DI-
BROMO-
METHANE
TOTAL
(UG/L)
ND
ND | ETHANE
TOTAL
(UG/L)
ND
ND | | APR 1987 23 MAY 13 JUN 22 JUL 27 SEP 23 OCT | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV-ERABLE (UG/L AS HG) <0.10 <0.10 <0.10 <0.10 0.10 | TOTAL RECOV- ERABLE (UG/L AS NI) <100 <1 1 6 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV- ERABLE (UG/L AS ZN) 10 20 20 10 <10 | DIS-
SOLVED
(UG/L
AS ZN) | (C6H-
SOH)
TOTAL
(UG/L) | FORM TOTAL (UG/L) ND ND ND | TETRA-CHLO-RIDE TOTAL (UG/L) ND ND ND ND ND | BENZENE
TOTAL
(UG/L)
ND
ND
ND
ND | DI-
BROMO-
METHANE
TOTAL
(UG/L)
ND
ND | ETHANE TOTAL (UG/L) ND ND ND ND ND | | APR 1987 23 MAY 13 JUN 22 JUL 27 SEP 23 OCT 29 DEC | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV-ERABLE (UG/L AS HG) <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 | TOTAL RECOVERABLE (UG/L AS NI) <100 <1 1 6 1 <1 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV- ERABLE (UG/L AS ZN) 10 20 20 10 <10 10 | DIS-
SOLVED
(UG/L
AS ZN) | (C6H-
50H)
TOTAL
(UG/L) | FORM TOTAL (UG/L) ND ND ND ND | TETRA-CHLO-RIDE TOTAL (UG/L) ND ND ND ND ND | BENZENE
TOTAL
(UG/L)
ND
ND
ND
ND | DI-
BROMO-
METHANE
TOTAL
(UG/L)
ND
ND
ND | ETHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | | APR 1987 23 MAY 13 JUN 22 JUL 27 SEP 23 OCT 29 DEC 10 MAR 1988 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV-ERABLE (UG/L AS HG) <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 | TOTAL RECOVERABLE (UG/L AS NI) <100 <1 1 6 1 <1 <1 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV- ERABLE (UG/L AS ZN) 10 20 20 10 <10 10 <10 | DIS- SOLVED (UG/L AS ZN) 10 10 | (C6H-
50H)
TOTAL
(UG/L) | FORM TOTAL (UG/L) ND ND ND ND ND ND ND | TETRA-CHLO-RIDE TOTAL (UG/L) ND ND ND ND ND ND ND ND | BENZENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND | DI- BROMO- METHANE TOTAL (UG/L) ND ND ND ND ND ND ND | ETHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | | APR 1987 23 MAY 13 JUN 22 JUL 27 SEP 23 OCT 29 DEC 10 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV-ERABLE (UG/L AS HG) <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 | TOTAL RECOVERABLE (UG/L AS NI) <100 <1 1 6 1 <1 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV- ERABLE (UG/L AS ZN) 10 20 20 10 <10 10 | DIS-
SOLVED
(UG/L
AS ZN) | (C6H-
50H)
TOTAL
(UG/L) | FORM TOTAL (UG/L) ND ND ND ND | TETRA-CHLO-RIDE TOTAL (UG/L) ND ND ND ND ND | BENZENE
TOTAL
(UG/L)
ND
ND
ND
ND | DI-
BROMO-
METHANE
TOTAL
(UG/L)
ND
ND
ND | ETHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | | APR 1987 23 MAY 13 JUN 22 JUL 27 SEP 23 OCT 29 DEC 10 MAR 1988 30 APR 14 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV-ERABLE (UG/L AS HG) <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 | TOTAL RECOV-ERABLE (UG/L AS NI) <100 <1 1 6 1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 < | DIS-SOLVED (UG/L AS NI) | TOTAL RECOV-ERABLE (UG/L AS ZN) 10 20 20 10 <10 10 <10 <10 <10 <10 <10 <10 <10 | DIS-
SOLVED
(UG/L
AS ZN) | (C6H-
50H)
TOTAL
(UG/L) | FORM TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TETRA-CHLO-RIDE TOTAL (UG/L) ND | BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | DI- BROMO- METHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | ETHANE TOTAL (UG/L) ND | | APR 1987 23 MAY 13 JUN 22 JUL 27 SEP 23 OCT 29 DEC 10 MAR 1988 30 APR 14 27 MAY | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOVERABLE (UG/L AS HG) <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 | TOTAL RECOVERABLE (UG/L AS NI) <100 <1 1 6 1 <1 21 6 3 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV-ERABLE (UG/L AS ZN) 10 20 20 10 <10 10 870 <10 70 | DIS-
SOLVED
(UG/L
AS ZN) | (C6H-
50H)
TOTAL
(UG/L) | FORM TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TETRA-CHLO-RIDE TOTAL (UG/L) ND N | BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | DI- BROMO- METHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | ETHANE TOTAL (UG/L) ND | | APR 1987 23 MAY 13 JUN 22 JUL 27 SEP 23 OCT 29 DEC 10 MAR 1988 30 APR 14 27 MAY 12 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOVERABLE (UG/L AS HG) <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 | TOTAL RECOVERABLE (UG/L AS NI) <100 <1 1 6 1 <1 22 6 3 9 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV-ERABLE (UG/L AS ZN) 10 20 20 10 <10 10 <70 <10 870 <10 70 <10 | DIS-
SOLVED
(UG/L
AS ZN) | (C6H-
SOH)
TOTAL
(UG/L)

1.0
ND
ND | FORM TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TETRA-CHLO-RIDE TOTAL (UG/L) ND N | BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | DI- BROMO- METHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | ETHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | | APR 1987 23 MAY 13 JUN 22 JUL 27 SEP 23 OCT 29 DEC 10 MAR 1988 30 APR 14 27 MAY 12 JUN | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOVERABLE (UG/L AS HG) <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 | TOTAL RECOVERABLE (UG/L AS NI) <100 <1 1 6 1 <1 22 6 3 9 6 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV-ERABLE (UG/L AS ZN) 10 20 20 10 <10 10 <10 870 <10 70 <10 10 | DIS-
SOLVED (UG/L
AS ZN) 10 10 <10 33 18 | (C6H-
50H)
TOTAL
(UG/L) | FORM TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TETRA-CHLO-RIDE TOTAL (UG/L) ND N | BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | DI- BROMO- METHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | ETHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | | APR 1987 23 MAY 13 JUN 22 JUL 27 SEP 23 OCT 29 DEC 10 MAR 1988 30 APR 14 27 MAY 12 JUN 15 AUG | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOVERABLE (UG/L AS HG) <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 | TOTAL RECOVERABLE (UG/L AS NI) <100 <1 1 6 1 <1 22 6 3 9 6 6 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOVERABLE (UG/L AS ZN) 10 20 20 10 <10 10 <70 <10 10 210 20 20 20 20 20 20 20 20 20 20 20 20 20 | DIS-
SOLVED
(UG/L
AS ZN) 10 10 <10 <18 18 | (C6H-
SOH)
TOTAL
(UG/L) | FORM TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TETRA-CHLO-RIDE TOTAL (UG/L) ND N | BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | DI- BROMO- METHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | ETHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | | APR 1987 23 MAY 13 JUN 22 JUL 27 SEP 23 CCT 29 DEC 10 MAR 1988 30 APR 14 27 MAY 12 25 JUN 15 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOVERABLE (UG/L AS HG) <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 | TOTAL RECOVERABLE (UG/L AS NI) <100 <1 1 6 1 <1 22 6 3 9 6 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV-ERABLE (UG/L AS ZN) 10 20 20 10 <10 10 <10 870 <10 70 <10 10 | DIS-
SOLVED (UG/L
AS ZN) 10 10 <10 33 18 | (C6H-
50H)
TOTAL
(UG/L) | FORM TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TETRA-CHLO-RIDE TOTAL (UG/L) ND N | BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | DI- BROMO- METHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | ETHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | | APR 1987 23 MAY 13 JUN 22 JUL 27 SEP 23 OCT 29 DEC 10 MAR 1988 30 APR 14 27 MAY 12 JUN 15 AUG 18 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOVERABLE (UG/L AS HG) <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 | TOTAL RECOVERABLE (UG/L AS NI) <100 <1 1 6 1 <1 22 6 3 9 6 6 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOVERABLE (UG/L AS ZN) 10 20 20 10 <10 10 <70 <10 10 210 20 20 20 20 20 20 20 20 20 20 20 20 20 | DIS-
SOLVED
(UG/L
AS ZN) 10 10 <10 <18 18 | (C6H-
SOH)
TOTAL
(UG/L) | FORM TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TETRA-CHLO-RIDE TOTAL (UG/L) ND N |
BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | DI- BROMO- METHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | ETHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). #### 01315500 HUDSON RIVER AT NORTH CREEK, NY - continued | | | | | | IDK QOMDI | | | • | | | | |---|---|--|---|---|--|---|---|--|---|---|---| | DATE | CHLORO-
FORM
TOTAL
(UG/L) | CIS
1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | DI-
CHLORO-
BROMO-
METHANE
TOTAL
(UG/L) | METHYL-
BROMIDE
TOTAL
(UG/L) | METHYL-
CHLO-
RIDE
TOTAL
(UG/L) | METHYL-
ENE
CHLO-
RIDE
TOTAL
(UG/L) | 1,1,1-
TRI-
CHLORO-
ETHANE
TOTAL
(UG/L) | 1,1-DI-
CHLORO-
ETHANE
TOTAL
(UG/L) | 1,1-DI-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 1,1,2-
TRI-
CHLORO-
ETHANE
TOTAL
(UG/L) | 1,1,2,2
TETRA-
CHLORO-
ETHANE
TOTAL
(UG/L) | | APR 1987
23 | ND | MAY
13 | ND ИD | | JUN
22 | ND 1.0 | ND | ND | ND | | JUL
27 | ND | SEP
23
OCT | ND | 29
DEC | | | | | | | | | | | | | 10
MAR 1988 | ND | 30
APR | ND | 14
27 | ND
 | ND
 | ND | ND
 | ND | ND
 | ND
 | ND
 | ND
 | ND
 | ND
 | | MAY | | | | | | | | | | N. | | | 12
25 | ND
ND | JUN
15 | ND | AUG
18
OCT | 0.4 | ND | 05 | ND | 03 | ND | | | | | | | | | | | | | | DATE | 1,2-DI-
CHLORO-
BENZENE
TOTAL
(UG/L) | 1,2-DI-
CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L) | 1,2-DI-
CHLORO-
PROPANE
TOTAL
(UG/L) | 1,2-
TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L) | 1,3-DI-
CHLORO-
BENZENE
TOTAL
(UG/L) | 1,4-DI-
CHLORO-
BENZENE
TOTAL
(UG/L) | TETRA-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | TRANS-
1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | TRI-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 2-
CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L) | VINYL
CHLO-
RIDE
TOTAL
(UG/L) | | APR 1987 | CHLORO-
BENZENE
TOTAL | CHLORO-
ETHANE
WATER
WHOLE
TOTAL | CHLORO-
PROPANE
TOTAL | TRANSDI
CHLORO-
ETHENE
TOTAL | CHLORO-
BENZENE
TOTAL | CHLORO-
BENZENE
TOTAL | CHLORO-
ETHYL-
ENE
TOTAL | 1,3-DI-
CHLORO-
PROPENE
TOTAL | CHLORO-
ETHYL-
ENE
TOTAL | CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL | CHLO-
RIDE
TOTAL | | | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L) | CHLORO-
PROPANE
TOTAL
(UG/L) | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L) | CHLO-
RIDE
TOTAL
(UG/L) | | APR 1987
23
MAY | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L) | CHLORO-
PROPANE
TOTAL
(UG/L) | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L) | CHLO-
RIDE
TOTAL
(UG/L) | | APR 1987 23 MAY 13 JUN 22 JUL 27 | CHLORO-
BENZENE
TOTAL
(UG/L)
ND | CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L)
ND | CHLORO-
PROPANE
TOTAL
(UG/L)
ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND | CHLORO-
BENZENE
TOTAL
(UG/L)
ND | CHLORO-
BENZENE
TOTAL
(UG/L)
ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND | CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L) | CHLO-
RIDE
TOTAL
(UG/L)
ND | | APR 1987 23 MAY 13 JUN 22 JUL 27 SEP 23 | CHLORO-
BENZENE
TOTAL
(UG/L)
ND
ND | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND ND | CHLORO-
PROPANE
TOTAL
(UG/L)
ND
ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND | CHLORO-
BENZENE
TOTAL
(UG/L)
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND
ND | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
ND
ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND
ND | CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L)
ND
ND | CHLO-
RIDE
TOTAL
(UG/L)
ND
ND | | APR 1987 23 MAY 13 JUN 22 JUL 27 SEP 23 OCT 29 | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND ND ND | CHLORO-PROPANE TOTAL (UG/L) ND ND ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND ND ND ND | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
ND
ND | CHLORO-ETHYL-ENE ENE TOTAL (UG/L) ND ND 9.0 | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND ND ND ND | CHLO-
RIDE
TOTAL
(UG/L)
ND
ND | | APR 1987 23 MAY 13 JUN 22 JUL 27 SEP 23 OCT 29 DEC 10 | CHLORO- BENZENE TOTAL (UG/L) ND ND ND ND ND ND | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND ND ND ND | CHLORO-
PROPANE
TOTAL
(UG/L)
ND
ND
ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND ND ND ND | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
ND
ND
ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND ND ND ND ND | CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L) ND ND ND ND ND | CHLO-RIDE TOTAL (UG/L) ND ND 10 ND ND | | APR 1987 23 MAY 13 JUN 22 JUL 27 SEP 23 OCT 29 DEC 10 MAR 1988 30 | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND ND ND ND ND | CHLORO-
PROPANE
TOTAL
(UG/L)
ND
ND
ND
ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND ND ND ND ND | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
ND
ND
ND
ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND ND ND ND ND ND | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND ND ND ND ND | CHLO-RIDE TOTAL (UG/L) ND ND 10 ND ND | | APR 1987 23 MAY 13 JUN 22 JUL 27 SEP 23 OCT 29 DEC 10 MAR 1988 30 APR 14 | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND | CHLORO-PROPANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND | CHLOROBENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLOROBENZENE TOTAL (UG/L) ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND | CHLO-RIDE TOTAL (UG/L) ND | | APR 1987 23 MAY 13 JUN 22 JUL 27 SEP 23 OCT 29 DEC 10 MAR 1988 30 APR 14 27 MAY | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND | CHLORO-PROPANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND
ND | CHLOROBENZENE TOTAL (UG/L) ND | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND N | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-ETHYL-ENE TOTAL (UG/L) ND | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND | CHLO-RIDE TOTAL (UG/L) ND ND 10 ND | | APR 1987 23 MAY 13 JUN 22 JUL 27 SEP 23 OCT 29 DEC 10 MAR 1988 30 APR 14 27 MAY | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND | CHLORO-PROPANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND | CHLOROBENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLOROBENZENE TOTAL (UG/L) ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND | CHLO-RIDE TOTAL (UG/L) ND | | APR 1987 23 MAY 13 JUN 22 JUL 27 SEP 23 OCT 29 DEC 10 MAR 1988 30 APR 14 27 MAY 12 25 JUN 15 | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND | CHLORO-PROPANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND
ND | CHLOROBENZENE TOTAL (UG/L) ND | CHLOROBENZENE TOTAL (UG/L) ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND | CHLO-RIDE TOTAL (UG/L) ND ND 10 ND | | APR 1987 23 MAY 13 JUN 22 JUL 27 SEP 23 OCT 29 DEC 10 MAR 1988 30 APR 14 27 MAY 12 25 JUN 15 AUG 18 | CHLORO-BENZENE TOTAL (UG/L) ND ND
ND ND ND ND ND ND ND N | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND | CHLORO-PROPANE TOTAL (UG/L) ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND
ND
ND | CHLOROBENZENE TOTAL (UG/L) ND | CHLOROBENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-ETHYL-ENE TOTAL (UG/L) ND N | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-ETHYL-ENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND | CHLO-RIDE TOTAL (UG/L) ND ND 10 ND ND ND ND ND ND ND ND ND N | | APR 1987 23 MAY 13 JUN 22 JUL 27 SEP 23 OCT 29 DEC 10 MAR 1988 30 APR 14 27 MAY 12 JUN 15 AUG | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND | CHLORO-PROPANE TOTAL (UG/L) ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND
ND
ND
ND | CHLOROBENZENE TOTAL (UG/L) ND | CHLOROBENZENE TOTAL (UG/L) ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-ETHYL-ENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND | CHLO-RIDE TOTAL (UG/L) ND | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). ### 01315500 HUDSON RIVER AT NORTH CREEK, NY - continued # SUSPENDED SEDIMENT DISCHARGE | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND | SEDI-
MENT,
SUS-
PENDED
(MG/L) | SEDI-
MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY) | |----------|------|--|--|--| | MAY 1988 | | | | | | 12 | 1045 | 1220 | <1 | | | 25 | 1030 | 1800 | 1 | 4.9 | | JUN | | | | | | 15 | 1040 | 312 | 1 | 0.84 | | AUG | | | | | | 18 | 1100 | 330 | <1 | | | OCT | | | | | | 05 | 1030 | 457 | 7 | 8.6 | | NOA | | | | | | 03 | 1000 | 2070 | 1 | 5.6 | # BED MATERIAL ANALYSES | DATE | TIME | SOLIDS,
VOLA-
TILE IN
BOTTOM
MA-
TERIAL
(MG/KG) | ALUM-
INUM,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G) | CADMIUM
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS CD) | COPPER,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS CU) | IRON,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS FE) | LEAD,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS PB) | MANGA-
NESE,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G) | MERCURY
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS HG) | NICKEL,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS NI) | ZINC,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS ZN) | |----------------|--|--|--|--|--|--|--|---|--|--|---| | AUG 1988
18 | 1100 | 73000 | 3800 | <10 | 2 | 5200 | <100 | 90 | 0.20 | <100 | 50 | | DATE | AROCLOR
1221
IN
BOTTOM
MAT.
(UG/KG) | AROCLOR
1248
PCB
BOT.MAT
(UG/KG) | AROCLOR
1254
PCB
BOT.MAT
(UG/KG) | AROCLOR
1260
PCB
BOT.MAT
(UG/KG) | ALDRIN,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | ALPHA
BHC
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | ATRA-
ZINE,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | BETA
BENZENE
HEXA-
CHLOR-
IDE
BOT.MAT
(UG/KG) | CHLOR-
DANE,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | CHLOR-
PYRIFOS
IN BOT.
MAT.
(UG/KG) | DELTA BENZENE HEXA- CHLOR- IDE BOT.MAT (UG/KG) | | AUG 1988
18 | ND | DATE | DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) | DI-
ELDRIN,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | ENDO-
SULFAN
ALPHA
BOT.MAT
(UG/KG) | ENDO-
SULFAN
BETA
BOT.MAT
(UG/KG) | ENDO-
SULFAN
SULFATE
BOT.MAT
(UG/KG) | ENDRIN,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | ENDRIN
ALDE-
HYDE
BOT.MAT
(UG/KG) | ETHION,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | HEPTA-
CHLOR,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | HEPTA-
CHLOR
EPOXIDE
TOT. IN
BOTTOM
MATL.
(UG/KG) | MALA-
THION,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | | AUG 1988
18 | ND | D. | OX
CH
TOI
BC
ATE M | LOR, TO
L. IN IN
TTOM TOM
ATL. TE | REX, D
TAL TO
BOT- IN
MA- TOM
RIAL TE | DDD, D
TAL TO
BOT- IN
MA- TOM
RIAL TE | DE, DETAL TO BOT- IN MA- TOMERIAL TE | DT, THAL TO BOT- IN MA- TON RIAL TE | HION, PHOTAL TO
BOT- IN
HMA- TOM
CRIAL TE | ENE, M
TAL F
BOT- DI
MA- & F
RIAL T | ALL SI
AM. DI
INER & F | AT. MEVE SI
AM. DI
INER & F | ED
AT.
EVE
AM.
INER
HAN
5 MM | | AUG 1
18. | | ID N | ID N | ID N | D N | ID N | ID N | D | 0 | 3 | 100 | ### 01317395 SCHROON RIVER, STATE HIGHWAY 418, AT WARRENSBURG, NY LOCATION.--Lat 43*29'28", long 73*34'16", Warren County, Hydrologic Unit 02020001, at Route 418 bridge in Warrensburg. ### DRAINAGE AREA: ---- PERIOD OF RECORD.--Water years 1987 to 1989. CHEMICAL DATA: 1987 (b), 1988 (c), 1989 (a). MINOR ELEMENT DATA: 1987 (b), 1988 (c), 1989 (a). PESTICIDE DATA: 1987 (b), 1988 (c), 1989 (a). ORGANIC DATA: PCB--1988 (a). NUTRIENT DATA: 1987 (b), 1988 (c), 1989 (a). BIOLOGICAL DATA: Bacteria--1987 (a),1988 (c), 1989 (a). SEDIMENT DATA: 1988 (b), 1989 (a). REMARKS.--Water-discharge data obtained from a discharge rating developed for this site. Some diurnal fluctuation of flow caused by powerplant on Schroon River. #### WATER-OUALITY DATA | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | SPE-
CIFIC
CON-
DUCT-
ANCE
LAB
(US/CM) | PH WATER WHOLE FIELD (STAND- ARD UNITS) | TEMPER-
ATURE
WATER
(DEG C) | TUR-
BID-
ITY
(NTU) | BARO-
METRIC
PRES-
SURE
(MM
OF
HG) | OXYGEN,
DIS-
SOLVED
(MG/L) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION) | COLI-
FORM,
TOTAL,
IMMED.
(COLS.
PER
100 ML) | FECAL
COLI-
FORM
24-HR
MEM.FIL
(COLS./
100 ML) | |-------------------|------|--|---|--|---|--------------------------------------|------------------------------|--|-------------------------------------|--|--|--| | APR 1987 | | | | | | | | | | | | | | 23
MAY | 1405 | | | | 7.4 | 11.0 | 0.80 | | 14.5 | | | | | 13
JUN | 1230 | | | 86 | 7.6 | 15.5 | 0.40 | | 9.8 | | | | | 22
JUL | 1300 | | | 90 | 7.4 | 19.5 | 0.80 | | 8.3 | | | | | 27
SEP | 1300 | | | | 7.2 | 27.5 | 0.50 | | 8.9 | | 500 | 330 | | 23
OCT | 1300 | | | 73 | 7.1 | 15.5 | 0.80 | | 10.0 | | 190 | 40.0 | | 29
DEC | 1330 | | | | 7.0 | 7.0 | 1.2 | | 11.6 | | 340 | 50.0 | | 10
MAR 1988 | 1300 | | | 71 | 7.2 | 4.0 | 0.60 | | 17.6 | | 120 | 10.0 | | 30 | 1200 | 1330 | 63 | 62 | 6.6 | 3.0 | 1.5 | 768 | 13.4 | 98 | 60 | ND | | APR
1 4 | 1315 | 1560 | 67 | 67 | 6.4 | 6.5 | 0.40 | 763 | 11.7 | 95 | 100 | 10.0 | | 27
May | 1300 | 838 | 70 | 74 | 6.7 | 9.0 | 0.50 | 760 | 10.7 | 92 | 240 | 30.0 | | 12 | 1200 | 1060 | 74 | 72 | 6.5 | 10.0 | 0.80 | 760 | 11.1 | 99 | 60 | 40.0 | | 25
JUN | 1200 | 1000 | 63 | 71 | 6.6 | 15.0 | 0.60 | 749 | 9.0 | 91 | | | | 15
AUG | 1145 | 261 | 97 | 101 | 6.6 | 22.5 | 0.40 | 766 | 5.8 | 67 | 3900 | 500 | | 18 | 1300 | | 132 | 129 | 6.6 | 34.5 | 0.70 | | 7.7 | | | | | 05
NOV | 1220 | 390 | 108 | 106 | 6.5 | 14.5 | 0.50 | 765 | 9.2 | 90 | >3300 | 430 | | 03 | 1200 | 1040 | 75 | 74 | 7.2 | 4.5 | 0.50 | | 12.6 | | 600 | 20.0 | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). # 01317395 SCHROON RIVER, STATE HIGHWAY 418, AT WARRENSBURG, NY - continued # WATER-QUALITY DATA (continued) SOLIDS, SOLIDS, | DATE | HARD-
NESS
TOTAL
(MG/L
AS
CACO3) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K) | ALKA-
LINITY
LAB
(MG/L
AS
CACO3) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | SOLIDS,
RESIDUE
AT 105
DEG. C,
TOTAL
(MG/L) | |--|--|---|--
--|---|--|--|--|---|--|--|---| | APR 1987
23 | 21 | 6.7 | 1.0 | | | | | | | 25 | | 44 | | MAY
13 | 28 | 9.0 | 1.3 | | | ~- | | | ~- | 49 | | 58 | | JUN 22 | 29 | 9.5 | 1.4 | -~ | | | | | ~- | 58 | | 76 | | JUL
27 | 31 | 9.9 | 1.5 | | | | | | | 66 | | 76 | | SEP 23 | 27 | 8.7 | 1.3 | | | | | | | 43 | | 58 | | ОСТ
29 | 52 | 16 | 3.0 | | | | | | | 33 | | 71 | | DEC
10 | 24 | 7.5 | 1.2 | | | | | | | 62 | | 64 | | MAR 1988
30 | 20 | 6.4 | 1.0 | 2.6 | 0.40 | 13 | 10 | 4.5 | 0.10 | 57 | 33 | 65 | | APR
14 | 22 | 6.8 | 1.1 | 3.4 | 0.40 | 15 | 10 | 5.9 | 0.10 | 56 | 37 | 58 | | 27
MAY | 24 | 7.6 | 1.3 | 3.8 | 0.40 | 17 | 8.9 | 6.7 | 0.10 | 53 | 39 | 54 | | 12 | 23
23 | 7.3
7.4 | 1.2 | 3.7
3.5 | 0.30 | 18
16 | 9.0
10 | 6. 4
6.1 | 0.10
0.20 |
4 7 | 39
38 | 44
48 | | JUN
15 | 33 | 10 | 1.9 | 5.6 | 0.40 | 22 | 8.4 | 10 | 0.10 | 4 / 67 | 50 | 83 | | AUG
18 | 45 | 14 | 2.4 | 7.1 | 0.60 | 31 | 8.7 | 15 | 0.10 | 83 | 66 | 90 | | OCT
05 | 33 | 10 | 2.0 | 5.6 | 0.60 | 26 | 8.5 | 11 | <0.10 | 82 | 53 | 85 | | NOV 03 | 24 | 7.6 | 1.3 | 3.9 | 0.40 | 16 | 9.8 | 6.6 | <0.10 | 50 | 39 | 53 | | 03111 | 2.3 | 7.0 | 1.3 | 3.5 | 0.40 | 10 | 7.0 | 0.0 | 20.10 | 30 | 33 | 33 | | | | | | | | | | | | | | | | DATE | SOLIDS,
VOLA-
TILE ON
IGNI-
TION,
TOTAL
(MG/L) | RESIDUE
TOTAL
FIXED
(MG/L) | NITRO-
GEN,
NITRITE
TOTAL
(MG/L
AS N) | NITRO-
GEN,
NO2+NO3
TOTAL
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS NH4) | NITRO-
GEN,
ORGANIC
TOTAL
(MG/L
AS N) | NITRO-
GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | NITRO-
GEN,
TOTAL
(MG/L
AS N) | NITRO-
GEN,
TOTAL
(MG/L
AS NO3) | PHOS-
PHORUS
TOTAL
(MG/L
AS P) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P) | | APR 1987 | VOLA-
TILE ON
IGNI-
TION,
TOTAL
(MG/L) | TOTAL
FIXED
(MG/L) | GEN,
NITRITE
TOTAL
(MG/L
AS N) | GEN,
NO2+NO3
TOTAL
(MG/L
AS N) | GEN,
AMMONIA
TOTAL
(MG/L
AS N) | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4) | GEN,
ORGANIC
TOTAL
(MG/L
AS N) | GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | GEN,
TOTAL
(MG/L
AS N) | GEN,
TOTAL
(MG/L
AS NO3) | PHORUS
TOTAL
(MG/L
AS P) | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P) | | APR 1987
23
MAY | VOLA-
TILE ON
IGNI-
TION,
TOTAL
(MG/L) | TOTAL
FIXED
(MG/L) | GEN, NITRITE TOTAL (MG/L AS N) | GEN,
NO2+NO3
TOTAL
(MG/L
AS N) | GEN,
AMMONIA
TOTAL
(MG/L
AS N) | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4) | GEN,
ORGANIC
TOTAL
(MG/L
AS N) | GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | GEN,
TOTAL
(MG/L
AS N) | GEN,
TOTAL
(MG/L
AS NO3) | PHORUS
TOTAL
(MG/L
AS P) | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P) | | APR 1987
23
MAY
13
JUN | VOLA-
TILE ON
IGNI-
TION,
TOTAL
(MG/L) | TOTAL
FIXED
(MG/L)
34 | GEN, NITRITE TOTAL (MG/L AS N) ND | GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
0.170
0.160 | GEN,
AMMONIA
TOTAL
(MG/L
AS N)
0.00 | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4)
0.0 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.16
0.09 | GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
0.16 | GEN,
TOTAL
(MG/L
AS N)
0.33 | GEN,
TOTAL
(MG/L
AS NO3)
1.5 | PHORUS
TOTAL
(MG/L
AS P)
0.00 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P) | | APR 1987
23
MAY
13
JUN
22
JUL | VOLA-
TILE ON
IGNI-
TION,
TOTAL
(MG/L) | TOTAL
FIXED
(MG/L)
34
44 | GEN, NITRITE TOTAL (MG/L AS N) ND ND | GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
0.170
0.160
0.180 | GEN,
AMMONIA
TOTAL
(MG/L
AS N)
0.00
0.030 | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4)
0.0
0.04 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.16
0.09 | GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
0.16
0.12 | GEN,
TOTAL
(MG/L
AS N)
0.33
0.28 | GEN,
TOTAL
(MG/L
AS NO3)
1.5
1.2 | PHORUS
TOTAL
(MG/L
AS P)
0.00
0.00 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
0.00
ND | | APR 1987
23
MAY
13
JUN
22
JUL
27 | VOLA-
TILE ON
IGNI-
TION,
TOTAL
(MG/L)
10
18
32
38 | TOTAL
FIXED
(MG/L)
34
44
50 | GEN, NITRITE TOTAL (MG/L AS N) ND ND ND ND | GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
0.170
0.160
0.180
0.080 | GEN,
AMMONIA
TOTAL
(MG/L
AS N)
0.00
0.030
0.020
0.010 | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4)
0.0 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.16
0.09 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.16 0.12 0.24 0.11 | GEN,
TOTAL
(MG/L
AS N)
0.33
0.28
0.42 | GEN,
TOTAL
(MG/L
AS NO3)
1.5
1.2
1.9 | PHORUS
TOTAL
(MG/L
AS P)
0.00
0.00
0.030 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
0.00
ND
0.00 | | APR 1987 23 MAY 13 JUN 22 JUL 27 SEP 23 OCT | VOLA- TILE ON IGNI- TION, TOTAL (MG/L) 10 18 32 38 39 | TOTAL
FIXED
(MG/L)
34
44
50
38
21 | GEN, NITRITE TOTAL (MG/L AS N) ND ND ND ND ND | GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
0.170
0.160
0.180
0.080 | GEN,
AMMONIA
TOTAL
(MG/L
AS N)
0.00
0.030
0.020
0.010
ND | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4)
0.0
0.04
0.03 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.16
0.09
0.22
0.10 | GEN, AM- MONIA + ORGANIC TYOTAL (MG/L AS N) 0.16 0.12 0.24 0.11 0.18 | GEN,
TOTAL
(MG/L
AS N)
0.33
0.28
0.42
0.19 | GEN,
TOTAL
(MG/L
AS NO3)
1.5
1.2
1.9
0.84 | PHORUS
TOTAL
(MG/L
AS P)
0.00
0.00
0.030
0.00 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
0.00
ND
0.00 | | APR 1987 23 MAY 13 JUN 22 JUL 27 SEP 23 OCT 29 DEC | VOLA-
TILE ON
IGNI-
TION,
TOTAL
(MG/L)
10
18
32
38 | TOTAL
FIXED
(MG/L)
34
44
50 | GEN, NITRITE TOTAL (MG/L AS N) ND ND ND ND | GEN, NO2+NO3 TOTAL (MG/L AS N) 0.170 0.160 0.180 0.080 0.060 0.090 | GEN,
AMMONIA
TOTAL
(MG/L
AS N)
0.00
0.030
0.020
0.010 | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4)
0.0
0.04 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.16
0.09
0.22 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.16 0.12 0.24 0.11 | GEN,
TOTAL
(MG/L
AS N)
0.33
0.28
0.42 | GEN,
TOTAL
(MG/L
AS NO3)
1.5
1.2
1.9 | PHORUS
TOTAL
(MG/L
AS P)
0.00
0.00
0.030 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
0.00
ND
0.00 | | APR 1987 23 MAY 13 JUN 22 JUL 27 SEP 23 OCT 29 DEC 10 MAR 1988 | VOLA- TILE ON IGNI- TION, TOTAL (MG/L) 10 18 32 38 39 31 31 | TOTAL
FIXED
(MG/L)
34
44
50
38
21
19 | GEN, NITRITE TOTAL (MG/L AS N) ND ND ND ND ND | GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
0.170
0.160
0.180
0.080
0.060
0.090 | GEN,
AMMONIA
TOTAL
(MG/L
AS N)
0.00
0.030
0.020
0.010
ND
0.010 | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4)
0.0
0.04
0.03 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.16
0.09
0.22
0.10 | GEN, AM- MONIA + ORGANIC TYOTAL (MG/L AS N) 0.16 0.12 0.24 0.11 0.18 | GEN,
TOTAL
(MG/L
AS N)
0.33
0.28
0.42
0.19
0.24
0.23 | GEN,
TOTAL
(MG/L
AS NO3)
1.5
1.2
1.9
0.84
1.1 | PHORUS
TOTAL
(MG/L
AS P)
0.00
0.00
0.030
0.00
0.010
0.010 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
0.00
ND
0.00 | | APR 1987 23 MAY 13 JUN 22 JUL 27 SEP 23 OCT 29 DEC 10 MAR 1988 30 APR | VOLA- TILE ON IGNI- TION, TOTAL (MG/L) 10 18 32 38 39 31 31 13 | TOTAL
FIXED
(MG/L)
34
44
50
38
21
19
33
52 | GEN, NITRITE TOTAL (MG/L AS N) ND | GEN, NO2+NO3 TOTAL (MG/L AS N) 0.170 0.160 0.180 0.080 0.060 0.090 0.170 0.420 | GEN,
AMMONIA
TOTAL
(MG/L
AS N)
0.00
0.030
0.020
0.010
ND
0.010 | GEN, AMMONIA TOTAL (MG/L AS NH4) 0.0 0.04 0.03 0.01 0.01 0.04 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.16
0.09
0.22
0.10

0.13 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.16 0.12 0.24 0.11 0.18 0.14 0.14 | GEN,
TOTAL
(MG/L
AS N)
0.33
0.28
0.42
0.19
0.24
0.23
0.31 | GEN,
TOTAL
(MG/L
AS NO3)
1.5
1.2
1.9
0.84
1.1
1.0
1.4 | PHORUS
TOTAL
(MG/L
AS P)
0.00
0.00
0.030
0.00
0.010
0.010
0.00 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
0.00
ND
0.00
0.00 | | APR 1987 23 MAY 13 JUN 22 JUL 27 SEP 23 OCT 29 DEC 10
MAR 1988 30 APR 14 27 | VOLA- TILE ON IGNI- TION, TOTAL (MG/L) 10 18 32 38 39 31 31 | TOTAL
FIXED
(MG/L)
34
44
50
38
21
19 | GEN, NITRITE TOTAL (MG/L AS N) ND ND ND ND ND ND ND ND ND | GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
0.170
0.160
0.180
0.080
0.060
0.090 | GEN,
AMMONIA
TOTAL
(MG/L
AS N)
0.00
0.030
0.020
0.010
ND
0.010 | GEN, AMMONIA TOTAL (MG/L AS NH4) 0.0 0.04 0.03 0.01 0.01 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.16
0.09
0.22
0.10

0.13 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.16 0.12 0.24 0.11 0.18 0.14 | GEN,
TOTAL
(MG/L
AS N)
0.33
0.28
0.42
0.19
0.24
0.23 | GEN,
TOTAL
(MG/L
AS NO3)
1.5
1.2
1.9
0.84
1.1 | PHORUS
TOTAL
(MG/L
AS P)
0.00
0.00
0.030
0.00
0.010
0.010 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
0.00
ND
0.00
ND
0.00 | | APR 1987 23 MAY 13 JUN 22 JUL 27 SEP 23 OCT 29 DEC 10 MAR 1988 30 APR 14 27 MAY | VOLA- TILE ON IGNI- TION, TOTAL (MG/L) 10 18 32 38 39 31 31 13 22 16 26 | TOTAL
FIXED
(MG/L) 34 44 50 38 21 19 33 52 36 38 18 | GEN, NITRITE TOTAL (MG/L AS N) ND | GEN, NO2+NO3 TOTAL (MG/L AS N) 0.170 0.160 0.180 0.080 0.090 0.170 0.420 0.190 0.180 0.450 | GEN,
AMMONIA
TOTAL
(MG/L
AS N)
0.00
0.030
0.020
0.010
ND
0.030
0.030
0.020
0.00 | GEN, AMMONIA TOTAL (MG/L AS NH4) 0.0 0.04 0.03 0.01 0.04 0.03 0.0 0.04 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.16
0.09
0.22
0.10

0.13

0.20
0.18
0.17 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.16 0.12 0.24 0.11 0.18 0.14 0.23 0.20 0.17 0.24 | GEN,
TOTAL
(MG/L
AS N)
0.33
0.28
0.42
0.19
0.24
0.23
0.31
0.65
0.39
0.35 | GEN,
TOTAL
(MG/L
AS NO3)
1.5
1.2
1.9
0.84
1.1
1.0
1.4
2.9
1.7
1.5 | PHORUS
TOTAL
(MG/L
AS P)
0.00
0.00
0.030
0.00
0.010
0.010
0.00
0.0 | PHORUS ORTHO, DIS- SOLVED (MG/L AS P) 0.00 ND 0.00 ND ND ND ND ND ND ND ND ND | | APR 1987 23 MAY 13 JUN 22 JUL 27 SEP 23 OCT 29 DEC 10 MAR 1988 30 APR 14 27 MAY 12 JUN | VOLA- TILE ON IGNI- TION, TOTAL (MG/L) 10 18 32 38 39 31 31 13 22 16 26 10 | TOTAL
FIXED (MG/L) 34 44 50 38 21 19 33 52 36 38 18 38 | GEN, NITRITE TOTAL (MG/L AS N) ND | GEN, NO2+NO3 TOTAL (MG/L AS N) 0.170 0.160 0.180 0.060 0.090 0.170 0.420 0.190 0.180 0.450 0.140 | GEN,
AMMONIA
TOTAL
(MG/L
AS N)
0.00
0.030
0.020
0.010
ND
0.010
ND
0.030
0.020
0.00 | GEN, AMMONIA TOTAL (MG/L AS NH4) 0.0 0.04 0.03 0.01 0.01 0.04 0.03 0.0 0.01 0.0 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.16
0.09
0.22
0.10

0.13

0.20
0.18
0.17 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.16 0.12 0.24 0.11 0.18 0.14 0.23 0.20 0.17 0.24 0.21 | GEN,
TOTAL
(MG/L
AS N)
0.33
0.28
0.42
0.19
0.24
0.23
0.31
0.65
0.39
0.35 | GEN,
TOTAL
(MG/L
AS NO3)
1.5
1.2
1.9
0.84
1.1
1.0
1.4
2.9
1.7
1.5 | PHORUS
TOTAL
(MG/L
AS P)
0.00
0.00
0.030
0.00
0.010
0.00
0.040
0.00
0.00
0.00 | PHORUS ORTHO, DIS- SOLVED (MG/L AS P) 0.00 ND 0.00 ND | | APR 1987 23 MAY 13 JUN 22 JUL 27 SEP 23 OCT 29 DEC 10 MAR 1988 30 APR 14 27 MAY 12 JUN 15 AUG | VOLA- TILE ON IGNI- TION, TOTAL (MG/L) 10 18 32 38 39 31 31 13 22 16 26 10 55 | TOTAL
FIXED (MG/L) 34 44 50 38 21 19 33 52 36 38 18 38 28 | GEN, NITRITE TOTAL (MG/L AS N) ND | GEN, NO2+NO3 TOTAL (MG/L AS N) 0.170 0.160 0.180 0.080 0.060 0.090 0.170 0.420 0.190 0.180 0.450 0.140 0.130 | GEN,
AMMONIA
TOTAL
(MG/L
AS N)
0.00
0.030
0.020
0.010
ND
0.030
0.020
0.00
0.010
0.010 | GEN, AMMONIA TOTAL (MG/L AS NH4) 0.0 0.04 0.03 0.01 0.04 0.03 0.0 0.01 0.0 0.01 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.16
0.09
0.22
0.10

0.13

0.20
0.18
0.17
0.23
0.21 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.16 0.12 0.24 0.11 0.18 0.14 0.23 0.20 0.17 0.24 0.21 | GEN,
TOTAL
(MG/L
AS N)
0.33
0.28
0.42
0.19
0.24
0.23
0.31
0.65
0.39
0.35 | GEN,
TOTAL
(MG/L
AS NO3)
1.5
1.2
1.9
0.84
1.1
1.0
1.4
2.9
1.7
1.5
3.1
1.5 | PHORUS
TOTAL
(MG/L
AS P)
0.00
0.00
0.030
0.010
0.010
0.00
0.040
0.00
0.00 | PHORUS ORTHO ORTHO DIS- SOLVED (MG/L AS P) 0.00 ND 0.00 ND | | APR 1987 23 MAY 13 JUN 22 SEP 23 OCT 10 MAR 1988 30 APR 14 27 MAY 12 25 JUN 15 AUG 18 OCT | VOLA- TILE ON IGNI- TION, TOTAL (MG/L) 10 18 32 38 39 31 31 13 22 16 26 10 55 | TOTAL
FIXED (MG/L) 34 44 50 38 21 19 33 52 36 38 18 38 28 33 | GEN, NITRITE TOTAL (MG/L AS N) ND | GEN, NO2+NO3 TOTAL (MG/L AS N) 0.170 0.160 0.180 0.060 0.090 0.170 0.420 0.190 0.180 0.450 0.140 0.130 ND | GEN, AMMONIA TOTAL (MG/L AS N) 0.00 0.030 0.020 0.010 ND 0.010 0.020 0.000 0.010 0.010 0.010 0.010 | GEN, AMMONIA TOTAL (MG/L AS NH4) 0.0 0.04 0.03 0.01 0.04 0.03 0.0 0.01 0.0 0.01 0.0 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.16
0.09
0.22
0.10

0.13

0.20
0.18
0.17
0.23
0.21
0.17 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.16 0.12 0.24 0.11 0.18 0.14 0.23 0.20 0.17 0.24 0.21 0.18 0.19 | GEN,
TOTAL
(MG/L
AS N)
0.33
0.28
0.42
0.19
0.24
0.23
0.31
0.65
0.39
0.35 | GEN,
TOTAL
(MG/L
AS NO3)
1.5
1.2
1.9
0.84
1.1
1.0
1.4
2.9
1.7
1.5
3.1
1.5 | PHORUS TOTAL (MG/L AS P) 0.00 0.00 0.030 0.00 0.010 0.010 0.00 0.0 | PHORUS ORTHO, DIS- SOLVED (MG/L AS P) 0.00 ND 0.00 ND | | APR 1987 23 MAY 13 JUN 22 JUL 27 SEP 23 OCT 29 DEC 10 MAR 1988 30 APR 14 27 MAY 12 JUN 15 AUG 18 | VOLA- TILE ON IGNI- TION, TOTAL (MG/L) 10 18 32 38 39 31 31 13 22 16 26 10 55 | TOTAL
FIXED (MG/L) 34 44 50 38 21 19 33 52 36 38 18 38 28 | GEN, NITRITE TOTAL (MG/L AS N) ND | GEN, NO2+NO3 TOTAL (MG/L AS N) 0.170 0.160 0.180 0.080 0.060 0.090 0.170 0.420 0.190 0.180 0.450 0.140 0.130 | GEN,
AMMONIA
TOTAL
(MG/L
AS N)
0.00
0.030
0.020
0.010
ND
0.030
0.020
0.00
0.010
0.010 | GEN, AMMONIA TOTAL (MG/L AS NH4) 0.0 0.04 0.03 0.01 0.04 0.03 0.0 0.01 0.0 0.01 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.16
0.09
0.22
0.10

0.13

0.20
0.18
0.17
0.23
0.21 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.16 0.12 0.24 0.11 0.18 0.14 0.23 0.20 0.17 0.24 0.21 | GEN,
TOTAL
(MG/L
AS N)
0.33
0.28
0.42
0.19
0.24
0.23
0.31
0.65
0.39
0.35 | GEN,
TOTAL
(MG/L
AS NO3)
1.5
1.2
1.9
0.84
1.1
1.0
1.4
2.9
1.7
1.5
3.1
1.5 | PHORUS
TOTAL
(MG/L
AS P)
0.00
0.00
0.030
0.010
0.010
0.00
0.040
0.00
0.00 | PHORUS ORTHO ORTHO DIS- SOLVED (MG/L AS P) 0.00 ND 0.00 ND | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). # 01317395 SCHROON RIVER, STATE HIGHWAY 418, AT WARRENSBURG, NY - continued WATER-QUALITY DATA (continued) | DATE | PHOS-
PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4) | TOTAL
RECOV-
ERABLE
(UG/L | INUM, T
DIS- R
SOLVED E
(UG/L (| ECOV- | CADMIUM DIS- SOLVED (UG/L AS CD) | COPPER,
TOTAL
RECOV-
ERABLE
(UG/L
AS CU) | COPPER,
DIS-
SOLVED
(UG/L
AS CU) | IRON,
TOTAL
RECOV-
ERABLE
(UG/L
AS FE) | IRON,
DIS-
SOLVED
(UG/L
AS FE) | RECOV-
ERABLE
(UG/L | LEAD,
DIS-
SOLVED
(UG/L
AS PB) | MANGA-
NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | |----------------|---|---|--|--------|----------------------------------|---|--|---|--|---------------------------|--|---| | APR 1987 | 0.0 | | | -10 | | <10 | - - | 160 | | <100 | | 10 | | 23
MAY | 0.0 | | | <10 | | | | | | | | | | 13
JUN | | | | <10 | | <10 | - - | 160 | | 7 | | <10 | | 22
JUL | 0.0 | | | <10 | | 10 | | 540 | | 19 | | 50 | | 27
SEP | 0.0 | | | <10 | | 20 | | 260 | | < 5 | | 20 | | 23
OCT | | | | <1 | | 5 | | 120 | | 5 | | 10 | | 29
DEC | | | | 1 | <1.0 | 5 | 3 | 200 | | <5 | <5 | 20 | | 10
MAR 1988 | | | | <1 | | 6 | | 90 | | < 5 | | <10 | | 30 | | 830 | 40 | <1 | <1.0 | 5 | 1 | 1300 | 50 | < 5 | < 5 | 40 | | APR
14 | | 70 | | <1 | | 4 | | 140 | | <5 | | <10 | | 27
May | | 40 | 20 | 1 | <1.0 | 6 | 2 | 90 | 50 | < 5 | <5 | 10 | | 12
25 | | 50
40 | 10 | 1
6 | <1.0 | 2
13 | 1 | 110
130 | 67 | <5
<5 |
<5 | 10
10 | | JUN
15 | 0.0 | 50 | | 1 | | 3 | | 210 | | < 5 | | 30 | | AUG
18 | 0.0 | 40 | | 1 | | 7 | | 300 | | < 5 | | 30 | | ОСТ
05 | | 30 | | <1 | | 13 | | 200 | | < 5 | | <10 | | NOV 03 | | 60 | 20 | <1 | 1.0 | 2 | 1 | 120 | 59 | < 5 | < 5 | 20 | | DATI | MANG.
NESE
DIS
SOLVI
E (UG/)
AS MI | , TOTAL
- RECOV
ED ERABL
L (UG/L | TOTAL - RECOV- E ERABLE (UG/L | | REC
ED ERA
(UG | AL ZIN
OV- DI
BLE SOI
/L (UC | S- BROM
VED FOR | RM RIDE | RA-
D- CHLOR
E BENZE
AL TOTAL | NE METHAN
TOTAL | CHLOI | NE
AL | | APR 198' | 7 | <0.1 | 0 <100 | | | 10 - | ИГ |) ND | ND | ND | ND | | | MAY | | | | | | | | | | | | | | 13
JUN | | <0.1 | | | | | - NI | | ND | ND | ND | | | 22
JUL | | <0.1 | | | | | - NE | | ND | ND | ND | | | 27
SEP | | <0.1 | | | | | - NE | | ND | ND
| ND | | | 23
OCT | | <0.1 | | | | <10 - | - NE | D ND | ND | ND | ND | | | 29
DEC | | <0.1 | 0 2 | | 1 | <10 | 20 - | | | | - | - | | 10
MAR 198 | | <0.1 | 0 <1 | | , | <10 - | - NE | D ND | ND | ND | ND | | | 30
APR | | 10 <0.1 | 0 4 | | 4 | 10 | <10 NI | D ND | ND | ND | ND | | | 14 | | <0.1
8 <0.1 | | | | <10 -
<10 | - NE | | ND
ND | ND
ND | ND
ND | | | MAY | | | | | | | | | | | | | | 12
25 | | <0.1
7 <0.1 | | | <1 | <10 -
10 | - NI
3 NI | | ND
ND | ND
ND | ND
ND | | | JUN
15 | | <0.1 | 0 4 | | | <10 - | - иг | DN D | ND | ND | ND | | | AUG
18 | | <0.1 | 0 2 | | | <10 | иг | DN D | ND | ND | ND | | | OCT
05 | | <0.1 | 0 5 | | | 10 - | NI | D ND | ND | ИД | ND | | | оз | | 4 <0.1 | 0 1 | | 2 | <10 | 11 NI | D ND | ND | ND | ND | | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). # 01317395 SCHROON RIVER, STATE HIGHWAY 418, AT WARRENSBURG, NY - continued | DATE | CHLORO-
FORM
TOTAL
(UG/L) | CIS
1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | DI-
CHLORO-
BROMO-
METHANE
TOTAL
(UG/L) | METHYL-
BROMIDE
TOTAL
(UG/L) | METHYL-
CHLO-
RIDE
TOTAL
(UG/L) | METHYL-
ENE
CHLO-
RIDE
TOTAL
(UG/L) | 1,1,1-
TRI-
CHLORO-
ETHANE
TOTAL
(UG/L) | 1,1-DI-
CHLORO-
ETHANE
TOTAL
(UG/L) | 1,1-DI-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 1,1,2-
TRI-
CHLORO-
ETHANE
TOTAL
(UG/L) | 1,1,2,2
TETRA-
CHLORO-
ETHANE
TOTAL
(UG/L) | |--|---|--|---|---|--|---|---|--|---|---|--| | APR 1987
23 | N D | ND | MAY
13 | ND | JUN
22 | ND | ND | ND | N D | N D | ND | ND | ND | ND | ND | ND | | JUL
27 | ND | SEP 23 | ND | ОСТ
29 | | | | | | | | | | | | | DEC 10 | ND | MAR 1988
30 | ND | ND | ND | ND | N D | ND | ND | ND | ND | ND | ND | | APR
14 | ND | 27
May | ND | 12
25 | ND
ND | JUN
15 | ND ND
ND | ND | ND | | AUG
18 | 0.2 | | | | | | | | | | | | OCT | | ND | 05
NOV | 0.2 | ND | 03 | ND | | | | | | | | | | | | | | DATE | 1,2-DI-
CHLORO-
BENZENE
TOTAL
(UG/L) | 1,2-DI-
CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L) | 1,2-DI-
CHLORO-
PROPANE
TOTAL
(UG/L) | 1,2-
TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L) | 1,3-DI-
CHLORO-
BENZENE
TOTAL
(UG/L) | 1,4-DI-
CHLORO-
BENZENE
TOTAL
(UG/L) | TETRA-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | TRANS-
1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | TRI-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 2-
CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L) | VINYL
CHLO-
RIDE
TOTAL
(UG/L) | | APR 1987 | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L) | CHLORO-
PROPANE
TOTAL
(UG/L) | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L) | CHLO-
RIDE
TOTAL
(UG/L) | | APR 1987
23
MAY | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L) | CHLORO-
PROPANE
TOTAL
(UG/L) | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L) | CHLO-
RIDE
TOTAL
(UG/L) | | APR 1987
23
MAY
13
JUN | CHLORO-
BENZENE
TOTAL
(UG/L)
ND | CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L)
ND | CHLORO-
PROPANE
TOTAL
(UG/L)
ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND | CHLORO-
BENZENE
TOTAL
(UG/L)
ND | CHLORO-
BENZENE
TOTAL
(UG/L)
ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND | CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L)
ND | CHLO-
RIDE
TOTAL
(UG/L)
ND | | APR 1987
23
MAY
13
JUN
22
JUL | CHLORO-
BENZENE
TOTAL
(UG/L)
ND
ND | CHLORO-
ETHANE WATER WHOLE TOTAL (UG/L) ND ND | CHLORO-PROPANE TOTAL (UG/L) ND ND ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND | CHLORO-
BENZENE
TOTAL
(UG/L)
ND
ND | CHLORO-
BENZENE
TOTAL
(UG/L)
ND
ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND
ND | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
ND
ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND
ND | CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L)
ND | CHLO-
RIDE
TOTAL
(UG/L)
ND
ND | | APR 1987
23
MAY
13
JUN
22 | CHLORO-
BENZENE
TOTAL
(UG/L)
ND | CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L)
ND | CHLORO-
PROPANE
TOTAL
(UG/L)
ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND | CHLORO-
BENZENE
TOTAL
(UG/L)
ND
ND
ND | CHLORO-
BENZENE
TOTAL
(UG/L)
ND
ND
ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND ND ND ND | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
ND
ND
ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND ND ND ND | CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L)
ND
ND | CHLO-
RIDE
TOTAL
(UG/L)
ND
ND
ND | | APR 1987 23 MAY 13 JUN 22 JUL 27 SEP 23 ○CT | CHLORO-BENZENE TOTAL (UG/L) ND ND ND | CHLORO-
ETHANE WATER WHOLE TOTAL (UG/L) ND ND ND ND | CHLORO- PROPANE TOTAL (UG/L) ND ND ND ND ND ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND ND ND ND | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
ND
ND
ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND ND ND ND | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND ND ND ND ND | CHLO- RIDE TOTAL (UG/L) ND ND ND ND ND | | APR 1987 23 MAY 13 JUN 22 JUL 27 SEP 23 OCT 29 DEC | CHLORO-BENZEME TOTAL (UG/L) ND ND ND ND ND | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND ND ND ND ND | CHLORO-PROPANE TOTAL (UG/L) ND ND ND ND ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND ND ND ND ND | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
ND
ND
ND
ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND ND ND ND ND ND | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND ND ND ND ND | CHLO-
RIDE
TOTAL
(UG/L)
ND
ND
ND
ND | | APR 1987 23 MAY 13 JUN 22 JUL 27 SEP 23 ©CT 29 DEC 10 MAR 1988 | CHLORO-BENZEME TOTAL (UG/L) ND ND ND ND ND ND ND ND ND | CHLORO- ETHANE WATER WHOLE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND | CHLORO-PROPANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-ETHYL-ENETOTAL (UG/L) ND ND ND ND ND ND ND ND ND | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND ND ND ND ND ND ND ND | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND ND ND ND ND ND ND ND | CHLO- RIDE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND | | APR 1987 23 MAY 13 JUN 22 JUL 27 SEP 23 OCT 29 DEC 10 MAR 1988 30 APR | CHLORO-BENZEME TOTAL (UG/L) ND | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND | CHLORO-PROPANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-ETHYL-ENE TOTAL (UG/L) ND | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND | CHLO-RIDE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | | APR 1987 23 MAY 13 JUN 22 JUL 27 SEP 23 OCT 29 DEC 10 MAR 1988 30 APR 14 27 | CHLORO-BENZEME TOTAL (UG/L) ND ND ND ND ND ND ND ND ND | CHLORO- ETHANE WATER WHOLE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND | CHLORO-PROPANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-ETHYL-ENETOTAL (UG/L) ND ND ND ND ND ND ND ND ND | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND ND ND ND ND ND ND ND | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND ND ND ND ND ND ND ND | CHLO- RIDE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND | | APR 1987 23 MAY 13 JUN 22 JUL 27 SEP 23 OCT 10
MAR 1988 30 APR 14 27 MAY 12 | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND | CHLORO-PROPANE TOTAL (UG/L) ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLOROBENZENE TOTAL (UG/L) ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND | CHLO-RIDE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | | APR 1987 23 MAY 13 JUN 22 JUL 27 SEP 23 OCT 29 DEC 10 MAR 1988 30 APR 14 27 MAY | CHLORO-BENZEME TOTAL (UG/L) ND | CHLORO- ETHANE WATER WATER WHOLE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-PROPANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND N | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-ETHYL-ENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLO-RIDE TOTAL (UG/L) ND N | | APR 1987 23 MAY 13 JUN 22 JUL 27 SEP 23 OCT 29 DEC 10 MAR 1988 30 APR 14 27 MAY 12 25 JUN | CHLORO-BENZEME TOTAL (UG/L) ND | CHLORO- ETHANE WATER WHOLE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-PROPANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLOROBENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-ETHYL-ENE TOTAL (UG/L) ND | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND | CHLO-RIDE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | | APR 1987 23 MAY 13 JUN 22 JUL 27 SEP 23 CCT 29 DEC 10 MAR 1988 30 APR 14 27 MAY 12 25 JUN 15 AUG | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO- ETHANE WATER WHOLE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-PROPANE TOTAL (UG/L) ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND
ND
ND
ND
ND | CHLOROBENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLOROBENZENE TOTAL (UG/L) ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND | CHLO-RIDE TOTAL (UG/L) ND N | # 01317395 SCHROON RIVER, STATE HIGHWAY 418, AT WARRENSBURG, NY - continued # SUSPENDED SEDIMENT DISCHARGE | | | DIS- | | SEDI- | |----------|------|---------|--------|---------| | | | CHARGE, | | MENT, | | | | INST. | SEDI- | DIS- | | | | CUBIC | MENT, | CHARGE, | | | | FEET | SUS- | SUS- | | DATE | TIME | PER | PENDED | PENDED | | | | SECOND | (MG/L) | (T/DAY) | | MAY 1988 | | | | | | 12 | 1200 | 1060 | 2 | 5.7 | | 25 | 1200 | 1000 | 1 | 2.7 | | JUN | | | | | | 15 | 1145 | 261 | 1 | 0.70 | | AUG | | | | | | 18 | 1300 | | <1 | | | OCT | | | | | | 05 | 1220 | 390 | 1 | 1.1 | | NOV | | | | | | 03 | 1200 | 1040 | 1 | 2.8 | ### BED MATERIAL ANALYSES | DATE | TIME | SOLIDS,
VOLA-
TILE IN
BOTTOM
MA-
TERIAL
(MG/KG) | ALUM-
INUM,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G) | CADMIUM
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS CD) | COPPER,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS CU) | IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE) | LEAD,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS PB) | MANGA-
NESE,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G) | MERCURY
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS HG) | NICKEL,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS NI) | ZINC,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS ZN) | |----------------|--|--|--|--|--|---|--|---|--|--|---| | AUG 1988
18 | 1300 | 10500 | 3700 | <10 | 5 | 4000 | 40 | 28 | 0.02 | <100 | 40 | | DATE | AROCLOR
1221
IN
BOTTOM
MAT.
(UG/KG) | AROCLOR
1248
PCB
BOT.MAT
(UG/KG) | AROCLOR
1254
PCB
BOT.MAT
(UG/KG) | AROCLOR
1260
PCB
BOT.MAT
(UG/KG) | ALDRIN,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | ALPHA BHC TOTAL IN BOT- TOM MA- TERIAL (UG/KG) | ATRA-
ZINE,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | BETA BENZENE HEXA- CHLOR- IDE BOT.MAT (UG/KG) | CHLOR-
DANE,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | CHLOR-
PYRIFOS
IN BOT.
MAT.
(UG/KG) | DELTA BENZENE HEXA- CHLOR- IDE BOT.MAT (UG/KG) | | AUG 1988
18 | ND | DATE | DI-
AZINON,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | DI-
ELDRIN,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | ENDO-
SULFAN
ALPHA
BOT.MAT
(UG/KG) | ENDO-
SULFAN
BETA
BOT.MAT
(UG/KG) | ENDO-
SULFAN
SULFATE
BOT.MAT
(UG/KG) | ENDRIN,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | ENDRIN
ALDE-
HYDE
BOT.MAT
(UG/KG) | ETHION,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | HEPTA-
CHLOR,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | HEPTA-
CHLOR
EPOXIDE
TOT. IN
BOTTOM
MATL.
(UG/KG) | MALA-
THION,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | | AUG 1988
18 | ND | | M
O
C
TO
E
DATE | ETH-
XY- MI
HLOR, TV
T. IN IN
OFTOM TOI
MATL. TI | IREX, I
DTAL TO
BOT- IN
M MA- TO
ERIAL TE | P,P' I
DDD, I
DTAL TO
BOT- IN
MA- TON
ERIAL TE | P,P' I DDE, I DTAL TO BOT- IN I MA- TOP ERIAL TI | P,P'P,DTT,TTDTALTNBOT-IN | ARA- TO
HION, PH
OTAL TO
BOT- IN
M MA- TON
ERIAL TH | DXA- I
HENE, M
DTAL I
BOT- DI
1 MA- % I
ERIAL I | BED F
MAT. N
FALL SI
MAM. DI
FINER % F | BED E MAT. M LEVE SI LAM. DI FINER % F | BED
LAT.
EVE
AM.
INER
THAN
15 MM | | | 1988
3 | ND I | ND 1 | 1D 1 | ID 1 | 4D 1 | ND 1 | N D | 2 | 5 | 100 | #### 01325420 HUDSON RIVER AT CORINTH, NY LOCATION.--Lat 43 14'55", long 73 49'57", Saratoga County, Hydrologic Unit 0202003, at River Street bridge. DRAINAGE AREA. -- 2,755 mi 2 . PERIOD OF RECORD.--Water years 1969-75, 1986 to current year. CHEMICAL DATA: 1969 (c), 1970-74 (d), 1975 (c), 1986 (b), 1987 (e), 1988 (c), 1989 (a). MINOR ELEMENTS DATA: 1969 (c), 1970-74 (d), 1975 (c), 1986 (b), 1987 (e), 1988 (c), 1989 (a). PESTICIDE DATA: 1987 (b), 1988 (c), 1989 (a). ORGANIC DATA: OC--1988 (b), 1989 (a), PCB--1988 (a). NUTRIENT DATA: 1969 (c), 1970-74 (d), 1975 (c), 1987 (b), 1988 (c), 1989 (a). BIOLOGICAL DATA: Bacteria- 1987 (b), 1988 (c), 1989 (a) SEDIMENT DATA: 1988 (b), 1989 (a). REMARKS.--Water-discharge data based on records obtained from 01318500 Hudson River at Hadley and 01325000 Sacandaga River at Stewarts Bridge, near Hadley. Flow regulated appreciably by Great Sacandaga Lake and Indian Lake. Diurnal fluctuation caused by powerplants upstream from station. #### WATER-OUALITY DATA | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | SPE-
CIFIC
CON-
DUCT-
ANCE
LAB
(US/CM) | PH WATER WHOLE FIELD (STAND- ARD UNITS) | TEMPER-
ATURE
WATER
(DEG C) | TUR-
BID-
ITY
(NTU) | BARO-
METRIC
PRES-
SURE
(MM
OF
HG) | OXYGEN,
DIS-
SOLVED
(MG/L) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION) | COLI-
FORM,
TOTAL,
IMMED.
(COLS.
PER
100 ML) | FECAL
COLI-
FORM
24-HR
MEM.FIL
(COLS./
100 ML) | |---|--|---|--|--|---|---|---|--|---|---|--|---| | APR 1987
23 | 1500 | 5660 | | | 7.5 | 14.0 | 0.70 | | 9,6 | | | | | MAY
13 | 1430 | 2880 | | 68 | 7.5 | 21.0 | 0.40 | | 10.9 | | | | | JUN
19 | 1045 | 2550 | | 53 | 7.4 | 23.0 | 0.10 | | 8.6 | | 100 | 6.00 | | JUL
28 | 1145 | 2830 | | | 7.4 | 26.5 | 0.32 | | 8.2 | | 130 | 18.0 | | SEP
22 | 1115 | 5310 | | 55 | 7.1 | 14.5 | 0.70 | | 9.8 | | 720 | 44.0 | | MAR 1988 | | | | | | | | | | | | | | 31
APR | 1000 | 6940 | 55 | 51 | 6.8 | 2.5 | 2.2 | 772 | 14.5 | 104 | 170 |
46.0 | | 12
MAY | 1130 | 5750 | 69 | 53 | 6.4 | 7.5 | 0.70 | | 12.7 | | 540 | 50.0 | | 04 | 1030 | 5740 | 53 | 54 | 6.5 | 10.0 | 0.60 | 756 | 12.2 | 109 | 250 | 24.0 | | 09 | 1230 | 3550 | 64 | 60 | 6.6 | 15.0 | 0.50 | 766 | 10.7 | 106 | 570 | 32.0 | | 26 | 1115 | 3120 | 5 2 | 56 | 6.5 | 15.5 | 0.50 | | 9.8 | | 840 | 78.0 | | JUN
16
AUG | 1000 | 4440 | 61 | 61 | 6.7 | 21.5 | 0.30 | | 5.0 | | 20 | 6.00 | | 17 | 1015 | 495 | 66 | 59 | 7.6 | 25.5 | 0.60 | 760 | 7.7 | 94 | >30 | 8.00 | | OCT
06
NOV | 1045 | 767 | 58 | 58 | 6.5 | 15.5 | 0.50 | | 9.7 | | 120 | 16.0 | | 07 | 1000 | 12400 | 45 | 42 | 7.2 | 6.5 | 3.0 | 754 | 13.7 | 112 | >670 | 64.0 | | | | | | | | | | | | SOLIDS, | SOLIDS, | | | DATE | HARD-
NESS
TOTAL
(MG/L
AS
CACO3) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K) | ALKA-
LINITY
LAB
(MG/L
AS
CACO3) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | SOLIDS,
RESIDUE
AT 105
DEG. C,
TOTAL
(MG/L) | | APR 1987
23 | NESS
TOTAL
(MG/L
AS | DIS-
SOLVED
(MG/L | SIUM,
DIS-
SOLVED
(MG/L | DIS-
SOLVED
(MG/L | SIUM,
DIS-
SOLVED
(MG/L | LINITY
LAB
(MG/L
AS | DIS-
SOLVED
(MG/L | RIDE,
DIS-
SOLVED
(MG/L | RIDE,
DIS-
SOLVED
(MG/L | RESIDUE
AT 180
DEG. C
DIS-
SOLVED | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED | RESIDUE
AT 105
DEG. C,
TOTAL | | APR 1987
23
MAY
13 | NESS
TOTAL
(MG/L
AS
CACO3) | DIS-
SOLVED
(MG/L
AS CA) | SIUM,
DIS-
SOLVED
(MG/L
AS MG) | DIS-
SOLVED
(MG/L
AS NA) | SIUM,
DIS-
SOLVED
(MG/L
AS K) | LINITY LAB (MG/L AS CACO3) | DIS-
SOLVED
(MG/L
AS SO4) | RIDE,
DIS-
SOLVED
(MG/L
AS CL) | RIDE,
DIS-
SOLVED
(MG/L
AS F) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | RESIDUE
AT 105
DEG. C,
TOTAL
(MG/L) | | APR 1987
23
MAY
13
JUN
19 | NESS
TOTAL
(MG/L
AS
CACO3) | DIS-
SOLVED
(MG/L
AS CA) | SIUM,
DIS-
SOLVED
(MG/L
AS MG) | DIS-
SOLVED
(MG/L
AS NA) | SIUM,
DIS-
SOLVED
(MG/L
AS K) | LINITY
LAB
(MG/L
AS
CACO3) | DIS-
SOLVED
(MG/L
AS SO4) | RIDE,
DIS-
SOLVED
(MG/L
AS CL) | RIDE,
DIS-
SOLVED
(MG/L
AS F) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | RESIDUE
AT 105
DEG. C,
TOTAL
(MG/L) | | APR 1987
23
MAY
13
JUN | NESS
TOTAL
(MG/L
AS
CACO3)
17 | DIS-
SOLVED
(MG/L
AS CA)
5.3 | SIUM,
DIS-
SOLVED
(MG/L
AS MG)
1.0 | DIS-
SOLVED
(MG/L
AS NA) | SIUM,
DIS-
SOLVED
(MG/L
AS K) | LINITY
LAB
(MG/L
AS
CACO3) | DIS-
SOLVED
(MG/L
AS SO4) | RIDE,
DIS-
SOLVED
(MG/L
AS CL) | RIDE,
DIS-
SOLVED
(MG/L
AS F) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
18 | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | RESIDUE
AT 105
DEG. C,
TOTAL
(MG/L)
40 | | APR 1987 23 MAY 13 JUN 19 JUL | NESS
TOTAL
(MG/L
AS
CACO3)
17
22 | DIS-
SOLVED
(MG/L
AS CA)
5.3
7.0
4.9
5.3 | SIUM,
DIS-
SOLVED
(MG/L
AS MG)
1.0
1.2
1.0 | DIS-
SOLVED
(MG/L
AS NA) | SIUM,
DIS-
SOLVED
(MG/L
AS K) | LINITY
LAB
(MG/L
AS
CACO3) | DIS-
SOLVED
(MG/L
AS SO4) | RIDE,
DIS-
SOLVED
(MG/L
AS CL) | RIDE,
DIS-
SOLVED
(MG/L
AS F) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
18
50
34 | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | RESIDUE
AT 105
DEG. C,
TOTAL
(MG/L)
40
53
44 | | APR 1987
23
MAY
13
JUN
19
JUL
28
SEP
22
MAR 1988 | NESS
TOTAL
(MG/L
AS
CACO3)
17
22
16
18 | DIS-
SOLVED
(MG/L
AS CA)
5.3
7.0
4.9
5.3
6.2 | SIUM,
DIS-
SOLVED
(MG/L
AS MG)
1.0
1.2
1.0
1.1 | DIS-
SOLVED
(MG/L
AS NA) | SIUM,
DIS-
SOLVED
(MG/L
AS K) | LINITY LAB (MG/L AS CACO3) | DIS-
SOLVED
(MG/L
AS SO4) | RIDE,
DIS-
SOLVED
(MG/L
AS CL) | RIDE,
DIS-
SOLVED
(MG/L
AS F) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
18
50
34
36
45 | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | RESIDUE
AT 105
DEG. C,
TOTAL
(MG/L)
40
53
44
50 | | APR 1987
23
MAY
13
JUN
19
JUL
28
SEP
22
MAR 1988
31 | NESS
TOTAL
(MG/L
AS
CACO3)
17
22
16
18
20 | DIS-
SOLVED (MG/L
AS CA)
5.3
7.0
4.9
5.3
6.2
5.1 | SIUM,
DIS-
SOLVED
(MG/L
AS MG)
1.0
1.2
1.0
1.1 | DIS-
SOLVED
(MG/L
AS NA) | SIUM,
DIS-
SOLVED
(MG/L
AS K)

0.40 | LINITY LAB (MG/L AS CACO3) 10 | DIS-
SOLVED
(MG/L
AS SO4) | RIDE,
DIS-
SOLVED
(MG/L
AS CL) | RIDE,
DIS-
SOLVED
(MG/L
AS F)

0.10 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
18
50
34
36
45 | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | RESIDUE
AT 105
DEG. C,
TOTAL
(MG/L)
40
53
44
50
59 | | APR 1987 23 MAY 13 JUN 19 JUL 28 SEP 22 MAR 1988 31 APR 12 MAY | NESS
TOTAL
(MG/L
AS
CACO3)
17
22
16
18
20
16 | DIS-
SOLVED
(MG/L
AS CA)
5.3
7.0
4.9
5.3
6.2
5.1 | SIUM,
DIS-
SOLVED
(MG/L
AS MG)
1.0
1.1
1.1
0.90
0.99 | DIS-
SOLVED (MG/L
AS NA) | SIUM,
DIS-
SOLVED
(MG/L
AS K)

0.40 | LINITY LAB (MG/L AS CACO3) 10 10 | DIS-
SOLVED
(MG/L
AS SO4) | RIDE,
DIS-
SOLVED
(MG/L
AS CL)

2.7 | RIDE,
DIS-
SOLVED
(MG/L
AS F) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
18
50
34
36
45
53 | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | RESIDUE
AT 105
DEG. C,
TOTAL
(MG/L)
40
53
44
50
59
55 | | APR 1987 23 MAY 13 JUN 19 SEP 22 MAR 1988 31 APR 12 MAY 04 | NESS
TOTAL
(MG/L
AS
cACO3)
17
22
16
18
20
16
18 | DIS-
SOLVED
(MG/L
AS CA)
5.3
7.0
4.9
5.3
6.2
5.1
5.5 | SIUM,
DIS-
SOLVED
(MG/L
AS MG)
1.0
1.1
1.1
0.90
0.99 | DIS-
SOLVED (MG/L
AS NA) | SIUM,
DIS-
SOLVED
(MG/L
AS K)

0.40
0.40 | LINITY LAB (MG/L AS CACO3) 10 10 | DIS-
SOLVED
(MG/L
AS SO4)

10
11
8.9 | RIDE,
DIS-
SOLVED
(MG/L
AS CL)

2.7
3.5 | RIDE,
DIS-
SOLVED
(MG/L
AS F)

0.10
0.10 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
18
50
34
36
45
53
40 | SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) 27 30 29 | RESIDUE
AT 105
DEG. C,
TOTAL
(MG/L)
40
53
44
50
59
55
48 | | APR 1987 23 MAY 13 JUN 19 JUL 28 SEP 22 MAR 1988 31 APR 12 MAY 04 09 | NESS
TOTAL
(MG/L
AS
CACO3)
17
22
16
18
20
16
18 | DIS-
SOLVED (MG/L
AS CA) 5.3 7.0 4.9 5.3 6.2 5.1 5.5 5.7 6.4 | SIUM,
DIS-
SOLVED
(MG/L
AS MG)
1.0
1.2
1.0
1.1
0.90
0.99 | DIS-
SOLVED (MG/L
AS NA) | SIUM,
DIS-
SOLVED
(MG/L
AS K)

0.40
0.40
0.40
0.40 | LINITY LAB (MG/L AS CACO3) 10 10 11 11 | DIS-
SOLVED
(MG/L
AS SO4)

10
11
8.9
9.3 | RIDE,
DIS-
SOLVED
(MG/L
AS CL)

2.7
3.5
3.6
4.3 | RIDE,
DIS-
SOLVED
(MG/L
AS F)

0.10
0.10
0.10 | RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) 18 50 34 36 45 53 40 45 58 | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | RESIDUE
AT 105
DEG. C,
TOTAL
(MG/L)
40
53
44
50
59
55
48 | | APR 1987 23 MAY 13 JUN 19 JUL 28 SEP 22 MAR 1988 31 APR 12 MAY 04 09 26 | NESS
TOTAL
(MG/L
AS
cACO3)
17
22
16
18
20
16
18 | DIS-
SOLVED
(MG/L
AS CA)
5.3
7.0
4.9
5.3
6.2
5.1
5.5 | SIUM,
DIS-
SOLVED
(MG/L
AS MG)
1.0
1.1
1.1
0.90
0.99 | DIS-
SOLVED (MG/L
AS NA) | SIUM,
DIS-
SOLVED
(MG/L
AS K)

0.40
0.40 | LINITY LAB (MG/L AS CACO3) 10 10 | DIS-
SOLVED
(MG/L
AS SO4)

10
11
8.9 | RIDE,
DIS-
SOLVED
(MG/L
AS CL)

2.7
3.5 | RIDE,
DIS-
SOLVED
(MG/L
AS F)

0.10
0.10 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
18
50
34
36
45
53
40 | SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) 27 30 29 | RESIDUE
AT 105
DEG. C,
TOTAL
(MG/L)
40
53
44
50
59
55
48 | | APR 1987 23 MAY 13 JUN 19 JUL 28 SEP 22 MAR 1988 31 APR 12 MAY 04 09 | NESS
TOTAL
(MG/L
AS
CACO3)
17
22
16
18
20
16
18 | DIS-
SOLVED (MG/L
AS CA) 5.3 7.0 4.9 5.3 6.2 5.1 5.5 5.7 6.4 | SIUM,
DIS-
SOLVED
(MG/L
AS MG)
1.0
1.2
1.0
1.1
0.90
0.99 | DIS-
SOLVED (MG/L
AS NA) | SIUM,
DIS-
SOLVED
(MG/L
AS K)

0.40
0.40
0.40
0.40 | LINITY LAB (MG/L AS CACO3) 10 10 11 11 | DIS-
SOLVED
(MG/L
AS SO4)

10
11
8.9
9.3 | RIDE,
DIS-
SOLVED
(MG/L
AS CL)

2.7
3.5
3.6
4.3 | RIDE,
DIS-
SOLVED
(MG/L
AS
F)

0.10
0.10
0.10 | RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) 18 50 34 36 45 53 40 45 58 | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | RESIDUE
AT 105
DEG. C,
TOTAL
(MG/L)
40
53
44
50
59
55
48 | | APR 1987 23 MAY 13 JUN 19 SEP 22 MAR 1988 31 APR 12 MAY 04 09 26 JUN 16 | NESS
TOTAL
(MG/L
AS
CACO3)
17
22
16
18
20
16
18
21
20 | DIS-
SOLVED
(MG/L
AS CA)
5.3
7.0
4.9
5.3
6.2
5.1
5.5
6.2 | SIUM,
DIS-
SOLVED
(MG/L
AS MG)
1.0
1.1
1.1
0.90
0.99
0.91
1.1 | DIS-
SOLVED (MG/L
AS NA) 1.9 2.2 2.4 2.8 2.5 | SIUM,
DIS-
SOLVED
(MG/L
AS K)

0.40
0.40
0.40
0.40 | LINITY LAB (MG/L AS CACO3) 10 10 11 12 13 | DIS-
SOLVED
(MG/L
AS SO4)

10
11
8.9
9.3 | RIDE,
DIS-
SOLVED
(MG/L
AS CL)

2.7
3.5
3.6
4.3
3.9 | RIDE,
DIS-
SOLVED
(MG/L
AS F)

0.10
0.10
0.20
0.20 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
18
50
34
36
45
53
40
45
58
37 | SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) 27 30 29 32 32 | RESIDUE
AT 105
DEG. C,
TOTAL
(MG/L)
40
53
44
50
59
55
48
60
46 | | APR 1987 23 MAY 13 JUN 19 JUL 28 SEP 22 MAR 1988 31 APR 12 MAY 04 09 26 JUN 16 AUG 17 | NESS
TOTAL
(MG/L
AS
CACO3)
17
22
16
18
20
16
18
21
20
20 | DIS-
SOLVED
(MG/L
AS CA)
5.3
7.0
4.9
5.3
6.2
5.1
5.5
5.7
6.4
6.1 | SIUM,
DIS-
SOLVED
(MG/L
AS MG)
1.0
1.2
1.0
1.1
0.90
0.99
0.91
1.1
1.1 | DIS-
SOLVED
(MG/L
AS NA)

1.9
2.2
2.4
2.8
2.5 | SIUM,
DIS-
SOLVED
(MG/L
AS K)

0.40
0.40
0.40
0.40
0.40 | LINITY LAB (MG/L AS CACO3) 10 10 11 12 13 | DIS-
SOLVED
(MG/L
AS SO4)

10
11
8.9
9.3
10
8.0 | RIDE,
DIS-
SOLVED
(MG/L
AS CL)

2.7
3.5
3.6
4.3
3.9
4.4 | RIDE,
DIS-
SOLVED
(MG/L
AS F)

0.10
0.10
0.20
0.20
0.10 | RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) 18 50 34 36 45 53 40 45 58 37 | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | RESIDUE
AT 105
DEG. C,
TOTAL
(MG/L)
40
53
44
50
59
55
48
60
46 | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). # 01325420 HUDSON RIVER AT CORINTH, NY - continued | DATE | SOLIDS,
VOLA-
TILE ON
IGNI-
TION,
TOTAL
(MG/L) | RESIDUE
TOTAL
FIXED
(MG/L) | NITRO-
GEN,
NITRATE
TOTAL
(MG/L
AS N) | NITRO-
GEN,
NITRITE
TOTAL
(MG/L
AS N) | NITRO-
GEN,
NO2+NO3
TOTAL
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS NH4) | NITRO-
GEN,
ORGANIC
TOTAL
(MG/L
AS N) | NITRO-
GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | NITRO-
GEN,
TOTAL
(MG/L
AS N) | NITRO-
GEN,
TOTAL
(MG/L
AS NO3) | PHOS-
PHORUS
TOTAL
(MG/L
AS P) | |---|---|---|--|--|---|---|--|--|---|--|---|--| | APR 1987 | | | | | | | | | | | | | | 23
MAY | 5 | 33 | | ND | 0.300 | 0.010 | 0.01 | 0.17 | 0.18 | 0.48 | 2.1 | 0.010 | | 13
JUN | 16 | 37 | | ND | 0.260 | 0.020 | 0.03 | 0.07 | 0.09 | 0.35 | 1.5 | 0.010 | | 19 | 18 | 26 | | ND | 0.300 | 0.020 | 0.03 | 0.10 | 0.12 | 0.42 | 1.9 | 0.00 | | JUL
28 | 20 | 50 | | ND | 0.220 | 0.010 | 0.01 | 0.17 | 0.18 | 0.40 | 1.8 | 0.00 | | SEP
22 | 50 | 9 | | ND | 0.140 | 0.010 | 0.01 | 0.19 | 0.20 | 0.34 | 1.5 | 0.010 | | MAR 1988
31 | 12 | 43 | 0.550 | 0.010 | 0.560 | 0.010 | 0.01 | 0.30 | 0.31 | 0.87 | 3.9 | 0.010 | | APR
12 | 8 | 40 | | ND | 0.470 | 0.00 | 0.0 | 0.22 | 0.22 | 0.69 | 3.1 | 0.010 | | MAY | • • | 26 | | | | 0.000 | 0.00 | 0.07 | 0.00 | | | MO | | 04
09 | 18
27 | 36
33 | | ND
ND | ND
0.290 | 0.020 | 0.03
0.01 | 0.07
0.23 | 0.09
0.24 | 0.53 | 2.3 | ND
0.00 | | 26 | 18 | 28 | | ND | 0.210 | 0.010 | 0.01 | 0.24 | 0.25 | 0.46 | 2.0 | 0.010 | | JUN
16 | 26 | 26 | | ND | 0.230 | 0.010 | 0.01 | 0.14 | 0.15 | 0.38 | 1.7 | 0.00 | | AUG | | | | | | | | | | | | | | 17
OCT | 15 | 18 | | ND | 0.140 | 0.260 | 0.33 | 0.34 | 0.60 | 0.74 | 3.3 | 0.00 | | 06
NOV | 15 | 36 | | ND | 0.090 | 0.010 | 0.01 | 0.19 | 0.20 | 0.29 | 1.3 | 0.00 | | 07 | 37 | 38 | 0.260 | 0.010 | 0.270 | 0.010 | 0.01 | 0.48 | 0.49 | 0.76 | 3.4 | 0.050 | | | | | | | | | | | | | | | | DATE | PHOS-PHORUS ORTHO, DIS-SOLVED (MG/L AS P) | PHOS-
PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4) | ALUM-
INUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS AL) | ALUM-
INUM,
DIS-
SOLVED
(UG/L
AS AL) | CADMIUM
TOTAL
RECOV-
ERABLE
(UG/L
AS CD) | CADMIUM
DIS-
SOLVED
(UG/L
AS CD) | COPPER,
TOTAL
RECOV-
ERABLE
(UG/L
AS CU) | COPPER,
DIS-
SOLVED
(UG/L
AS CU) | IRON,
TOTAL
RECOV-
ERABLE
(UG/L
AS FE) | IRON,
DIS-
SOLVED
(UG/L
AS FE) | LEAD,
TOTAL
RECOV-
ERABLE
(UG/L
AS PB) | LEAD,
DIS-
SOLVED
(UG/L
AS PB) | | APR 1987 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P) | PHATE,
ORTHO,
DIS-
SOLVED
(MG/L | INUM,
TOTAL
RECOV-
ERABLE
(UG/L | INUM,
DIS-
SOLVED
(UG/L | TOTAL
RECOV-
ERABLE
(UG/L
AS CD) | DIS-
SOLVED
(UG/L | TOTAL
RECOV-
ERABLE
(UG/L
AS CU) | DIS-
SOLVED
(UG/L | TOTAL
RECOV-
ERABLE
(UG/L
AS FE) | DIS-
SOLVED
(UG/L | TOTAL
RECOV-
ERABLE
(UG/L
AS PB) | DIS-
SOLVED
(UG/L | | | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P) | PHATE,
ORTHO,
DIS-
SOLVED
(MG/L | INUM,
TOTAL
RECOV-
ERABLE
(UG/L | INUM,
DIS-
SOLVED
(UG/L | TOTAL
RECOV-
ERABLE
(UG/L | DIS-
SOLVED
(UG/L | TOTAL
RECOV-
ERABLE
(UG/L | DIS-
SOLVED
(UG/L | TOTAL
RECOV-
ERABLE
(UG/L | DIS-
SOLVED
(UG/L | TOTAL
RECOV-
ERABLE
(UG/L | DIS-
SOLVED
(UG/L | | APR 1987
23
MAY
13 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P) | PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4) | INUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS AL) | INUM,
DIS-
SOLVED
(UG/L
AS AL) | TOTAL
RECOV-
ERABLE
(UG/L
AS CD) | DIS-
SOLVED
(UG/L
AS CD) | TOTAL
RECOV-
ERABLE
(UG/L
AS CU) | DIS-
SOLVED
(UG/L
AS CU) | TOTAL
RECOV-
ERABLE
(UG/L
AS FE) | DIS-
SOLVED
(UG/L
AS FE) | TOTAL
RECOV-
ERABLE
(UG/L
AS PB) | DIS-
SOLVED
(UG/L
AS PB) | | APR 1987
23
MAY
13
JUN
19 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P) | PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4) | INUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS AL) | INUM,
DIS-
SOLVED
(UG/L
AS AL) | TOTAL
RECOV-
ERABLE
(UG/L
AS CD) | DIS-
SOLVED
(UG/L
AS CD) | TOTAL
RECOV-
ERABLE
(UG/L
AS CU) | DIS-
SOLVED
(UG/L
AS CU) | TOTAL
RECOV-
ERABLE
(UG/L
AS FE) | DIS-
SOLVED
(UG/L
AS FE) | TOTAL
RECOV-
ERABLE
(UG/L
AS PB) | DIS-
SOLVED
(UG/L
AS PB) | | APR 1987
23
MAY
13
JUN
19
JUL
28 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
ND | PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4) | INUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS AL) | INUM,
DIS-
SOLVED
(UG/L
AS AL) | TOTAL
RECOV-
ERABLE
(UG/L
AS CD)
<10 | DIS-
SOLVED
(UG/L
AS CD) | TOTAL RECOV- ERABLE (UG/L AS CU) <10 <10 | DIS-
SOLVED
(UG/L
AS CU) | TOTAL
RECOV-
ERABLE
(UG/L
AS FE)
150 | DIS-
SOLVED
(UG/L
AS FE) | TOTAL RECOV- ERABLE (UG/L AS PB) <100 | DIS-
SOLVED
(UG/L
AS PB) | | APR 1987
23
MAY
13
JUN
19
JUL
28
SEP
22 | PHORUS ORTHO, DIS- SOLVED (MG/L AS P) ND ND ND ND | PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4) | INUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS AL) | INUM,
DIS-
SOLVED
(UG/L
AS AL) | TOTAL RECOV- ERABLE (UG/L AS CD) <10 <10 <10 | DIS-
SOLVED
(UG/L
AS CD) | TOTAL RECOV- ERABLE (UG/L AS CU) <10 <10 <10 | DIS-
SOLVED
(UG/L
AS CU) | TOTAL
RECOV-
ERABLE
(UG/L
AS FE)
150
140 | DIS-
SOLVED
(UG/L
AS FE) | TOTAL
RECOV-
ERABLE
(UG/L
AS PB)
<100
<5 | DIS-
SOLVED
(UG/L
AS PB) | | APR 1987 23 MAY 13 JUN 19 SEP 22 MAR 1988 31 | PHORUS ORTHO, DIS- SOLVED (MG/L AS P) ND ND ND ND | PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4) | INUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS AL) | INUM, DIS- SOLVED (UG/L AS AL) | TOTAL RECOV- ERABLE (UG/L AS CD) <10 <10 <10 <10 | DIS-
SOLVED
(UG/L
AS CD) | TOTAL RECOV- ERABLE (UG/L AS CU) <10 <10 <10 <10 <30 | DIS-
SOLVED
(UG/L
AS CU) | TOTAL
RECOV-
ERABLE
(UG/L
AS
FE)
150
140
160 | DIS-
SOLVED
(UG/L
AS FE) | TOTAL RECOVERABLE (UG/L AS PB) <100 <5 <5 <5 | DIS-
SOLVED
(UG/L
AS PB) | | APR 1987 23 MAY 13 JUN 19 JUL 28 SEP 22 MAR 1988 31 APR | PHORUS ORTHO, DIS- SOLVED (MG/L AS P) ND ND ND ND | PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4) | INUM, TOTAL RECOV- ERABLE (UG/L AS AL) | INUM,
DIS-
SOLVED
(UG/L
AS AL) | TOTAL RECOV- ERABLE (UG/L AS CD) <10 <10 <10 <10 <10 <11 | DIS-
SOLVED
(UG/L
AS CD) | TOTAL RECOV- ERABLE (UG/L AS CU) <10 <10 <10 30 5 | DIS-
SOLVED
(UG/L
AS CU) | TOTAL
RECOV-
ERABLE
(UG/L
AS FE)
150
140
160
120
240 | DIS-
SOLVED
(UG/L
AS FE) | TOTAL RECOV- ERABLE (UG/L AS PB) <100 <5 <5 <5 <5 | DIS-
SOLVED
(UG/L
AS PB) | | APR 1987 23 MAY 13 JUN 19 JUL 28 SEP 22 MAR 1988 31 APR 12 MAY | PHORUS ORTHO, DIS- SOLVED (MG/L AS P) ND | PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4) | INUM, TOTAL RECOV- ERABLE (UG/L AS AL) 160 100 | INUM,
DIS-
SOLVED
(UG/L
AS AL) | TOTAL RECOV- ERABLE (UG/L AS CD) <10 <10 <10 <11 <11 <1 | DIS-
SOLVED
(UG/L
AS CD) <1.0 1.0 | TOTAL RECOV- ERABLE (UG/L AS CU) <10 <10 <10 30 5 4 2 | DIS-
SOLVED
(UG/L
AS CU) | TOTAL
RECOV-
ERABLE
(UG/L
AS FE)
150
140
160
120
240
300
120 | DIS-
SOLVED
(UG/L
AS FE) | TOTAL RECOV-ERABLE (UG/L AS PB) <100 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 | DIS-
SOLVED
(UG/L
AS PB) | | APR 1987 23 MAY 13 JUN 19 SEP 22 MAR 1988 31 APR 12 MAY 04 | PHORUS ORTHO, DIS- SOLVED (MG/L AS P) ND | PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4) | INUM, TOTAL RECOV- ERABLE (UG/L AS AL) 160 100 | INUM,
DIS-
SOLVED
(UG/L
AS AL) | TOTAL RECOV- ERABLE (UG/L AS CD) <10 <10 <10 <11 <11 <1 <1 | DIS-
SOLVED
(UG/L
AS CD) <1.0 1.0 <1.0 | TOTAL RECOV- ERABLE (UG/L AS CU) <10 <10 <10 30 5 4 2 7 | DIS-
SOLVED
(UG/L
AS CU) | TOTAL RECOVERABLE (UG/L AS FE) 150 140 160 120 240 300 120 100 | DIS-
SOLVED
(UG/L
AS FE) | TOTAL RECOVERAGE (UG/L AS PB) <100 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 | DIS-
SOLVED
(UG/L
AS PB) | | APR 1987 23 MAY 13 JUN 19 JUL 28 SEP 22 MAR 1988 31 APR 12 MAY 04 09 | PHORUS ORTHO, DIS- SOLVED (MG/L AS P) ND | PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4) | INUM, TOTAL RECOV- ERABLE (UG/L AS AL) 160 100 100 80 | INUM,
DIS-
SOLVED
(UG/L
AS AL) | TOTAL RECOVERABLE (UG/L AS CD) <10 <10 <10 <11 <11 <11 <11 2 | DIS-
SOLVED
(UG/L
AS CD) <1.0 1.0 <1.0 | TOTAL RECOV- ERABLE (UG/L AS CU) <10 <10 <10 30 5 4 2 7 3 | DIS-
SOLVED
(UG/L
AS CU) | TOTAL RECOV-ERABLE (UG/L AS FE) 150 140 160 120 240 300 120 | DIS-
SOLVED
(UG/L
AS FE) | TOTAL RECOVERABLE (UG/L AS PB) <100 <55 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 | DIS-
SOLVED
(UG/L
AS PB) | | APR 1987 23 MAY 13 JUN 19 SEP 22 MAR 1988 31 APR 12 MAY 04 | PHORUS ORTHO, DIS- SOLVED (MG/L AS P) ND | PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4) | INUM, TOTAL RECOV- ERABLE (UG/L AS AL) 160 100 | INUM,
DIS-
SOLVED
(UG/L
AS AL) | TOTAL RECOV- ERABLE (UG/L AS CD) <10 <10 <10 <11 <11 <1 <1 | DIS-
SOLVED
(UG/L
AS CD) <1.0 1.0 <1.0 | TOTAL RECOV- ERABLE (UG/L AS CU) <10 <10 <10 30 5 4 2 7 | DIS-
SOLVED
(UG/L
AS CU) | TOTAL RECOVERABLE (UG/L AS FE) 150 140 160 120 240 300 120 100 | DIS-
SOLVED
(UG/L
AS FE) | TOTAL RECOVERAGE (UG/L AS PB) <100 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 | DIS-
SOLVED
(UG/L
AS PB) | | APR 1987 23 MAY 13 JUN 19 SEP 22 MAR 1988 31 APR 12 MAY 04 09 26 JUN 16 | PHORUS ORTHO, DIS- SOLVED (MG/L AS P) ND | PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4) | INUM, TOTAL RECOV- ERABLE (UG/L AS AL) 160 100 100 80 | INUM,
DIS-
SOLVED
(UG/L
AS AL) | TOTAL RECOVERABLE (UG/L AS CD) <10 <10 <10 <11 <11 <11 <11 2 | DIS-
SOLVED
(UG/L
AS CD) <1.0 1.0 <1.0 | TOTAL RECOV- ERABLE (UG/L AS CU) <10 <10 <10 30 5 4 2 7 3 | DIS-
SOLVED
(UG/L
AS CU) | TOTAL RECOV-ERABLE (UG/L AS FE) 150 140 160 120 240 300 120 | DIS-
SOLVED
(UG/L
AS FE) | TOTAL RECOVERABLE (UG/L AS PB) <100 <55 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 | DIS-
SOLVED
(UG/L
AS PB) | | APR 1987 23 MAY 13 JUN 19 JUL 28 SEP 22 MAR 1988 31 APR 12 MAY 04 09 26 JUN 16 AUG 17 | PHORUS ORTHO, DIS- SOLVED (MG/L AS P) ND | PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4) | INUM, TOTAL RECOV- ERABLE (UG/L AS AL) 160 100 80 70 | INUM,
DIS-
SOLVED
(UG/L
AS AL) 90 50 40 | TOTAL RECOV- REABLE (UG/L AS CD) <10 <10 <10 <1 <1 <1 <1 <1 <1 <1 6 | DIS-
SOLVED (UG/L
AS CD) <1.0 1.0 <1.0 <1.0 <1.0 | TOTAL RECOV- ERABLE (UG/L AS CU) <10 <10 <10 30 5 4 2 7 3 8 | DIS-
SOLVED (UG/L
AS CU) | TOTAL RECOVERABLE (UG/L AS FE) 150 140 160 120 240 300 120 100 120 110 | DIS-
SOLVED
(UG/L
AS FE) | TOTAL RECOV- ERABLE (UG/L AS PB) <100 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 | DIS-
SOLVED
(UG/L
AS PB) | | APR 1987 23 MAY 13 JUN 19 SEP 22 MAR 1988 31 APR 12 MAY 04 09 26 JUN 16 AUG | PHORUS ORTHO, DIS- SOLVED (MG/L AS P) ND | PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4) | INUM, TOTAL RECOV- ERABLE (UG/L AS AL) 160 100 80 70 40 | INUM,
DIS-
SOLVED
(UG/L
AS AL) 90 40 | TOTAL RECOVERABLE (UG/L AS CD) <10 <10 <10 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 | DIS-
SOLVED
(UG/L
AS CD) <1.0 1.0 1.0 <1.0 <1.0 | TOTAL RECOV- ERABLE (UG/L AS CU) <10 <10 <10 30 5 4 2 7 3 8 4 | DIS-
SOLVED
(UG/L
AS CU) | TOTAL RECOV-ERABLE (UG/L AS FE) 150 140 160 120 240 300 120 100 120 110 | DIS-
SOLVED
(UG/L
AS FE) | TOTAL RECOV-ERABLE (UG/L AS PB) <100 <55 <5 <5 <5 <5 <5 <5 66 <6 6 | DIS-
SOLVED
(UG/L
AS PB) | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). # 01325420 HUDSON RIVER AT CORINTH, NY - continued | | MANGA- | | | | | | | | | | | | |---|--|--|---|---|--|--|--|---|--|--|--|--| | | NESE,
TOTAL | MANGA-
NESE, | MERCURY
TOTAL | NICKEL,
TOTAL | NICKEL, | ZINC,
TOTAL | ZINC, | PHENOL | | CARBON-
TETRA- | | CHLORO-
DI- | | | RECOV-
ERABLE | DIS-
SOLVED | RECOV-
ERABLE | RECOV-
ERABLE | DIS-
SOLVED | RECOV-
ERABLE | DIS-
SOLVED | (С6н-
5он) | BROMO-
FORM | CHLO-
RIDE | CHLORO-
BENZENE | BROMO-
METHANE | | DATE | (UG/L TOTAL | TOTAL | TOTAL | TOTAL | TOTAL | | | AS MN) | AS MN) | AS HG) | AS NI) | AS NI) | AS ZN) | AS ZN) | (UG/L) | (UG/L) | (UG/L) | (UG/L) | (UG/L) | | APR 1987 | | | | | | | | | | | | | | 23
MAY | 10 | | <0.10 | <100 | | <10 | | | ND | ND | ND | ND | | JUN | 10 | | <0.10 | <1 | | 30 | | | ND | ND | ND | ND | | 19
JUL | 10 | | <0.10 | 1 | | <10 | | | ND | ND | ND | ND | | 28
SEP | 30 | | <0.10 | 2 | <1 | 20 | 10 | | ND | ND | ND | ND | | 22
MAR 1988 | | | <0.10 | <1 | 1 | 10 | 10 | | ND | ND | ND | ND | | 31
APR | 30 | 20 | <0.10 | 2 | 4 | 40 | <10 | 2.0 | ND | ND | ND | ND | | 12
MAY | 10 | | <0.10 | 3 | | <10 | | ND | ND | ND | ND | ND | | 04
09 | 20
20 | | <0.10
<0.10 | 5
2 | 1 | <10
<10 | 11 | ND
ND | ND
ND | ND
ND | ND
ND | ND
ND | | 26 | 20 | 10 | <0.10 | 6 | <1 | 20 | 13 | ND | ND | ND | ND | ND | | JUN
16 | 20 | | <0.10 | 6 | | <10 | | ND | ND | ND | ND | ND | | AUG
17 | 40 | | <0.10 | 2 | | 20 | | | ND | ND | ND | ND | | 06 | 20 | | <0.10 | 2 | | <10 | | 0.0 | ND | ND | ND | ND | | NOV
07 | 160 | 15 | <0.10 | 4 | 1 | 20 | 13 | 1.0 | ND | ND | ND | ND | CHLORO- | CHLORO- | CIS
1,3-DI-
CHLORO- | DI-
CHLORO-
BROMO- | METHYL- | METHYL-
CHLO- | METHYL-
ENE
CHLO- | 1,1,1-
TRI-
CHLORO- | 1,1-DI-
CHLORO- | 1,1-DI-
CHLORO-
ETHYL- | 1,1,2-
TRI-
CHLORO- | 1,1,2,2
TETRA-
CHLORO- | | | ETHANE | FORM | 1,3-DI-
CHLORO-
PROPENE | CHLORO-
BROMO-
METHANE | BROMIDE | CHLO-
RIDE | ENE
CHLO-
RIDE | TRI-
CHLORO-
ETHANE | CHLORO-
ETHANE | CHLORO-
ETHYL-
ENE | TRI-
CHLORO-
ETHANE | TETRA-
CHLORO-
ETHANE | | DATE | ETHANE
TOTAL | FORM
TOTAL | 1,3-DI-
CHLORO-
PROPENE
TOTAL | CHLORO-
BROMO-
METHANE
TOTAL | BROMIDE
TOTAL | CHLO-
RIDE
TOTAL | ENE
CHLO-
RIDE
TOTAL | TRI-
CHLORO-
ETHANE
TOTAL | CHLORO-
ETHANE
TOTAL | CHLORO-
ETHYL-
ENE
TOTAL | TRI-
CHLORO-
ETHANE
TOTAL | TETRA-
CHLORO-
ETHANE
TOTAL | | DATE | ETHANE | FORM | 1,3-DI-
CHLORO-
PROPENE | CHLORO-
BROMO-
METHANE | BROMIDE | CHLO-
RIDE | ENE
CHLO-
RIDE | TRI-
CHLORO-
ETHANE | CHLORO-
ETHANE | CHLORO-
ETHYL-
ENE | TRI-
CHLORO-
ETHANE | TETRA-
CHLORO-
ETHANE | | APR 1987 | ETHANE
TOTAL
(UG/L) | FORM
TOTAL
(UG/L) | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | CHLORO-
BROMO-
METHANE
TOTAL
(UG/L) | BROMIDE
TOTAL
(UG/L) | CHLO-
RIDE
TOTAL
(UG/L) | ENE
CHLO-
RIDE
TOTAL
(UG/L) | TRI -
CHLORO-
ETHANE
TOTAL
(UG/L) | CHLORO-
ETHANE
TOTAL
(UG/L) |
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | TRI-
CHLORO-
ETHANE
TOTAL
(UG/L) | TETRA-
CHLORO-
ETHANE
TOTAL
(UG/L) | | APR 1987
23
MAY | ETHANE
TOTAL
(UG/L)
ND | FORM TOTAL (UG/L) ND | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | CHLORO-
BROMO-
METHANE
TOTAL
(UG/L) | BROMIDE
TOTAL
(UG/L)
ND | CHLO-
RIDE
TOTAL
(UG/L) | ENE CHLO- RIDE TOTAL (UG/L) | TRI -
CHLORO-
ETHANE
TOTAL
(UG/L) | CHLORO-
ETHANE
TOTAL
(UG/L) | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | TRI-
CHLORO-
ETHANE
TOTAL
(UG/L) | TETRA-
CHLORO-
ETHANE
TOTAL
(UG/L) | | APR 1987
23
MAY
13
JUN | ETHANE
TOTAL
(UG/L)
ND
ND | FORM TOTAL (UG/L) ND | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
ND | CHLORO-
BROMO-
METHANE
TOTAL
(UG/L)
ND | BROMIDE
TOTAL
(UG/L)
ND | CHLO-
RIDE
TOTAL
(UG/L)
ND | ENE CHLO- RIDE TOTAL (UG/L) ND | TRI - CHLORO- ETHANE TOTAL (UG/L) ND | CHLORO-
ETHANE
TOTAL
(UG/L)
ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND | TRI- CHLORO- ETHANE TOTAL (UG/L) ND | TETRA-
CHLORO-
ETHANE
TOTAL
(UG/L)
ND | | APR 1987
23
MAY
13
JUN
19 | ETHANE
TOTAL
(UG/L)
ND
ND | FORM TOTAL (UG/L) ND ND | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
ND
ND | CHLORO-
BROMO-
METHANE
TOTAL
(UG/L)
ND
ND | BROMIDE
TOTAL
(UG/L)
ND
ND | CHLO-
RIDE
TOTAL
(UG/L)
ND
ND | ENE CHLO- RIDE TOTAL (UG/L) ND ND | TRI-
CHLORO-
ETHANE
TOTAL
(UG/L)
ND
ND | CHLORO-ETHANE TOTAL (UG/L) ND ND ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND
ND | TRI-
CHLORO-
ETHANE
TOTAL
(UG/L)
ND
ND | TETRA-
CHLORO-
ETHANE
TOTAL
(UG/L)
ND
ND | | APR 1987
23
MAY
13
JUN
19
JUL
28
SEP | ETHANE TOTAL (UG/L) ND ND ND ND | FORM TOTAL (UG/L) ND ND ND | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
ND
ND
ND | CHLORO-
BROMO-
METHANE
TOTAL
(UG/L)
ND
ND
ND | BROMIDE
TOTAL
(UG/L)
ND
ND
ND | CHLO-
RIDE
TOTAL
(UG/L)
ND
ND | ENE CHLO- RIDE TOTAL (UG/L) ND ND ND | TRI - CHLORO- ETHANE TOTAL (UG/L) ND ND ND | CHLORO-ETHANE TOTAL (UG/L) ND ND ND ND | CHLORO-ETHYL-ENE ENE TOTAL (UG/L) ND ND ND | TRI- CHLORO- ETHANE TOTAL (UG/L) ND ND ND ND | TETRA-CHLORO-ETHANE TOTAL (UG/L) ND ND ND ND | | APR 1987 23 MAY 13 JUN 19 JUL 28 SEP 22 MAR 1988 | ETHANE TOTAL (UG/L) ND ND ND ND ND | FORM TOTAL (UG/L) ND ND ND ND ND | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
ND
ND
ND | CHLORO-
BROMO-
METHANE
TOTAL
(UG/L)
ND
ND
ND | BROMIDE
TOTAL
(UG/L)
ND
ND
ND
ND | CHLO-
RIDE
TOTAL
(UG/L)
ND
ND
ND | ENE CHLO- RIDE TOTAL (UG/L) ND ND ND ND | TRI- CHLORO- ETHANE TOTAL (UG/L) ND ND ND ND | CHLORO-ETHANE TOTAL (UG/L) ND ND ND ND ND ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND ND ND ND | TRI- CHLORO- ETHANE TOTAL (UG/L) ND ND ND ND ND | TETRA-CHLORO-ETHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND | | APR 1987 23 MAY 13 JUN 19 JUL 28 SEP 22 MAR 1988 31 APR | ETHANE TOTAL (UG/L) ND ND ND ND ND ND ND | FORM TOTAL (UG/L) ND ND ND ND ND ND | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
ND
ND
ND
ND | CHLORO-
BROMO-
METHANE
TOTAL
(UG/L)
ND
ND
ND
ND | BROMIDE
TOTAL
(UG/L)
ND
ND
ND
ND
ND | CHLO-
RIDE
TOTAL
(UG/L)
ND
ND
ND
ND | ENE CHLO- RIDE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND | TRI- CHLORO- ETHANE TOTAL (UG/L) ND ND ND ND ND ND | CHLORO-ETHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND | CHLORO-ETHYL-ENE ENE TOTAL (UG/L) ND ND ND ND ND ND | TRI- CHLORO- ETHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND | TETRA-CHLORO-ETHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND | | APR 1987 23 MAY 13 JUN 19 JUL 28 SEP 22 MAR 1988 31 APR 12 MAY | ETHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | FORM TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
ND
ND
ND
ND | CHLORO-
BROMO-
METHANE
TOTAL
(UG/L)
ND
ND
ND
ND | BROMIDE
TOTAL
(UG/L)
ND
ND
ND
ND
ND | CHLO- RIDE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | ENE CHLO- RIDE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TRI- CHLORO- ETHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-ETHANE TOTAL (UG/L) ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TRI- CHLORO- ETHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TETRA-CHLORO-ETHANE TOTAL (UG/L) ND | | APR 1987 23 MAY 13 JUN 19 SEP 22 MAR 1988 31 APR 12 MAY 04 | ETHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | FORM TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-BROMO-METHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | BROMIDE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLO- RIDE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | ENE CHLO- RIDE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TRI- CHLORO- ETHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-ETHANE TOTAL (UG/L) ND | CHLORO-ETHYL-ENE ENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TRI- CHLORO- ETHANE TOTAL (UG/L) ND | TETRA-CHLORO-ETHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | | APR 1987 23 MAY 13 JUN 19 JUL 28 SEP 22 MAR 1988 31 APR 12 MAY 04 09 | ETHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | FORM TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-BROMO-METHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | BROMIDE
TOTAL
(UG/L)
ND
ND
ND
ND
ND
ND | CHLO- RIDE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | ENE CHLO- RIDE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TRI- CHLORO- ETHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-ETHANE TOTAL (UG/L) ND | CHLORO-ETHYL-ENE ENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TRI- CHLORO- ETHANE TOTAL (UG/L) ND | TETRA-CHLORO-ETHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | | APR 1987 23 MAY 13 JUN 19 SEP 22 MAR 1988 31 APR 12 MAY 04 | ETHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | FORM TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-BROMO-METHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | BROMIDE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLO- RIDE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | ENE CHLO- RIDE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TRI- CHLORO- ETHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-ETHANE TOTAL (UG/L) ND | CHLORO-ETHYL-ENE ENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TRI- CHLORO- ETHANE TOTAL (UG/L) ND | TETRA-CHLORO-ETHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | | APR 1987 23 MAY 13 JUN 19 SEP 22 MAR 1988 31 APR 12 MAY 04 09 26 JUN 16 AUG | ETHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | FORM TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-BROMO-METHANE TOTAL (UG/L) ND | BROMIDE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLO-RIDE TOTAL (UG/L) ND | ENE CHLO- RIDE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TRI- CHLORO- ETHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-ETHANE TOTAL (UG/L) ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND | TRI- CHLORO- ETHANE TOTAL (UG/L) ND | TETRA-CHLORO-ETHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | | APR 1987 23 MAY 13 JUN 19 SEP 22 MAR 1988 31 APR 12 MAY 04 09 26 JUN 16 AUG 17 CCT | ETHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | FORM TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-BROMO-METHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | BROMIDE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLO- RIDE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | ENE CHLO- RIDE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TRI- CHLORO- ETHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-ETHANE TOTAL (UG/L) ND | CHLORO-ETHYL-ENE ENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TRI- CHLORO- ETHANE TOTAL (UG/L) ND | TETRA-CHLORO-ETHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | | APR 1987 23 MAY 13 JUN 19 JUL 28 SEP 22 MAR 1988 31 APR 12 MAY 04 09 26 JUN 16 AUG 17 | ETHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | FORM TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-BROMO-METHANE TOTAL (UG/L) ND | BROMIDE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLO-RIDE TOTAL (UG/L) ND | ENE CHLO- RIDE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TRI- CHLORO- ETHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-ETHANE TOTAL (UG/L) ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND | TRI- CHLORO- ETHANE TOTAL (UG/L) ND | TETRA-CHLORO-ETHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). ### 01325420 HUDSON RIVER AT CORINTH, NY - continued # WATER-QUALITY DATA (continued) | DATE | 1,2-DI-
CHLORO-
BENZENE
TOTAL
(UG/L) | 1,2-DI-
CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L) | 1,2-DI-
CHLORO-
PROPANE
TOTAL
(UG/L) | 1,2-
TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L) | 1,3-DI-
CHLORO-
BENZENE
TOTAL
(UG/L) | 1,4-DI-
CHLORO-
BENZENE
TOTAL
(UG/L) | TETRA-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | TRANS-
1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | TRI-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 2-
CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L) | VINYL
CHLO-
RIDE
TOTAL
(UG/L) | |----------------|--|---|--|---|--
--|---|--|---|---|---| | APR 1987 | | | | | | | | | | | | | 23
MAY | ND | 13
JUN | ND | 19 | ND | JUL
28 | ND | SEP
22 | ND | MAR 1988
31 | ND | APR
12 | ND | MAY | | | | | | | | | | | 2 | | 04 | ND | 09 | ND | 26 | ND | JUN
16 | ND | AUG | NU | MD | NU | MD | NU | ND | ND | ND | ND | NU | ND | | 17
∞T | ND | 06 | ND | 07 | ND | ND | ИД | ND | ND | ND | ND | ИД | ND | ND | ND | ### SUSPENDED SEDIMENT DISCHARGE | MAY 1988 09 1230 3550 1 9.6 26 1115 3120 1 8.4 JUN 16 1000 4440 2 24 AUG 17 1015 495 3 4.0 OCT 06 1045 767 1 2.1 NOV | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND | SEDI-
MENT,
SUS-
PENDED
(MG/L) | SEDI-
MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY) | |---|----------|------|--|--|--| | 26 1115 3120 1 8.4 JUN 16 1000 4440 2 24 AUG 17 1015 495 3 4.0 CCT 06 1045 767 1 2.1 NOV | MAY 1988 | | | | | | JUN 16 1000 4440 2 24 AUG 17 1015 495 3 4.0 OCT 06 1045 767 1 2.1 NOV | 09 | 1230 | 3550 | 1 | 9.6 | | 16 1000 4440 2 24 AUG 17 1015 495 3 4.0 OCT 06 1045 767 1 2.1 NOV | 26 | 1115 | 3120 | 1 | 8.4 | | AUG 17 1015 495 3 4.0 OCT 06 1045 767 1 2.1 NOV | JUN | | | | | | 17 1015 495 3 4.0 OCT 06 1045 767 1 2.1 NOV | 16 | 1000 | 4440 | 2 | 24 | | OCT 06 1045 767 1 2.1 NOV | AUG | | | | | | 06 10 4 5 767 1 2.1
NOV | 17 | 1015 | 495 | 3 | 4.0 | | NOV | OCT | | | | | | | 06 | 1045 | 767 | 1 | 2.1 | | 07 1000 12400 29 937 | NOV | | | | | | 07 1000 12400 20 331 | 07 | 1000 | 12400 | 28 | 937 | # BED MATERIAL ANALYSES | DATE | TIME | SOLIDS,
VOLA-
TILE IN
BOTTOM
MA-
TERIAL
(MG/KG) | ALUM-
INUM,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G) | CADMIUM
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS CD) | COPPER,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS CU) | IRON,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS FE) | LEAD,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS PB) | MANGA-
NESE,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G) | MERCURY
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS HG) | NICKEL,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS NI) | ZINC,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS ZN) | |----------------|--|---|--|--|--|--|--|---|--|--|--| | AUG 1988
17 | 1015 | 55000 | 5300 | <10 | 7 | 8200 | 20 | 100 | 0.02 | <100 | 60 | | DATE | AROCLOR
1221
IN
BOTTOM
MAT.
(UG/KG) | AROCLOR
1248
PCB
BOT.MAT
(UG/KG) | AROCLOR
1254
PCB
BOT.MAT
(UG/KG) | AROCLOR
1260
PCB
BOT.MAT
(UG/KG) | ALDRIN,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | ALPHA
BHC
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | ATRA-
ZINE,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | BETA BENZENE HEXA- CHLOR- IDE BOT.MAT (UG/KG) | CHLOR-
DANE,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | CHLOR-
PYRIFOS
IN BOT.
MAT.
(UG/KG) | DELTA BENZENE HEXA- CHLOR- I DE BOT.MAT (UG/KG) | | AUG 1988
17 | ИД | ND Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). # 01325420 HUDSON RIVER AT CORINTH, NY - continued # BED MATERIAL ANALYSES (continued) | DATE | AZ
TV
IN
TOI | DI- INON, OTAL BOT- M MA- ERIAL G/KG) | DI
ELDR
TOI
IN E
TOM
TER
(UG/ | IN,
PAL E
BOT- SU
MA- A
IAL BO | NDO-
LFAN
LPHA
T.MAT
G/KG) | END
SULF
BET
BOT. | AN SUI
A SUI
MAT BO | NDO-
JLFAN
LFATE
T.MAT
G/KG) | ENDF
TOT
IN E
TOM
TER
(UG/ | AL
OT-
MA-
NAL | ENDR
ALD
HY
BOT. | E-
DE
MAT | ETHIC
TOTA
IN BO
TOM M
TERI | AL
YT~
IA-
AL | HEP
CHL
TOT
IN B
TOM
TER
(UG/ | OR,
AL
OT-
MA-
IAL | CHL
EPOX
TOT.
BOT | IDE
IN
TOM
TL. | MALA-
THION,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | |----------------|-----------------------|---------------------------------------|--|---|--|---------------------------------------|--|--|---|-----------------------------|---|-----------------------------|---|-------------------------------|---|--------------------------------|--|----------------------------|---| | AUG 1988
17 | 1 | ND | NE |) | n D | N D | ì | 1D | NI |) | ND | | и D | | ND | | ND | • | ND | | | DATE | OX
CH
TOI
BC | ETH-
XY-
ILOR,
Y. IN
YTTOM
IATL.
G/KG) | MIREX
TOTAL
IN BOT
TOM MA
TERIA
(UG/KG | , TO L T | P,P' DDD, OTAL BOT- M MA- ERIAL G/KG) | P,P' DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) | TO
TO
TO
Ti | P,P' DDT, DTAL BOT- I MA- ERIAL G/KG) | TH
TO
IN
TOM
TE | RA-
ION,
TAL
BOT-
MA-
RIAL
/KG) | PH
TO
IN
TOM
TE | XA-
ENE,
TAL
BOT-
MA-
RIAL
/KG) | Mi
Fi
DII
% F:
Ti | ED
AT.
ALL
AM.
INER
HAN | M
SI
DI
% F | ED
AT.
EVE
AM.
INER
HAN
2 MM | M
SI
DI
% F
Ti | ED
AT.
EVE
AM.
INER
HAN
5 MM | | | 1988 | N | ID | ND | | ND | ND | ì | 1D | N | D | N | D | | 1 | | 7 | | 100 | ### 01327755 HUDSON RIVER AT ROGERS ISLAND AT FORT EDWARD, NY LOCATION.--Lat 43 15'52", long 73 35'28", Saratoga-Washington Counties, Hydrologic Unit 02020003, at bridges on State Highway 197 over Rogers Island in Fort Edward, 0.4 mi downstream from discharge station (01327750, Hudson River at Fort Edward), and 0.6 mi upstream from Champlain Canal. DRAINAGE AREA. -- 2,817 mi 2 , at gage. PERIOD OF RECORD. -- Water years 1975 to current year. RIOD OF RECORD.--Water years 1975 to current year. CHEMICAL DATA: 1975-76 (a), 1980 (b), 1981 (d), 1982-84 (e), 1985 (d), 1986-87 (e), 1988 (a). MINOR ELEMENT DATA: 1975 (b), 1976-77 (a), 1978-79 (e), 1980 (d), 1986 (b), 1987 (e), 1988 (a). PESTICIDE DATA: 1975, 1977 (a), 1978-79 (e), 1980 (a), 1987 (b), 1988 (a). ORGANIC DATA: OC--1975 (a). PCB--1975, 1977 (a), 1978-84 (e), 1985 (d), 1986 (e), 1987 (d), 1988 (e), 1989 (b). PCN--1977 (a), 1978-79 (e), 1980 (a). NUTRIENT DATA: 1975-77 (a), 1978 (e), 1987 (b), 1988 (a). SEDIMENT DATA: 1975 (b), 1980-84 (e), 1985 (d), 1986-88 (e), 1989 (a). PERTOD OF DATLY RECORD. -- SUSPENDED-SEDIMENT DISCHARGE: March 1978 to September 1979. REMARKS.--Water-discharge data is that from 01327750 Hudson River at Fort Edward. Samples for PCB analysis are collected at this site but are not included in this report. Flow regulated appreciably by Great Sacandaga Lake and Indian Lake. Diurnal fluctuation caused by powerplants upstream from station. Water is diverted into St. Lawrence River basin through Glens Falls feeder, Bond Creek, and Champlain (Barge) Canal, and occasionally may be received from that basin through summit level of Champlain (Barge) Canal at Dunham Basin. ### WATER-QUALITY DATA | | | DIS- | SPE- | PH | | | | COLI- | FECAL | | | | |--|---|---|---|--|---|---|---|--|--|--|---|--| | | | CHARGE, | CIFIC | WATER | | | | FORM, | COLI- | HARD- | | MAGNE- | | | | INST. | CON- | WHOLE | | | | TOTAL, | FORM | NESS | CALCIUM | SIUM, | | | | CUBIC | DUCT- | FIELD | TEMPER- | TUR- | OXYGEN, | IMMED. | 24-HR | TOTAL | DIS- | DIS- | | | | FEET | ANCE | (STAND- | ATURE | BID- | DIS- | (COLS. | MEM.FIL | (MG/L | SOLVED | SOLVED | | DATE | TIME | PER | LAB | ARD | WATER | ITY | SOLVED | PER |
(COLS./ | AS | (MG/L | (MG/L | | | | SECOND | (US/CM) | UNITS) | (DEG C) | (NTU) | (MG/L) | 100 ML) | 100 ML) | CACO3) | AS CA) | AS MG) | | APR 1987
30 | 1030 | 4620 | | 7.6 | 11.0 | 1.0 | 10.7 | | | 35 | 12 | 1.3 | | MAY | 1030 | 4020 | | 7.6 | 11.0 | 1.0 | 10.7 | | | 35 | 12 | 1.3 | | 14 | 1130 | 2970 | 147 | 7.8 | 17.0 | 0.80 | 10.4 | 22000 | 1800 | 41 | 14 | 1.5 | | JUN | 1130 | 2370 | 24, | ,,, | 17.00 | 0.00 | 10.4 | 22000 | 1000 | ** | | 1.5 | | 19 | 1200 | 3390 | 97 | 7.6 | 25.5 | 0.70 | 10.0 | 15000 | 210 | 30 | 10 | 1.1 | | JUL | | | | | | | | | | | | | | 28 | 1315 | 4000 | | 7.6 | 26.0 | 0.55 | 8.0 | 7400 | 3200 | 39 | 13 | 1.4 | | SEP | | | | | | | | | | | | | | 22 | 1000 | 4220 | 79 | 7.3 | 15.0 | 1.7 | 10.0 | 35000 | 1420 | 25 | 8.0 | 1.1 | | DEC | | | | | | | | | | | | | | 08 | 1100 | 5510 | | 7.5 | | 1.0 | | 6200 | 1200 | 20 | 6.2 | 1.1 | | | | | | | | | | | | | | | | | SOLIDS,
RESIDUE
AT 180 | SOLIDS,
RESIDUE | SOLIDS,
VOLA-
TILE ON | pectore | NITRO-
GEN, AM-
MONIA + | NITRO- | | | RESIDUE
AT 180
DEG. C | RESIDUE
AT 105 | VOLA-
TILE ON
IGNI- | RESIDUE | GEN,
NITRATE | GEN,
NITRITE | GEN,
NO2+NO3 | GEN,
AMMONIA | GEN,
AMMONIA | GEN,
ORGANIC | GEN, AM-
MONIA +
ORGANIC | GEN, | | DATE | RESIDUE
AT 180
DEG. C
DIS- | RESIDUE
AT 105
DEG. C, | VOLA-
TILE ON
IGNI-
TION, | TOTAL | GEN,
NITRATE
TOTAL | GEN,
NITRITE
TOTAL | GEN,
NO2+NO3
TOTAL | GEN,
AMMONIA
TOTAL | GEN,
AMMONIA
TOTAL | GEN,
ORGANIC
TOTAL | GEN, AM-
MONIA +
ORGANIC
TOTAL | GEN,
TOTAL | | DATE | RESIDUE
AT 180
DEG. C | RESIDUE
AT 105 | VOLA-
TILE ON
IGNI- | | GEN,
NITRATE
TOTAL
(MG/L | GEN,
NITRITE
TOTAL
(MG/L | GEN,
NO2+NO3
TOTAL
(MG/L | GEN,
AMMONIA
TOTAL
(MG/L | GEN,
AMMONIA
TOTAL
(MG/L | GEN,
ORGANIC | GEN, AM-
MONIA +
ORGANIC | GEN, | | DATE
APR 1987 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | RESIDUE
AT 105
DEG. C,
TOTAL | VOLA-
TILE ON
IGNI-
TION,
TOTAL | TOTAL
FIXED | GEN,
NITRATE
TOTAL | GEN,
NITRITE
TOTAL | GEN,
NO2+NO3
TOTAL | GEN,
AMMONIA
TOTAL | GEN,
AMMONIA
TOTAL | GEN,
ORGANIC
TOTAL
(MG/L | GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L | GEN,
TOTAL
(MG/L | | APR 1987
30 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | RESIDUE
AT 105
DEG. C,
TOTAL | VOLA-
TILE ON
IGNI-
TION,
TOTAL | TOTAL
FIXED | GEN,
NITRATE
TOTAL
(MG/L | GEN,
NITRITE
TOTAL
(MG/L | GEN,
NO2+NO3
TOTAL
(MG/L | GEN,
AMMONIA
TOTAL
(MG/L | GEN,
AMMONIA
TOTAL
(MG/L | GEN,
ORGANIC
TOTAL
(MG/L | GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L | GEN,
TOTAL
(MG/L | | APR 1987
30 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | RESIDUE
AT 105
DEG. C,
TOTAL
(MG/L) | VOLA-
TILE ON
IGNI-
TION,
TOTAL
(MG/L) | TOTAL
FIXED
(MG/L) | GEN,
NITRATE
TOTAL
(MG/L
AS N) | GEN,
NITRITE
TOTAL
(MG/L
AS N)
0.010 | GEN,
NO2+NO3
TOTAL
(MG/L
AS N) | GEN,
AMMONIA
TOTAL
(MG/L
AS N) | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4) | GEN,
ORGANIC
TOTAL
(MG/L
AS N) | GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | GEN,
TOTAL
(MG/L
AS N) | | APR 1987
30
MAY
14 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | RESIDUE
AT 105
DEG. C,
TOTAL
(MG/L) | VOLA-
TILE ON
IGNI-
TION,
TOTAL
(MG/L) | TOTAL
FIXED
(MG/L) | GEN,
NITRATE
TOTAL
(MG/L
AS N) | GEN,
NITRITE
TOTAL
(MG/L
AS N) | GEN,
NO2+NO3
TOTAL
(MG/L
AS N) | GEN,
AMMONIA
TOTAL
(MG/L
AS N) | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4) | GEN,
ORGANIC
TOTAL
(MG/L
AS N) | GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | GEN,
TOTAL
(MG/L
AS N) | | APR 1987
30
MAY
14
JUN | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
78 | RESIDUE
AT 105
DEG. C,
TOTAL
(MG/L)
80 | VOLA-
TILE ON
IGNI-
TION,
TOTAL
(MG/L) | TOTAL
FIXED
(MG/L)
46 | GEN,
NITRATE
TOTAL
(MG/L
AS N)
0.390 | GEN,
NITRITE
TOTAL
(MG/L
AS N)
0.010 | GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
0.400
0.510 | GEN,
AMMONIA
TOTAL
(MG/L
AS N)
0.240 | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4)
0.31 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.07 | GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
0.31 | GEN,
TOTAL
(MG/L
AS N)
0.71 | | APR 1987
30
MAY
14
JUN
19 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | RESIDUE
AT 105
DEG. C,
TOTAL
(MG/L) | VOLA-
TILE ON
IGNI-
TION,
TOTAL
(MG/L) | TOTAL
FIXED
(MG/L) | GEN,
NITRATE
TOTAL
(MG/L
AS N) | GEN,
NITRITE
TOTAL
(MG/L
AS N)
0.010 | GEN,
NO2+NO3
TOTAL
(MG/L
AS N) | GEN,
AMMONIA
TOTAL
(MG/L
AS N) | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4) | GEN,
ORGANIC
TOTAL
(MG/L
AS N) | GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | GEN,
TOTAL
(MG/L
AS N) | | APR 1987
30
MAY
14
JUN
19
JUL | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
78
87 | RESIDUE
AT 105
DEG. C,
TOTAL
(MG/L)
80
94 | VOLA-
TILE ON
IGNI-
TION,
TOTAL
(MG/L)
34
24 | TOTAL
FIXED
(MG/L)
46
72 | GEN,
NITRATE
TOTAL
(MG/L
AS N)
0.390
0.460 | GEN,
NITRITE
TOTAL
(MG/L
AS N)
0.010
0.050 | GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
0.400
0.510 | GEN,
AMMONIA
TOTAL
(MG/L
AS N)
0.240
0.600 | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4)
0.31
0.77 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.07
0.40 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.31 1.0 0.44 | GEN,
TOTAL
(MG/L
AS N)
0.71
1.5 | | APR 1987
30
MAY
14
JUN
19
JUL
28 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
78 | RESIDUE
AT 105
DEG. C,
TOTAL
(MG/L)
80 | VOLA-
TILE ON
IGNI-
TION,
TOTAL
(MG/L) | TOTAL
FIXED
(MG/L)
46 | GEN,
NITRATE
TOTAL
(MG/L
AS N)
0.390 | GEN,
NITRITE
TOTAL
(MG/L
AS N)
0.010 | GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
0.400
0.510 | GEN,
AMMONIA
TOTAL
(MG/L
AS N)
0.240 | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4)
0.31 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.07 | GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
0.31 | GEN,
TOTAL
(MG/L
AS N)
0.71 | | APR 1987
30
MAY
14
JUN
19
JUL
28
SEP | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
78
87 | RESIDUE
AT 105
DEG. C,
TOTAL
(MG/L)
80
94
85 | VOLA- TILE ON IGNI- TION, TOTAL (MG/L) 34 24 33 33 | TOTAL
FIXED
(MG/L)
46
72
59 | GEN,
NITRATE
TOTAL
(MG/L
AS N)
0.390
0.460 | GEN,
NITRITE
TOTAL
(MG/L
AS N)
0.010
0.050
0.030 | GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
0.400
0.510
0.350 | GEN,
AMMONIA
TOTAL
(MG/L
AS N)
0.240
0.600
0.290
0.040 | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4)
0.31
0.77
0.37 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.07
0.40
0.15 | GEN, AM- MONIA + ORGANIC TOTTAL (MG/L AS N) 0.31 1.0 0.44 | GEN,
TOTAL
(MG/L
AS N)
0.71
1.5
0.79 | | APR 1987
30
MAY
14
JUN
19
JUL
28 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
78
87 | RESIDUE
AT 105
DEG. C,
TOTAL
(MG/L)
80
94 | VOLA-
TILE ON
IGNI-
TION,
TOTAL
(MG/L)
34
24 | TOTAL
FIXED
(MG/L)
46
72 | GEN,
NITRATE
TOTAL
(MG/L
AS N)
0.390
0.460
0.320 | GEN,
NITRITE
TOTAL
(MG/L
AS N)
0.010
0.050 | GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
0.400
0.510 | GEN,
AMMONIA
TOTAL
(MG/L
AS N)
0.240
0.600 | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4)
0.31
0.77 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.07
0.40 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.31 1.0 0.44 | GEN,
TOTAL
(MG/L
AS N)
0.71
1.5 | | APR 1987
30
MAY
14
JUN
19
JUL
28
SEP
22 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
78
87 | RESIDUE
AT 105
DEG. C,
TOTAL
(MG/L)
80
94
85 | VOLA- TILE ON IGNI- TION, TOTAL (MG/L) 34 24 33 33 | TOTAL
FIXED
(MG/L)
46
72
59 | GEN,
NITRATE
TOTAL
(MG/L
AS N)
0.390
0.460
0.320 | GEN,
NITRITE
TOTAL
(MG/L
AS N)
0.010
0.050
0.030 | GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
0.400
0.510
0.350 | GEN,
AMMONIA
TOTAL
(MG/L
AS N)
0.240
0.600
0.290
0.040 | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4)
0.31
0.77
0.37 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.07
0.40
0.15 | GEN, AM- MONIA + ORGANIC TOTTAL (MG/L AS N) 0.31 1.0 0.44 | GEN,
TOTAL
(MG/L
AS N)
0.71
1.5
0.79 | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). # 01327755 HUDSON RIVER AT ROGERS ISLAND AT FORT EDWARD, NY - continued | DATE | NITRO-
GEN,
TOTAL
(MG/L
AS NO3) | PHOS-
PHORUS
TOTAL
(MG/L
AS P) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P) | PHOS-
PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4) | CADMIUM
TOTAL
RECOV-
ERABLE
(UG/L
AS CD) | CADMIUM
DIS-
SOLVED
(UG/L
AS CD) | COPPER,
TOTAL
RECOV-
ERABLE
(UG/L
AS CU) | COPPER,
DIS-
SOLVED
(UG/L
AS CU) | IRON,
TOTAL
RECOV-
ERABLE
(UG/L
AS FE) |
LEAD,
TOTAL
RECOV-
ERABLE
(UG/L
AS PB) | LEAD,
DIS-
SOLVED
(UG/L
AS PB) | |--|---|--|--|--|--|--|---|--|--|--|--| | APR 1987
30 | 3.1 | 0.030 | 0.010 | 0.03 | <10 | ~- | <10 | | 170 | <100 | | | MAY
14 | 6.7 | 0.040 | 0.010 | 0.03 | <10 | | <10 | | 170 | 8 | | | Ј ИМ
19 | 3.5 | 0.020 | 0.00 | 0.0 | <10 | | <10 | | 200 | 10 | | | JUL
28 | 3.5 | 0.030 | 0.00 | 0.0 | <10 | 1.0 | 20 | 2 | 220 | <5 | <5 | | SEP
22 | 2.6 | 0.020 | 0.00 | 0.0 | <1 | 1.0 | 5 | 2 | 300 | <5 | <5 | | DEC
08 | 4.3 | 0.010 | 0.00 | 0.0 | <1 | | 9 | | 150 | < 5 | | | DATE | MANGA-
NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | MERCURY
TOTAL
RECOV-
ERABLE
(UG/L
AS HG) | NICKEL,
TOTAL
RECOV-
ERABLE
(UG/L
AS NI) | NICKEL,
DIS-
SOLVED
(UG/L
AS NI) | ZINC,
TOTAL
RECOV-
ERABLE
(UG/L
AS ZN) | ZINC,
DIS-
SOLVED
(UG/L
AS ZN) | BROMO-
FORM
TOTAL
(UG/L) | CARBON-
TETRA-
CHLO-
RIDE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
DI-
BROMO-
METHANE
TOTAL
(UG/L) | CHLORO-
ETHANE
TOTAL
(UG/L) | | APR 1987 | 30 | <0.10 | <100 | | 10 | ~ = | ND | ND | ND | ND | ND | | MAY
14 | 30 | <0.10 | <1 | ~- | 10 | | ND | ND | ND | ND | ND | | JUN
19 | 30 | <0.10 | <1 | | <10 | | ND | ND | ND | ND | ND | | JUL
28 | 40 | <0.10 | 4 | <1 | 30 | 10 | ИD | ND | ND | ND | ND | | SEP
22 | 30 | <0.10 | 4 | <1 | <10 | 30 | ND | ND | ND | ND | ND | | DEC
08 | 10 | <0.10 | 7 | ~- | <10 | | ND | ND | ND | ND | ND | | | | | | | | | | | | | | | DATE | CHLORO-
FORM
TOTAL
(UG/L) | CIS
1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | DI-
CHLORO-
BROMO-
METHANE
TOTAL
(UG/L) | METHYL-
BROMIDE
TOTAL
(UG/L) | METHYL-
CHLO-
RIDE
TOTAL
(UG/L) | METHYL-
ENE
CHLO-
RIDE
TOTAL
(UG/L) | 1,1,1-
TRI-
CHLORO-
ETHANE
TOTAL
(UG/L) | 1,1-DI-
CHLORO-
ETHANE
TOTAL
(UG/L) | 1,1-DI-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 1,1,2-
TRI-
CHLORO-
ETHANE
TOTAL
(UG/L) | 1,1,2,2
TETRA-
CHLORO-
ETHANE
TOTAL
(UG/L) | | APR 1987
30 | FORM
TOTAL | 1,3-DI-
CHLORO-
PROPENE
TOTAL | CHLORO-
BROMO-
METHANE
TOTAL | BROMIDE
TOTAL | CHLO-
RIDE
TOTAL | ENE
CHLO-
RIDE
TOTAL | TRI-
CHLORO-
ETHANE
TOTAL | CHLORO-
ETHANE
TOTAL | CHLORO-
ETHYL-
ENE
TOTAL | TRI-
CHLORO-
ETHANE
TOTAL | TETRA-
CHLORO-
ETHANE
TOTAL | | APR 1987
30
MAY
14 | FORM
TOTAL
(UG/L) | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | CHLORO-
BROMO-
METHANE
TOTAL
(UG/L) | BROMIDE
TOTAL
(UG/L) | CHLO-
RIDE
TOTAL
(UG/L) | ENE
CHLO-
RIDE
TOTAL
(UG/L) | TRI-
CHLORO-
ETHANE
TOTAL
(UG/L) | CHLORO-
ETHANE
TOTAL
(UG/L) | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | TRI-
CHLORO-
ETHANE
TOTAL
(UG/L) | TETRA-
CHLORO-
ETHANE
TOTAL
(UG/L) | | APR 1987
30
MAY
14
JUN
19 | FORM
TOTAL
(UG/L)
ND | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | CHLORO-
BROMO-
METHANE
TOTAL
(UG/L) | BROMIDE
TOTAL
(UG/L)
ND | CHLO-
RIDE
TOTAL
(UG/L) | ENE CHLO- RIDE TOTAL (UG/L) ND | TRI -
CHLORO-
ETHANE
TOTAL
(UG/L)
ND | CHLORO-
ETHANE
TOTAL
(UG/L) | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | TRI -
CHLORO-
ETHANE
TOTAL
(UG/L) | TETRA-
CHLORO-
ETHANE
TOTAL
(UG/L) | | APR 1987
30
MAY
14
JUN | FORM
TOTAL
(UG/L)
ND
ND | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
ND | CHLORO-
BROMO-
METHANE
TOTAL
(UG/L)
ND | BROMIDE
TOTAL
(UG/L)
ND | CHLO-
RIDE
TOTAL
(UG/L)
ND | ENE CHLO- RIDE TOTAL (UG/L) ND | TRI -
CHLORO-
ETHANE
TOTAL
(UG/L)
ND | CHLORO-
ETHANE
TOTAL
(UG/L)
ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND | TRI -
CHLORO-
ETHANE
TOTAL
(UG/L)
ND | TETRA-
CHLORO-
ETHANE
TOTAL
(UG/L)
ND | | APR 1987
30
MAY
14
JUN
19
JUL
28 | FORM
TOTAL
(UG/L)
ND
ND | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
ND
ND | CHLORO-
BROMO-
METHANE
TOTAL
(UG/L)
ND
ND | BROMIDE
TOTAL
(UG/L)
ND
ND | CHLO-
RIDE
TOTAL
(UG/L)
ND
ND | ENE CHLO- RIDE TOTAL (UG/L) ND ND | TRI-
CHLORO-
ETHANE
TOTAL
(UG/L)
ND
ND | CHLORO-
ETHANE
TOTAL
(UG/L)
ND
ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND
ND | TRI-
CHLORO-
ETHANE
TOTAL
(UG/L)
ND
ND | TETRA-
CHLORO-
ETHANE
TOTAL
(UG/L)
ND
ND | | APR 1987
30
MAY
14
JUN
19
JUL
28
SEP
22 | FORM TOTAL (UG/L) ND ND ND | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
ND
ND | CHLORO-
BROMO-
METHANE
TOTAL
(UG/L)
ND
ND | BROMIDE
TOTAL
(UG/L)
ND
ND
ND | CHLO-
RIDE
TOTAL
(UG/L)
ND
ND | ENE CHLO- RIDE TOTAL (UG/L) ND ND ND | TRI-
CHLORO-
ETHANE
TOTAL
(UG/L)
ND
ND | CHLORO-ETHANE TOTAL (UG/L) ND ND ND ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND
ND | TRI-
CHLORO-
ETHANE
TOTAL
(UG/L)
ND
ND | TETRA- CHLORO- ETHANE TOTAL (UG/L) ND ND ND ND | | APR 1987 30 MAY 14 JUN 19 JUL 28 SEP 22 DEC 08 | FORM TOTAL (UG/L) ND ND ND ND | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
ND
ND
ND | CHLORO-
BROMO-
METHANE
TOTAL
(UG/L)
ND
ND
ND | BROMIDE
TOTAL
(UG/L)
ND
ND
ND
ND | CHLO-
RIDE
TOTAL
(UG/L)
ND
ND
ND | ENE CHLO- RIDE TOTAL (UG/L) ND ND ND ND ND | TRI - CHLORO- ETHANE TOTAL (UG/L) ND ND ND ND ND | CHLORO-ETHANE TOTAL (UG/L) ND ND ND ND ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND ND ND ND ND | TRI- CHLORO- ETHANE TOTAL (UG/L) ND ND ND ND ND | TETRA- CHLORO- ETHANE TOTAL (UG/L) ND ND ND ND ND | | APR 1987 30 MAY 14 JUN 19 28 SEP 22 DEC 08 DATE APR 1987 30 | FORM TOTAL (UG/L) ND ND ND ND ND ND ND ND TOTAL | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND T,2-DI-CHLORO-ETHANE WATER WHOLE TOTAL | CHLORO-BROMO-METHANE TOTAL (UG/L) ND ND ND ND ND ND ND PO ND | BROMIDE
TOTAL
(UG/L)
ND
ND
ND
ND
ND
ND
CHCANSDI
CHLORO-
ETHENE
TOTAL | CHLO-RIDE RIDE TOTAL (UG/L) ND ND ND ND ND ND CHLORO-BENZENE TOTAL | ENE CHLO- RIDE TOTAL (UG/L) ND TOTAL ND | TRI- CHLORO- ETHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND TETRA- CHLORO- ETHYL- ENE TOTAL | CHLORO-ETHANE TOTAL (UG/L) ND ND ND ND ND ND TRANS- 1,3-DI- CHLORO-PROPENE TOTAL | CHLORO-ETHYL-ENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND ETRI-CHLORO-ETHYL-ENE TOTAL | TRI- CHLORO- ETHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TETRA- CHLORO- ETHANE TOTAL (UG/L) ND ND ND ND ND ND VINYL CHLO- RIDE TOTAL | | APR 1987 30 MAY 14 JUN 19 28 SEP 22 DEC 08 DATE APR 1987 30 MAY 14 | FORM TOTAL (UG/L) ND ND ND ND ND ND TOTAL (UG/L) | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-BROMO-METHANE TOTAL (UG/L) ND ND ND ND ND CHLORO-PROPANE TOTAL (UG/L) | BROMIDE TOTAL (UG/L) ND ND ND ND ND ND CHLORO-ETHENE TOTAL (UG/L) | CHLO-RIDE TOTAL (UG/L) ND ND ND ND ND CHLORO-BENZENE TOTAL (UG/L) | ENE CHLO- RIDE TOTAL (UG/L) ND ND ND ND ND ND TOTAL CHLORO- BENZENE TOTAL (UG/L) | TRI- CHLORO- ETHANE TOTAL (UG/L) ND ND ND ND ND ND TETRA- CHLORO- ETHYL- ENE TOTAL (UG/L) | CHLORO-ETHANE TOTAL (UG/L) ND ND ND ND ND ND TRANS- 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) | CHLORO-ETHYL-ENE TOTAL (UG/L) ND ND ND ND ND ND CHLORO-ETHYL-ENE TOTAL (UG/L) | TRI- CHLORO- ETHANE TOTAL (UG/L) ND ND ND ND ND VD | TETRA-CHLORO-ETHANE TOTAL (UG/L) ND ND ND ND ND VINYL CHLO-RIDE TOTAL (UG/L) | | APR 1987 30 MAY 14 JUN 19 SEP 22 DEC 08 DATE APR 1987 30 MAY 14 JUN 19 | FORM TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-BROMO-METHANE TOTAL (UG/L) ND | BROMIDE TOTAL (UG/L) ND ND ND ND ND ND TOTAL (UG/L) ND | CHLO-RIDE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | ENE CHLO- RIDE TOTAL (UG/L) ND | TRI- CHLORO- ETHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-ETHANE TOTAL (UG/L) ND ND ND ND ND ND TRANS-1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND ND ND ND ND TRI-CHLORO-ETHYL-ENE TOTAL (UG/L) ND | TRI- CHLORO- ETHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TETRA- CHLORO- ETHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | | APR 1987 30 MAY 14 JUN 19 JUL 28 SEP 22 DEC 08 DATE APR 1987 30 MAY 14 JUN 19 JUL 28 | FORM TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-BROMO-METHANE TOTAL (UG/L) ND | BROMIDE TOTAL (UG/L) ND | CHLO-RIDE TOTAL (UG/L) ND | ENE CHLO- RIDE TOTAL (UG/L) ND | TRI- CHLORO- ETHANE TOTAL (UG/L) ND | CHLORO-ETHANE TOTAL (UG/L) ND
| CHLORO-ETHYL-ENE TOTAL (UG/L) ND | TRI- CHLORO- ETHANE TOTAL (UG/L) ND | TETRA- CHLORO- ETHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | | APR 1987 30 MAY 14 JUN 19 SEP 22 DEC 08 DATE APR 1987 30 MAY 14 JUN 19 JUL | FORM TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-BROMO-METHANE TOTAL (UG/L) ND | BROMIDE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLO-RIDE RIDE TOTAL (UG/L) ND | ENE CHLO- RIDE TOTAL (UG/L) ND | TRI- CHLORO- ETHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-ETHANE TOTAL (UG/L) ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TRI- CHLORO- ETHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TETRA- CHLORO- ETHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). ### 01329500 BATTEN KILL AT BATTENVILLE, NY LOCATION.--Lat 43*06'05",long 73*25'55", Washington County, Hydrologic Unit 02020003, at Niagara Mohawk forebay near Route 29 bridge in Middle Falls. DRAINAGE AREA. -- 394 mi2. PERIOD OF RECORD.--Water years 1987-89. CHEMICAL DATA: 1987 (b), 1988 (c), 1989 (a). MINOR ELEMENTS DATA: 1987 (b), 1988 (c), 1989 (a). PESTICIDE DATA: 1987 (b), 1988 (c), 1989 (a). ORGANIC DATA: PCB--1988 (a). NUTRIENT DATA: 1987 (b), 1988 (c), 1989 (a). BIOLOGICAL DATA: Bacteria--1987 (b), 1988 (c), 1989 (a). SEDIMENT DATA: 1988 (b), 1989 (a). REMARKS.--Water-discharge data obtained from a discharge rating developed for this site. ### WATER-QUALITY DATA | | | DIS- | | SPE- | PH | | | BARO- | | OXYGEN, | COLI- | FECAL | |-----------|------|------------------|---------------|---------------|----------------|---------|-------|---------------|---------|-----------------|------------------|---------------| | | | CHARGE,
INST. | SPE-
CIFIC | CIFIC
CON- | WATER
WHOLE | | | METRIC | | DIS- | FORM, | COLI- | | | | CUBIC | CON- | DUCT- | FIELD | TEMPER- | TUR- | PRES-
SURE | OXYGEN, | SOLVED
(PER- | TOTAL,
IMMED. | FORM
24-HR | | | | FEET | DUCT- | ANCE | (STAND- | ATURE | BID- | (MM | DIS- | CENT | (COLS. | MEM.FIL | | DATE | TIME | PER | ANCE | LAB | ARD | WATER | ITY | OF | SOLVED | SATUR- | PER | (COLS./ | | 2 | | SECOND | (US/CM) | (US/CM) | UNITS) | (DEG C) | (NTU) | HG) | (MG/L) | ATION) | 100 ML) | 100 ML) | | | | | • | • | | • | • | | | | | , | | APR 1987 | 4445 | | | | | | | | | | | ŗ | | 30 | 1145 | | | | 8.0 | | 0.40 | | 11.8 | | | | | MAY | 1215 | | | 222 | | 14 5 | 0.70 | | 0.0 | | 2200 | 120 | | 12
JUN | 1215 | | | 233 | 8.0 | 14.5 | 0.70 | | 9.9 | | 3300 | 120 | | 11 | 1250 | | | 142 | 8.0 | 17.5 | 1.3 | | 11.6 | | 500 | 200 | | JUL | 1230 | | | 142 | 0.0 | 11.5 | 1.3 | | 11.0 | | 300 | 200 | | 30 | 1300 | | | | 8.3 | 21.0 | 0.55 | | 10.8 | | >100 | 80.0 | | SEP | +555 | | | | | 2 | 0.55 | | 10.0 | | 7100 | 00.5 | | 21 | 1030 | | | 153 | 7.5 | 14.0 | 1.9 | | 10.7 | | | | | OCT | | | | | | | | | | | | ŀ | | 27 | 1030 | | | 187 | 7.7 | 6.0 | 0.80 | | 12.6 | | | | | DEC | | | | | | | | | | | | I | | 09 | 1030 | | | 197 | 7.5 | 3.0 | 1.0 | | 17.7 | | 240 | 60.0 | | MAR 1988 | 4050 | 24.42 | 400 | | | | | | | | | | | 29 | 1050 | 2140 | 130 | 134 | 7.6 | 3.5 | 4.0 | 772 | 13.6 | 101 | 110 | 12.0 | | APR
11 | 1100 | 760 | 163 | 160 | 7.7 | 7.5 | | 760 | 12.5 | 104 | 110 | 20.0 | | 26 | 1300 | 699 | 188 | 188 | 6.7 | 8.0 | 0.80 | 760 | 12.5 | 104 | 100 | 5.00 | | MAY | 1300 | 095 | 100 | 100 | 0., | 0.0 | 0.00 | | 12.0 | | 100 | 3.00 | | 16 | 1100 | 617 | 192 | 194 | 8.1 | 14.5 | 0.70 | 758 | 10.8 | 107 | 240 | 35.0 | | 23 | 1030 | 612 | 193 | 189 | 7.9 | 16.0 | 1.2 | 760 | 11.0 | 111 | 160 | 55.0 | | JUN | ••• | ••• | | | | **** | | | | | ••• | 33.5 | | 14 | 1030 | 258 | 224 | 236 | 7.6 | 19.5 | 0.30 | | 7.5 | | 100 | 90.0 | | AUG | | | | | | | | | | | | | | 16 | 1030 | 377 | 237 | 238 | 8.1 | 21.5 | 1.9 | | 8.8 | | >850 | 490 | | OCT | | | | | | | | | | | | | | 03 | 1030 | 185 | 252 | 257 | 8.3 | 15.5 | 0.40 | 763 | 9.6 | 96 | 500 | 200 | | NOV | | | | | | | | _ | | _ | | | | 01 | 1100 | 304 | 198 | 202 | 7.4 | 4.5 | 0.50 | 764 | 13.7 | 105 | 200 | 55.0 | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). # 01329500 BATTEN KILL AT BATTENVILLE, NY - continued | | HARD- | | MAGNE- | | POTAS- | ALKA- | | CHLO- | FLUO~ | SOLIDS,
RESIDUE | SOLIDS,
SUM OF | SOLIDS, | |---|--|---|---|---|---|--|--|--|--|--|--|---| | DATE | NESS
TOTAL
(MG/L
AS
CACO3) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | SIUM,
DIS-
SOLVED
(MG/L
AS MG) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | SIUM,
DIS-
SOLVED
(MG/L
AS K) | LINITY LAB (MG/L AS CACO3) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4) | RIDE,
DIS-
SOLVED
(MG/L
AS CL) | RIDE,
DIS-
SOLVED
(MG/L
AS F) | AT 180
DEG. C
DIS-
SOLVED
(MG/L) | CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | RESIDUE
AT 105
DEG. C,
TOTAL
(MG/L) | | APR 1987 | | | | | | | | | | | | | | 30 | 98 | 28 | 6.7 | | | | | | | 122 | | 122 | | MAY
12 | 110 | 30 | 7.4 | | | | | | | 118 | | 128 | | JUN
11 | 63 | 18 | 4.4 | | | | | | | 84 | | 102 | | JUL
30 | 110 | 30 | 7.4 | | | | | | | 132 | | 167 | | SEP
21 | 80 | 24 | 4.9 | | | | | | | 84 | | 115 | | ОСТ
27 | 90 | 26 | 6.2 | | | | | | | 80 | | 90 | | DEC
09 | 84 | 24 | 5.9 | | | | | | | 122 | | 125 | | MAR 1988
29 | 61 | 18 | 4.0 | 3.0 | 0.70 | 49 | 11 | 4.4 | 0.10 | 83 | 71 | 105 | | APR | | | | | | | | | | | | | | 11 | 71
88 | 20
24 | 5.2
6.7 | 3.1
4.2 | 0.70
0.70 | 63
76 | 11
9.9 | 5.4
6.6 | 0.10
0.10 | 93
113 | 83
98 | 116
119 | | MAY
16
23 | 87
85 | 24
24 | 6.5
6.2 | 3.8
3.8 | 0.70
0.70 | 79
75 | 10
11 | 6.0
6.0 | 0.20
0.20 | 132 | 99
9 7 | 141
116 | | JUN
14 | 110 | 29 | 8.5 | 4.9 | 0.80 | 97 | 10 | 8.0 | 0.10 | 133 | 119 | 151 | | AUG
16 | 110 | 30 | 9.6 | 5.3 | 0.90 | 103 | 8.9 | 7.9 | <0.10 | ~- | 124 | 135 | | OCT
03 | 120 | 32 | 9.7 | 5.7 | 1.2 | 109 | 9.9 | 9.1 | <0.10 | 156 | 133 | 173 | | NOV
01 | 94 | 25 | 7.7 | 4.2 | 0.90 | 83 | 10 | 6.6 | <0.10 | 119 | 104 | 129 | SOLIDS,
VOLA- | | NITRO- | NITRO- | NITRO- | NITRO- | NITRO- | NITRO- | NITRO-
GEN, AM- | | | | | | VOLA-
TILE ON | PECINIF | NITRO-
GEN, | NITRO-
GEN, | NITRO-
GEN, | NITRO-
GEN, | NITRO-
GEN, | NITRO-
GEN, | GEN,AM-
MONIA + | NITRO- | NITRO- | PHOS- | | DAME | VOLA-
TILE ON
IGNI-
TION, | RESIDUE
TOTAL | GEN,
NITRATE
TOTAL | GEN,
NITRITE
TOTAL | GEN,
NO2+NO3
TOTAL | GEN,
AMMONIA
TOTAL | GEN,
AMMONIA
TOTAL | GEN,
ORGANIC
TOTAL | GEN, AM-
MONIA +
ORGANIC
TOTAL | GEN,
TOTAL | GEN,
TOTAL | PHORUS
TOTAL | | DATE | VOLA-
TILE ON
IGNI- | | GEN,
NITRATE | GEN,
NITRITE | GEN,
NO2+NO3 | GEN,
AMMONIA | GEN,
AMMONIA | GEN,
ORGANIC | GEN, AM-
MONIA +
ORGANIC | GEN, | GEN, | PHORUS | | APR 1987 | VOLA-
TILE ON
IGNI-
TION,
TOTAL
(MG/L) | TOTAL
FIXED
(MG/L) | GEN,
NITRATE
TOTAL
(MG/L
AS N) | GEN,
NITRITE
TOTAL
(MG/L
AS N) | GEN,
NO2+NO3
TOTAL
(MG/L
AS N) | GEN,
AMMONIA
TOTAL
(MG/L
AS N) | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4) | GEN,
ORGANIC
TOTAL
(MG/L
AS N) | GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | GEN,
TOTAL
(MG/L
AS N) | GEN,
TOTAL
(MG/L
AS NO3) | PHORUS
TOTAL
(MG/L
AS P) | | | VOLA-
TILE ON
IGNI-
TION,
TOTAL | TOTAL
FIXED | GEN,
NITRATE
TOTAL
(MG/L | GEN,
NITRITE
TOTAL
(MG/L | GEN,
NO2+NO3
TOTAL
(MG/L | GEN,
AMMONIA
TOTAL
(MG/L | GEN,
AMMONIA
TOTAL
(MG/L | GEN,
ORGANIC
TOTAL
(MG/L | GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L | GEN,
TOTAL
(MG/L | GEN,
TOTAL
(MG/L | PHORUS
TOTAL
(MG/L | | APR 1987
30
MAY
12 | VOLA-
TILE ON
IGNI-
TION,
TOTAL
(MG/L) | TOTAL
FIXED
(MG/L) | GEN,
NITRATE
TOTAL
(MG/L
AS N) | GEN,
NITRITE
TOTAL
(MG/L
AS N) | GEN,
NO2+NO3
TOTAL
(MG/L
AS N) | GEN,
AMMONIA
TOTAL
(MG/L
AS N) | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4) | GEN,
ORGANIC
TOTAL
(MG/L
AS N) | GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | GEN,
TOTAL
(MG/L
AS N) | GEN,
TOTAL
(MG/L
AS NO3) | PHORUS
TOTAL
(MG/L
AS P) | | APR
1987
30
MAY
12
JUN
11 | VOLA-
TILE ON
IGNI-
TION,
TOTAL
(MG/L) | TOTAL
FIXED
(MG/L) | GEN,
NITRATE
TOTAL
(MG/L
AS N) | GEN, NITRITE TOTAL (MG/L AS N) ND | GEN,
NO2+NO3
TOTAL
(MG/L
AS N) | GEN,
AMMONIA
TOTAL
(MG/L
AS N) | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4) | GEN,
ORGANIC
TOTAL
(MG/L
AS N) | GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | GEN,
TOTAL
(MG/L
AS N) | GEN,
TOTAL
(MG/L
AS NO3) | PHORUS
TOTAL
(MG/L
AS P) | | APR 1987
30
MAY
12
JUN
11
JUL
30 | VOLA-
TILE ON
IGNI-
TION,
TOTAL
(MG/L) | TOTAL
FIXED
(MG/L)
74 | GEN,
NITRATE
TOTAL
(MG/L
AS N) | GEN, NITRITE TOTAL (MG/L AS N) ND 0.00 | GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
0.850
0.780 | GEN,
AMMONIA
TOTAL
(MG/L
AS N)
0.020 | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4)
0.03 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.04 | GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
0.06 | GEN,
TOTAL
(MG/L
AS N)
0.91 | GEN,
TOTAL
(MG/L
AS NO3)
4.0 | PHORUS
TOTAL
(MG/L
AS P)
0.00 | | APR 1987 30 MAY 12 JUN 11 JUL 30 SEP 21 | VOLA-
TILE ON
IGNI-
TION,
TOTAL
(MG/L)
48
42 | TOTAL
FIXED
(MG/L)
74
111
57 | GEN,
NITRATE
TOTAL
(MG/L
AS N) | GEN, NITRITE TOTAL (MG/L AS N) ND 0.00 | GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
0.850
0.780 | GEN,
AMMONIA
TOTAL
(MG/L
AS N)
0.020
0.030
0.010 | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4)
0.03
0.04 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.04
0.09 | GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
0.06
0.12 | GEN,
TOTAL
(MG/L
AS N)
0.91
0.90 | GEN,
TOTAL
(MG/L
AS NO3)
4.0
4.0 | PHORUS
TOTAL
(MG/L
AS P)
0.00
0.010 | | APR 1987 30 MAY 12 JUN 11 JUL 30 SEP 21 OCT 27 | VOLA- TILE ON IGNI- TION, TOTAL (MG/L) 48 42 45 | TOTAL FIXED (MG/L) 74 111 57 97 | GEN,
NITRATE
TOTAL
(MG/L
AS N) | GEN, NITRITE TOTAL (MG/L AS N) ND 0.00 ND ND | GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
0.850
0.780
0.400
0.760 | GEN,
AMMONIA
TOTAL
(MG/L
AS N)
0.020
0.030
0.010 | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4)
0.03
0.04
0.01 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.04
0.09
0.13 | GEN, AM- MONIA + ORGANIC TOTPAL (MG/L AS N) 0.06 0.12 0.14 0.19 | GEN,
TOTAL
(MG/L
AS N)
0.91
0.90
0.54 | GEN,
TOTAL (MG/L
AS NO3)
4.0
4.0
2.4 | PHORUS
TOTAL
(MG/L
AS P)
0.00
0.010
0.010 | | APR 1987 30 MAY 12 JUN 11 JUL 30 SEP 21 OCT 27 DEC 09 | VOLA- TILE ON IGNI- TION, TOTAL (MG/L) 48 42 45 70 74 | TOTAL FIXED (MG/L) 74 111 57 97 41 | GEN,
NITRATE
TOTAL
(MG/L
AS N) | GEN, NITRITE TOTAL (MG/L AS N) ND O.00 ND ND | GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
0.850
0.780
0.400
0.760
0.480 | GEN,
AMMONIA
TOTAL
(MG/L
AS N)
0.020
0.030
0.010
0.010 | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4)
0.03
0.04
0.01
0.01 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.04
0.09
0.13
0.18 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.06 0.12 0.14 0.19 | GEN,
TOTAL
(MG/L
AS N)
0.91
0.90
0.54
0.95 | GEN,
TOTAL
(MG/L
AS NO3)
4.0
4.0
2.4
4.2 | PHORUS
TOTAL
(MG/L
AS P)
0.00
0.010
0.010
0.00 | | APR 1987 30 MAY 12 JUN 11 JUL 30 SEP 21 OCT 27 DEC 09 MAR 1988 29 | VOLA- TILE ON IGNI- TION, TOTAL (MG/L) 48 42 45 70 74 50 | TOTAL FIXED (MG/L) 74 111 57 97 41 73 | GEN,
NITRATE
TOTAL
(MG/L
AS N) | GEN, NITRITE TOTAL (MG/L AS N) ND 0.00 ND ND ND ND | GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
0.850
0.780
0.400
0.760
0.480
0.740 | GEN,
AMMONIA
TOTAL
(MG/L
AS N)
0.020
0.030
0.010
0.010
0.010 | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4)
0.03
0.04
0.01
0.01
0.01 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.04
0.09
0.13
0.18
0.21 | GEN, AM- MONIA + ORGANIC TOTPAL (MG/L AS N) 0.06 0.12 0.14 0.19 0.22 0.09 | GEN,
TOTAL
(MG/L
AS N)
0.91
0.90
0.54
0.95
0.70 | GEN,
TOTAL
(MG/L
AS NO3)
4.0
4.0
2.4
4.2
3.1 | PHORUS
TOTAL
(MG/L
AS P)
0.00
0.010
0.010
0.00
0.020 | | APR 1987 30 MAY 12 JUN 11 JUL 30 SEP 21 OCT 27 DEC 09 MAR 1988 | VOLA- TILE ON IGNI- TION, TOTAL (MG/L) 48 42 45 70 74 50 | TOTAL FIXED (MG/L) 74 111 57 97 41 73 75 | GEN, NITRATE TOTAL (MG/L AS N) 0.780 | GEN, NITRITE TOTAL (MG/L AS N) ND O.00 ND ND ND ND ND | GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
0.850
0.780
0.400
0.760
0.480
0.740 | GEN,
AMMONIA
TOTAL
(MG/L
AS N)
0.020
0.030
0.010
0.010
0.010 | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4)
0.03
0.04
0.01
0.01
0.01 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.04
0.09
0.13
0.18
0.21
0.09 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.06 0.12 0.14 0.19 0.22 0.09 | GEN,
TOTAL
(MG/L
AS N)
0.91
0.90
0.54
0.95
0.70
0.83 | GEN,
TOTAL
(MG/L
AS NO3)
4.0
4.0
2.4
4.2
3.1
3.7
4.5 | PHORUS
TOTAL
(MG/L
AS P)
0.00
0.010
0.010
0.020
0.00
0.010 | | APR 1987 30 MAY 12 JUN 11 JUL 30 SEP 21 OCT 27 DEC 09 MAR 1988 29 APR 11 26 | VOLA- TILE ON IGNI- TION, TOTAL (MG/L) 48 42 45 70 74 50 50 | TOTAL FIXED (MG/L) 74 111 57 97 41 73 75 79 | GEN, NITRATE TOTAL (MG/L AS N) 0.780 | GEN, NITRITE TOTAL (MG/L AS N) ND 0.00 ND | GEN, NO2+NO3 TOTAL (MG/L AS N) 0.850 0.780 0.400 0.760 0.480 0.740 0.930 0.730 | GEN, AMMONIA TOTAL (MG/L AS N) 0.020 0.030 0.010 0.010 0.010 0.010 0.00 | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4)
0.03
0.04
0.01
0.01
0.01 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.04
0.09
0.13
0.18
0.21
0.09 | GEN, AM- MONIA + ORGANIC TOTPAL (MG/L AS N) 0.06 0.12 0.14 0.19 0.22 0.09 0.09 | GEN,
TOTAL
(MG/L
AS N)
0.91
0.90
0.54
0.95
0.70
0.83
1.0 | GEN,
TOTAL
(MG/L)
AS NO3)
4.0
4.0
2.4
4.2
3.1
3.7
4.5 | PHORUS
TOTAL
(MG/L
AS P)
0.00
0.010
0.010
0.020
0.00
0.020 | | APR 1987 30 MAY 12 JUN 11 JUL 30 SEP 21 OCT 27 DEC 09 MAR 1988 29 APR 11 | VOLA- TILE ON IGNI- TION, TOTAL (MG/L) 48 42 45 70 74 50 50 26 22 | TOTAL FIXED (MG/L) 74 111 57 97 41 73 75 79 94 | GEN, NITRATE TOTAL (MG/L AS N) 0.780 | GEN, NITRITE TOTAL (MG/L AS N) ND 0.00 ND | GEN, NO2+NO3 TOTAL (MG/L AS N) 0.850 0.780 0.400 0.760 0.480 0.740 0.930 0.730 0.720 0.640 0.600 | GEN, AMMONIA TOTAL (MG/L AS N) 0.020 0.030 0.010 0.010 0.010 0.010 ND 0.010 ND 0.010 ND 0.000 0.000 | GEN, AMMONIA TOTAL (MG/L AS NH4) 0.03 0.04 0.01 0.01 0.01 0.01 0.01 0.00 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.04
0.09
0.13
0.18
0.21
0.09

0.22 | GEN, AM- MONIA + ORGANIC TOTPAL (MG/L AS N) 0.06 0.12 0.14 0.19 0.22 0.09 0.09 0.23 0.14 0.30 0.16 | GEN,
TOTAL
(MG/L
AS N)
0.91
0.90
0.54
0.95
0.70
0.83
1.0
0.96
0.86 | GEN,
TOTAL
(MG/L
AS NO3)
4.0
4.0
2.4
4.2
3.1
3.7
4.5
4.2 | PHORUS
TOTAL
(MG/L
AS P)
0.00
0.010
0.010
0.020
0.00
0.010
0.020
0.010 | | APR 1987 30 MAY 12 JUN 11 JUL 30 SEP 21 OCT 27 DEC 09 MAR 1988 29 APR 11 26 MAY | VOLA- TILE ON IGNI- TION, TOTAL (MG/L) 48 42 45 70 74 50 26 22 56 81 | TOTAL FIXED (MG/L) 74 111 57 97 41 73 75 79 94 63 60 | GEN,
NITRATE
TOTAL
(MG/L
AS N) | GEN, NITRITE TOTAL (MG/L AS N) ND 0.00 ND | GEN, NO2+NO3 TOTAL (MG/L AS N) 0.850 0.780 0.400 0.760 0.480 0.740 0.930 0.730 0.720 0.640 | GEN, AMMONIA TOTAL (MG/L AS N) 0.020 0.030 0.010 0.010 0.010 0.010 ND 0.010 | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4)
0.03
0.04
0.01
0.01
0.0

0.01 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.04
0.09
0.13
0.18
0.21
0.09

0.22

0.30
0.13
0.18 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.06 0.12 0.14 0.19 0.22 0.09 0.09 0.23 0.14 0.30 | GEN,
TOTAL
(MG/L
AS N)
0.91
0.90
0.54
0.95
0.70
0.83
1.0
0.96
0.86
0.94 | GEN,
TOTAL
(MG/L)
AS NO3)
4.0
4.0
2.4
4.2
3.1
3.7
4.5
4.2
3.8
4.2 | PHORUS TOTAL (MG/L AS P) 0.00 0.010 0.010 0.020 0.00 0.010 0.010 0.020 0.010 0.010 0.010 0.010 | | APR 1987 30 MAY 12 JUN 11 JUL 30 SEP 21 OCT 27 DEC 09 MAR 1988 29 APR 11 26 MAY 16 23 JUN 14 AUG | VOLA- TILE ON IGNI- TION, TOTAL (MG/L) 48 42 45 70 74 50 50 26 22 56 81 39 72 | TOTAL FIXED (MG/L) 74 111 57 97 41 73 75 79 94 63 60 77 79 | GEN, NITRATE TOTAL (MG/L AS N) 0.780 0.540 | GEN, NITRITE TOTAL (MG/L AS N) ND 0.00 ND | GEN, NO2+NO3 TOTAL (MG/L AS N) 0.850 0.780 0.400 0.760 0.480 0.740 0.930 0.730 0.720 0.640 0.600 0.540 0.780 | GEN, AMMONIA TOTAL (MG/L AS N) 0.020 0.030 0.010 0.010 0.010 ND 0.010 ND 0.010 0.010 0.010 0.010 0.010 | GEN, AMMONIA TOTAL (MG/L AS NH4) 0.03 0.04 0.01 0.01 0.01 0.01 0.01 0.00 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.04
0.09
0.13
0.18
0.21
0.09

0.22

0.30
0.13
0.18 | GEN, AM- MONIA + ORGANIC TOTTAL (MG/L AS N) 0.06 0.12 0.14 0.19 0.22 0.09 0.09 0.23 0.14 0.30 0.16 0.19 0.14 | GEN,
TOTAL
(MG/L
AS N)
0.91
0.90
0.54
0.95
0.70
0.83
1.0
0.96
0.94
0.76
0.73 | GEN,
TOTAL
(MG/L
AS NO3)
4.0
2.4
4.2
3.1
3.7
4.5
4.2
3.8
4.2
3.4
3.2 | PHORUS TOTAL (MG/L AS P) 0.00 0.010 0.010 0.020 0.000 0.010 0.020 0.010 0.010 0.010 0.010 | | APR 1987 30 MAY 12 JUN 11 JUL 30 SEP 21 CCT 27 DEC 09 MAR 1988 29 APR 11 26 MAY 16 23 JUN 14 AUG 16 OCT | VOLA- TILE ON IGNI- TION, TOTAL (MG/L) 48 42 45 70 74 50 50 26 22 56 81 39 72 41 | TOTAL FIXED (MG/L) 74 111 57 97 41 73 75 79 94 63 60 77 79 94 |
GEN, NITRATE TOTAL (MG/L AS N) 0.780 | GEN, NITRITE TOTAL (MG/L AS N) ND 0.00 ND | GEN, NO2+NO3 TOTAL (MG/L AS N) 0.850 0.780 0.400 0.760 0.480 0.740 0.930 0.730 0.720 0.640 0.600 0.540 0.780 0.300 | GEN, AMMONIA TOTAL (MG/L AS N) 0.020 0.030 0.010 0.010 0.010 0.00 ND 0.010 ND 0.010 0.030 0.010 0.030 0.010 | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4)
0.03
0.04
0.01
0.01
0.0

0.01

0.0
0.04
0.01
0.01 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.04
0.09
0.13
0.18
0.21
0.09

0.22

0.30
0.13
0.18
0.13 | GEN, AM- MONIA + ORGANIC TOTTAL (MG/L AS N) 0.06 0.12 0.14 0.19 0.22 0.09 0.09 0.23 0.14 0.30 0.16 0.19 0.14 0.30 | GEN,
TOTAL
(MG/L
AS N)
0.91
0.90
0.54
0.95
0.70
0.83
1.0
0.96
0.94
0.76
0.73 | GEN,
TOTAL
(MG/L)
AS NO3)
4.0
2.4
4.2
3.1
3.7
4.5
4.2
3.8
4.2
3.4
3.2
4.1 | PHORUS TOTAL (MG/L AS P) 0.00 0.010 0.010 0.020 0.00 0.010 0.010 0.020 0.010 0.010 0.010 0.010 0.010 0.010 | | APR 1987 30 MAY 12 JUN 11 JUL 30 SEP 21 OCT 27 DEC 09 MAR 1988 29 APR 11 26 MAY 16 23 JUN 14 AUG 16 | VOLA- TILE ON IGNI- TION, TOTAL (MG/L) 48 42 45 70 74 50 50 26 22 56 81 39 72 | TOTAL FIXED (MG/L) 74 111 57 97 41 73 75 79 94 63 60 77 79 | GEN, NITRATE TOTAL (MG/L AS N) 0.780 0.540 0.780 | GEN, NITRITE TOTAL (MG/L AS N) ND 0.00 ND | GEN, NO2+NO3 TOTAL (MG/L AS N) 0.850 0.780 0.400 0.760 0.480 0.740 0.930 0.730 0.720 0.640 0.600 0.540 0.780 | GEN, AMMONIA TOTAL (MG/L AS N) 0.020 0.030 0.010 0.010 0.010 ND 0.010 ND 0.010 0.010 0.010 0.010 0.010 | GEN, AMMONIA TOTAL (MG/L AS NH4) 0.03 0.04 0.01 0.01 0.01 0.01 0.0 0.01 0.01 0.00 0.01 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.04
0.09
0.13
0.18
0.21
0.09

0.22

0.30
0.13
0.18 | GEN, AM- MONIA + ORGANIC TOTTAL (MG/L AS N) 0.06 0.12 0.14 0.19 0.22 0.09 0.09 0.23 0.14 0.30 0.16 0.19 0.14 | GEN,
TOTAL
(MG/L
AS N)
0.91
0.90
0.54
0.95
0.70
0.83
1.0
0.96
0.94
0.76
0.73 | GEN,
TOTAL
(MG/L
AS NO3)
4.0
2.4
4.2
3.1
3.7
4.5
4.2
3.8
4.2
3.4
3.2 | PHORUS TOTAL (MG/L AS P) 0.00 0.010 0.010 0.020 0.00 0.010 0.010 0.020 0.010 0.000 0.010 0.000 | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). ### 01329500 BATTEN KILL AT BATTENVILLE, NY - continued | | PHOS- | PHOS- | ALUM- | | | | | | | | | | |---|---|--|--|--|---|--|---|--|--|---|--|---| | DATE | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P) | PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4) | INUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS AL) | ALUM-
INUM,
DIS-
SOLVED
(UG/L
AS AL) | CADMIUM
TOTAL
RECOV-
ERABLE
(UG/L
AS CD) | CADMIUM
DIS-
SOLVED
(UG/L
AS CD) | COPPER,
TOTAL
RECOV-
ERABLE
(UG/L
AS CU) | COPPER,
DIS-
SOLVED
(UG/L
AS CU) | IRON,
TOTAL
RECOV-
ERABLE
(UG/L
AS FE) | IRON,
DIS-
SOLVED
(UG/L
AS FE) | LEAD,
TOTAL
RECOV-
ERABLE
(UG/L
AS PB) | LEAD,
DIS-
SOLVED
(UG/L
AS PB) | | APR 1987 | | | | | | | | | | | | | | 30
MAY | ND | | | | <10 | | <10 | | 90 | | <100 | | | 12
JUN | ND | | | | <10 | | <10 | | 90 | | <5 | | | 11 | 0.00 | 0.0 | | | <10 | | 10 | | 300 | | <5 | | | 30 | | | | | <10 | | 20 | | 100 | | 12 | | | SEP
21 | 0.00 | 0.0 | | | <1 | <1.0 | 5 | 3 | 320 | | <5 | < 5 | | ост
27 | ND | | | | <1 | | 5 | | 90 | | <5 | | | DEC
09 | 0.00 | 0.0 | | | <1 | | 4 | | 120 | | <5 | | | MAR 1988
29 | 0.00 | 0.0 | 700 | 50 | 1 | <1.0 | 4 | 1 | 1200 | 30 | <5 | < 5 | | APR 11 | 0.00 | 0.0 | 140 | | <1 | | 4 | | 180 | | < 5 | | | 26 | ND | | 90 | 40 | <1 | <1.0 | 14 | 4 | 100 | 35 | <5 | < 5 | | MAY
16
23 | ND | | 70 | 20 | 1
7 | | 2
10 | 1 | 130
110 |
2 4 | <5
<5 |
< 5 | | JUN | 0.00 | 0.0 | 70 | | | <1.0 | | | | | < 5 | ~ 5 | | 14
AUG | ND | | 50 | | 1 | | 5 | | 120 | ~- | | | | 16 | ND | | 110 | | <1 | | 4 | | 960 | | <5 | | | 03
NOV | ND | | 50 | | <1 | | 3 | | 100 | | <5 | | | 01 | ND | | 40 | 20 | <1 | <1.0 | 3 | 3 | 100 | 36 | <5 | < 5 | | | | | | | | | | | | | | | | DATE | MANGA-
NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN) | MERCURY
TOTAL
RECOV-
ERABLE
(UG/L
AS HG) | NICKEL,
TOTAL
RECOV-
ERABLE
(UG/L
AS NI) | NICKEL,
DIS-
SOLVED
(UG/L
AS NI) | ZINC,
TOTAL
RECOV-
ERABLE
(UG/L
AS ZN) | ZINC,
DIS-
SOLVED
(UG/L
AS ZN) | BROMO-
FORM
TOTAL
(UG/L) | CARBON-
TETRA-
CHLO-
RIDE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
DI-
BROMO-
METHANE
TOTAL
(UG/L) | CHLORO-
ETHANE
TOTAL
(UG/L) | | APR 1987 | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | NESE,
DIS-
SOLVED
(UG/L | TOTAL
RECOV-
ERABLE
(UG/L
AS HG) | TOTAL
RECOV-
ERABLE
(UG/L
AS NI) | DIS-
SOLVED
(UG/L | TOTAL
RECOV-
ERABLE
(UG/L
AS ZN) | DIS-
SOLVED
(UG/L | FORM
TOTAL
(UG/L) | TETRA-
CHLO-
RIDE
TOTAL
(UG/L) | BENZENE
TOTAL
(UG/L) | DI-
BROMO-
METHANE
TOTAL
(UG/L) | ETHANE
TOTAL
(UG/L) | | APR 1987
30
MAY | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL
RECOV-
ERABLE
(UG/L
AS HG) | TOTAL
RECOV-
ERABLE
(UG/L
AS NI) | DIS-
SOLVED
(UG/L
AS NI) | TOTAL
RECOV-
ERABLE
(UG/L
AS ZN) | DIS-
SOLVED
(UG/L
AS ZN) | FORM TOTAL (UG/L) | TETRA-
CHLO-
RIDE
TOTAL
(UG/L) | BENZENE
TOTAL
(UG/L)
ND | DI-
BROMO-
METHANE
TOTAL
(UG/L) | ETHANE
TOTAL
(UG/L)
ND | | APR 1987
30
MAY
12
JUN | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL
RECOV-
ERABLE
(UG/L
AS HG)
<0.10 | TOTAL
RECOV-
ERABLE
(UG/L
AS NI)
<100 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL
RECOV-
ERABLE
(UG/L
AS ZN) | DIS-
SOLVED
(UG/L
AS ZN) | FORM TOTAL (UG/L) ND | TETRA-
CHLO-
RIDE
TOTAL
(UG/L)
ND | BENZENE
TOTAL
(UG/L)
ND | DI-
BROMO-
METHANE
TOTAL
(UG/L)
ND | ETHANE
TOTAL
(UG/L)
ND | | APR 1987
30
MAY
12
JUN
11
JUL | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN)
10
<10 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV- ERABLE (UG/L AS HG) <0.10 <0.10 | TOTAL RECOV- ERABLE (UG/L AS NI) <100 <1 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV- ERABLE (UG/L AS ZN) 30 <10 | DIS-
SOLVED
(UG/L
AS ZN) | FORM TOTAL (UG/L) ND ND | TETRA-
CHLO-
RIDE
TOTAL
(UG/L)
ND
ND | BENZENE
TOTAL
(UG/L)
ND
ND | DI-
BROMO-
METHANE
TOTAL
(UG/L)
ND
ND | ETHANE
TOTAL
(UG/L)
ND
ND | | APR 1987
30
MAY
12
JUN
11
JUL
30
SEP | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN)
10
<10
30 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV- ERABLE (UG/L AS HG) <0.10 <0.10 <0.10 0.20 | TOTAL RECOV- ERABLE (UG/L AS NI) <100 <1 <1 <1 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV- ERABLE (UG/L AS ZN) 30 30 <10 70 | DIS-
SOLVED
(UG/L
AS ZN) | FORM TOTAL (UG/L) ND ND ND | TETRA-CHLO-RIDE TOTAL (UG/L) ND ND ND | BENZENE
TOTAL
(UG/L)
ND
ND
ND | DI-
BROMO-
METHANE
TOTAL
(UG/L)
ND
ND
ND | ETHANE TOTAL (UG/L) ND ND ND | | APR 1987 30 MAY 12 JUN 11 JUL 30 SEP 21 OCT | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN)
10
<10
30
20 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV-ERABLE (UG/L AS HG) <0.10 <0.10 <0.10 0.20 <0.10 | TOTAL RECOV- ERABLE (UG/L AS NI) <100 <1 <1 <1 <1 <2 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV- ERABLE (UG/L AS ZN) 30 <10 70 <10 | DIS-
SOLVED
(UG/L
AS ZN) | FORM TOTAL (UG/L) ND ND ND ND | TETRA-CHLO-RIDE TOTAL (UG/L) ND ND ND ND | BENZENE
TOTAL
(UG/L)
ND
ND
ND
ND | DI- BROMO- METHANE TOTAL (UG/L) ND ND ND ND | ETHANE TOTAL (UG/L) ND ND ND ND ND | | APR 1987 30 MAY 12 JUN 11 JUL 30 SEP 21 OCT 27 DEC | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN)
10
<10
30 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV-ERABLE (UG/L AS HG) <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 | TOTAL RECOV- ERABLE (UG/L AS NI) <100 <1 <1 <1 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV- ERABLE (UG/L AS ZN) 30 30 <10 70 <10 <10 | DIS-
SOLVED
(UG/L
AS ZN) | FORM TOTAL
(UG/L) ND ND ND ND ND | TETRA-CHLO-RIDE TOTAL (UG/L) ND ND ND ND ND ND | BENZENE TOTAL (UG/L) ND ND ND ND ND ND | DI-
BROMO-
METHANE
TOTAL
(UG/L)
ND
ND
ND
ND | ETHANE TOTAL (UG/L) ND ND ND ND ND ND | | APR 1987 30 MAY 12 JUN 11 JUL 30 SEP 21 OCT 27 | NESE,
TOTAL
RECOV-
ERABLE (UG/L
AS MN) 10 <10 20 20 20 <10 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV-ERABLE (UG/L AS HG) <0.10 <0.10 <0.10 0.20 <0.10 | TOTAL RECOV- ERABLE (UG/L AS NI) <100 <1 <1 <1 <1 <2 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV- ERABLE (UG/L AS ZN) 30 <10 70 <10 | DIS-
SOLVED
(UG/L
AS ZN) | FORM TOTAL (UG/L) ND ND ND ND | TETRA-CHLO-RIDE TOTAL (UG/L) ND ND ND ND | BENZENE
TOTAL
(UG/L)
ND
ND
ND
ND | DI- BROMO- METHANE TOTAL (UG/L) ND ND ND ND | ETHANE TOTAL (UG/L) ND ND ND ND ND | | APR 1987 30 MAY 12 JUN 11 JUL 30 SEP 21 OCT 27 DEC 09 MAR 1988 29 | NESE,
TOTAL
RECOV-
ERABLE (UG/L
AS MN) 10 <10 20 20 20 <10 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV-ERABLE (UG/L AS HG) <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 | TOTAL RECOVERABLE (UG/L AS NI) <100 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV- ERABLE (UG/L AS ZN) 30 30 <10 70 <10 <10 | DIS-
SOLVED
(UG/L
AS ZN) | FORM TOTAL (UG/L) ND ND ND ND ND | TETRA-CHLO-RIDE TOTAL (UG/L) ND ND ND ND ND ND | BENZENE TOTAL (UG/L) ND ND ND ND ND ND | DI-
BROMO-
METHANE
TOTAL
(UG/L)
ND
ND
ND
ND | ETHANE TOTAL (UG/L) ND ND ND ND ND ND | | APR 1987 30 MAY 12 JUN 11 JUL 30 SEP 21 OCT 27 DEC 09 MAR 1988 29 APR 11 | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) 10 <10 20 20 20 <10 50 20 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV-ERABLE (UG/L AS HG) <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 | TOTAL RECOV- ERABLE (UG/L AS NI) <100 <1 <1 <1 <1 <1 <1 <1 <1 <1 <7 <1 <1 <7 <1 <7 <1 <7 <1 <7 <1 <7 <1 <7 <1 <7 <1 <7 <1 <7 <1 <7 <1 <7 <1 <7 <1 <7 <1 <7 <1 <7 <1 <7 <1 <7 <1 <7 <1 <7 <1 <7 <1 <7 <1 <7 <1 <7 <1 <7 <1 <7 <1 <7 <1 <7 <1 <7 <1 <7 <1 <7 <1 <7 <1 <7 <1 <7 <1 <7 <1 <7 <1 <7 <1 <7 <1 <7 <1 <7 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV- ERABLE (UG/L AS ZN) 30 30 <10 70 <10 <10 <10 <10 <10 <10 | DIS-
SOLVED
(UG/L
AS ZN) 10 <10 | FORM TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TETRA-CHLO-RIDE TOTAL (UG/L) ND | BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | DI- BROMO- METHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | ETHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | | APR 1987 30 MAY 12 JUN 11 JUL 30 SEP 21 OCT 27 DEC 09 MAR 1988 29 APR 11 26 MAY | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) 10 <10 20 20 <10 50 20 20 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV-ERABLE (UG/L AS HG) <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 | TOTAL RECOVERABLE (UG/L AS NI) <100 <1 <1 <1 <1 <1 <1 <1 <7 <1 <7 <1 <7 <1 <7 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV- ERABLE (UG/L AS ZN) 30 <10 70 <10 <10 <10 <10 50 | DIS-
SOLVED
(UG/L
AS ZN) 10 <10 | FORM TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TETRA-CHLO-RIDE TOTAL (UG/L) ND | BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | DI- BROMO- METHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | ETHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | | APR 1987 30 MAY 12 JUN 11 JUL 30 SEP 21 OCT 27 DEC 09 MAR 1988 29 APR 11 26 MAY 16 23 | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) 10 <10 20 20 20 <10 50 20 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV-ERABLE (UG/L AS HG) <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 | TOTAL RECOV- ERABLE (UG/L AS NI) <100 <1 <1 <1 <1 <1 <1 <1 <1 <1 <7 <1 <1 <7 <1 <7 <1 <7 <1 <7 <1 <7 <1 <7 <1 <7 <1 <7 <1 <7 <1 <7 <1 <7 <1 <7 <1 <7 <1 <7 <1 <7 <1 <7 <1 <7 <1 <7 <1 <7 <1 <7 <1 <7 <1 <7 <1 <7 <1 <7 <1 <7 <1 <7 <1 <7 <1 <7 <1 <7 <1 <7 <1 <7 <1 <7 <1 <7 <1 <7 <1 <7 <1 <7 <1 <7 <1 <7 <1 <7 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV- ERABLE (UG/L AS ZN) 30 30 <10 70 <10 <10 <10 <10 <10 <10 | DIS-
SOLVED
(UG/L
AS ZN) 10 <10 | FORM TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TETRA-CHLO-RIDE TOTAL (UG/L) ND | BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | DI- BROMO- METHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | ETHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | | APR 1987 30 MAY 12 JUN 11 JUL 30 SEP 21 OCT 27 DEC 09 MAR 1988 29 APR 11 26 MAY 16 23 JUN 14 | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) 10 <10 20 20 <10 50 20 20 20 20 20 20 20 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOVERABLE (UG/L AS HG) <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 | TOTAL RECOVERABLE (UG/L AS NI) <100 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 | DIS-
SOLVED
(UG/L
AS NI) 1311 | TOTAL RECOVERABLE (UG/L AS ZN) 30 30 <10 70 <10 <10 <10 <10 <10 <10 | DIS-
SOLVED
(UG/L
AS ZN) 10 <10 38 | FORM TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TETRA-CHLO-RIDE TOTAL (UG/L) ND | BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | DI- BROMO- METHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | ETHANE TOTAL (UG/L) ND | | APR 1987 30 MAY 12 JUN 11 JUL 30 SEP 21 OCT 27 DEC 09 MAR 1988 29 APR 11 26 MAY 16 23 JUN 14 AUG 16 | NESE, TOTAL RECOV- ERABLE (UG/L AS MN) 10 <10 20 20 <10 50 20 20 20 20 20 20 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOVERABLE (UG/L AS HG) <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 | TOTAL RECOVERABLE (UG/L AS NI) <100 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 | DIS-
SOLVED
(UG/L
AS NI) 1 31 | TOTAL RECOV-ERABLE (UG/L AS ZN) 30 30 <10 70 <10 <10 20 <10 50 <10 10 | DIS-
SOLVED
(UG/L
AS ZN) 10 <10 38 6 | FORM TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TETRA-CHLO-RIDE RIDE TOTAL (UG/L) ND | BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | DI- BROMO- METHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | ETHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | | APR 1987 30 MAY 12 JUN 11 JUL 30 SEP 21 OCT 27 DEC 09 MAR 1988 29 APR 11 26 MAY 16 23 JUN 14 AUG | NESE, TOTAL RECOV- ERABLE (UG/L AS MN) 10 <10 20 20 <10 50 20 20 20 20 20 20 20 20 2 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV-ERABLE (UG/L AS HG) <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 | TOTAL RECOVERABLE (UG/L AS NI) <100 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 | DIS-
SOLVED
(UG/L
AS NI) 1 31 1 | TOTAL RECOV- ERABLE (UG/L AS ZN) 30 410 70 410 410 20 410 50 410 410 410 410 410 410 | DIS-
SOLVED
(UG/L
AS ZN) 10 <10 38 6 | FORM TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TETRA-CHLO-RIDE TOTAL (UG/L) ND | BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | DI- BROMO- METHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | ETHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). # 01329500 BATTEN KILL AT BATTENVILLE, NY - continued | DATE | CHLORO-
FORM
TOTAL
(UG/L) | CIS
1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | DI-
CHLORO-
BROMO-
METHANE
TOTAL
(UG/L) | METHYL-
BROMIDE
TOTAL
(UG/L) | METHYL-
CHLO-
RIDE
TOTAL
(UG/L) | METHYL-
ENE
CHLO-
RIDE
TOTAL
(UG/L) | 1,1,1-
TRI-
CHLORO-
ETHANE
TOTAL
(UG/L) | 1,1-DI-
CHLORO-
ETHANE
TOTAL
(UG/L) | 1,1-DI-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 1,1,2-
TRI-
CHLORO-
ETHANE
TOTAL
(UG/L) | 1,1,2,2
TETRA-
CHLORO-
ETHANE
TOTAL
(UG/L) | |--|---|--|--|---|---|---|---|--|---|---|--| | APR 1987
30 | ND | MAY
12 | ND | JUN
11 | ND | JUL
30 | ND | SEP
21 | ND | ост
27 | ND | DEC
09 | ND | MAR 1988
29 | ND | APR
11 | ND | 26 | ND | MAY
16 | ND | 23 | ND | JUN
14
AUG | ND | 16
OCT | ND | 03 | ND | 01 | ND | | | | | | | | | | | | | | DATE | 1,2-DI-
CHLORO-
BENZENE
TOTAL
(UG/L) | 1,2-DI-
CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L) | 1,2-DI-
CHLORO-
PROPANE
TOTAL
(UG/L) | 1,2-
TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L) | 1,3-DI-
CHLORO-
BENZENE
TOTAL
(UG/L) | 1,4-DI-
CHLORO-
BENZENE
TOTAL
(UG/L) | TETRA-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | TRANS-
1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | TRI-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 2-
CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L) | VINYL
CHLO-
RIDE
TOTAL
(UG/L) | | APR 1987 | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L) | CHLORO-
PROPANE
TOTAL
(UG/L) | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L) |
CHLO-
RIDE
TOTAL
(UG/L) | | APR 1987
30
MAY | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L) | CHLORO-
PROPANE
TOTAL
(UG/L) | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L) | CHLO-
RIDE
TOTAL
(UG/L) | | APR 1987
30
MAY
12
JUN | CHLORO-
BENZENE
TOTAL
(UG/L)
ND | CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L)
ND | CHLORO-
PROPANE
TOTAL
(UG/L)
ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND | CHLORO-BENZENE TOTAL (UG/L) ND ND | CHLORO-
BENZENE
TOTAL
(UG/L)
ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND | CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L)
ND | CHLO-
RIDE
TOTAL
(UG/L)
ND | | APR 1987
30
MAY
12
JUN
11
JUL | CHLORO-
BENZENE
TOTAL
(UG/L)
ND
ND | CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L)
ND
ND | CHLORO-
PROPANE
TOTAL
(UG/L)
ND
ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND | CHLORO-
BENZENE
TOTAL
(UG/L)
ND
ND | CHLORO-
BENZENE
TOTAL
(UG/L)
ND
ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND
ND | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
ND
ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND
ND | CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L)
ND
ND | CHLO-
RIDE
TOTAL
(UG/L)
ND
ND | | APR 1987 30 MAY 12 JUN 11 JUL 30 SEP | CHLORO-
BENZENE
TOTAL
(UG/L)
ND
ND | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND ND ND | CHLORO-PROPANE TOTAL (UG/L) ND ND ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND
ND
ND | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
ND
ND
ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND ND ND | CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L) ND ND ND ND | CHLO-
RIDE
TOTAL
(UG/L)
ND
ND | | APR 1987 30 MAY 12 JUN 30 SEP 21 OCT | CHLORO-
BENZENE
TOTAL
(UG/L)
ND
ND
ND
ND | CHLORO- ETHANE WATER WHOLE TOTAL (UG/L) ND ND ND ND ND | CHLORO-PROPANE TOTAL (UG/L) ND ND ND ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND
ND
ND | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
ND
ND
ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND ND ND ND | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND ND ND ND ND | CHLO-
RIDE
TOTAL
(UG/L)
ND
ND
ND | | APR 1987 30 MAY 12 JUN 11 JUL 30 SEP 21 OCT 27 DEC | CHLORO- BENZENE TOTAL (UG/L) ND ND ND ND ND ND | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND ND ND ND ND ND | CHLORO-PROPANE TOTAL (UG/L) ND ND ND ND ND ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND ND ND ND ND ND ND ND | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
ND
ND
ND
ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND ND ND ND ND ND | CHLORO- ETHYL - VINYL - ETHER TOTAL (UG/L) ND ND ND ND ND ND ND | CHLO-
RIDE
TOTAL
(UG/L)
ND
ND
ND
ND | | APR 1987 30 MAY 12 JUL 30 SEP 21 OCT 27 DEC 09 MAR 1988 | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO- ETHANE WATER WHOLE TOTAL (UG/L) ND ND ND ND ND ND ND ND | CHLORO-PROPANE TOTAL (UG/L) ND ND ND ND ND ND ND ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
ND
ND
ND
ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND ND ND ND ND ND ND ND ND | CHLO-RIDE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | | APR 1987 30 MAY 12 JUN 11 JUL 30 SEP 21 OCT 27 DEC 09 MAR 1988 29 APR | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-PROPANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-ETHYL-ENE TOTAL (UG/L) ND | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND | CHLORO-ETHYL-VINYL-ETHER TOTAL (UG/L) ND | CHLO-RIDE TOTAL (UG/L) ND | | APR 1987 30 MAY 12 JUN 30 SEP 21 OCT 27 DEC 09 MAR 1988 29 APR 11 26 | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO- ETHANE WATER WHOLE TOTAL (UG/L) ND ND ND ND ND ND ND ND | CHLORO-PROPANE TOTAL (UG/L) ND ND ND ND ND ND ND ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
ND
ND
ND
ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND ND ND ND ND ND ND ND ND | CHLO-RIDE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | | APR 1987 30 MAY 12 JUN 11 JUL 30 SEP 21 OCT 27 DEC 09 MAR 1988 29 APR 11 26 MAY 16 23 | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND | CHLORO-PROPANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-ETHYL-ENETOTAL (UG/L) ND | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND | CHLO-RIDE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | | APR 1987 30 MAY 12 JUN 11 JUL 30 SEP 21 OCT 27 DEC 09 MAR 1988 29 APR 11 26 MAY 16 23 JUN | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-PROPANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLOROBENZENE TOTAL (UG/L) ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND N | CHLORO-ETHYL-VINYL-ETHER TOTAL (UG/L) ND | CHLO-RIDE TOTAL (UG/L) ND | | APR 1987 30 MAY 12 JUN 11 JUL 30 SEP 21 OCT 27 DEC 09 MAR 1988 29 APR 11 26 MAY 16 23 JUN 14 AUG 16 | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-PROPANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TRANSDI CHLORO-ETHENE TOTAL (UG/L) ND | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLO-RIDE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | | APR 1987 30 MAY 12 JUN 11 JUL 30 SEP 21 CCT 27 DEC 09 MAR 1988 29 APR 11 26 MAY 16 23 JUN 14 AUG 16 CCT 03 | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND | CHLORO-PROPANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND | CHLO-RIDE TOTAL (UG/L) ND N | | APR 1987 30 MAY 12 JUN 11 JUL 30 SEP 21 OCT 27 DEC 09 MAR 1988 29 APR 11 26 MAY 16 23 JUN 14 AUG 16 OCT | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-PROPANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TRANSDI CHLORO-ETHENE TOTAL (UG/L) ND | CHLOROBENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLOROBENZEME TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-ETHYL-ENE TOTAL (UG/L) ND N | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLO-RIDE TOTAL (UG/L) ND N | # 01329500 BATTEN KILL AT BATTENVILLE, NY - continued # SUSPENDED SEDIMENT DISCHARGE | | | DIS- | | SEDI- | |----------|------|---------|--------|---------| | | | CHARGE, | | MENT, | | | | INST. | SEDI- | DIS- | | | | CUBIC | MENT, | CHARGE, | | | | FEET | SUS- | SUS- | | DATE | TIME | PER | PENDED | PENDED | | | | SECOND | (MG/L) | (T/DAY) | | | | | | | | MAY 1988 | | | | | | 16 | 1100 | 617 | 2 | 3.3 | | 23 | 1030 | 612 | 3 | 5.0 | | JUN | | | | | | 14 | 1030 | 258 | 2 | 1.4 | | AUG | | | | | | 16 | 1030 | 377 | 7 | 7.1 | | OCT | | | | | | 03 | 1030 | 185 | 1 | 0.50 | | NOV | | | | | | 01 | 1100 | 304 | <1 | | # BED MATERIAL ANALYSES | DATE | TIME | SOLII
VOLA
TILE
BOTTO
MA-
TERI
(MG/F | A- IN IN RE OM FM - TOM IAL TE | IUM, RE
CCOV. FM
BOT- TOM
MA- TE
CRIAL (U | ECOV. N
BOT- F
MA- FN
ERIAL TO
JG/G T | CHRO- MIUM, RECOV. M BOT- OM MA- TERIAL (UG/G) | REG
FM
TOM
TE
(U | COV. RI
BOT- FM
I MA- TOI
CRIAL TI
IG/G (1 | RON,
ECOV.
BOT-
M MA-
ERIAL
UG/G
S
FE) | RE
FM
TOM
TE
(U | | MANGA-
NESE,
RECOV-
FM BOT-
TOM MA-
TERIAI
(UG/G) | RE FM TOM TE L (U | RCURY
ECOV.
BOT-
M MA-
ERIAL
UG/G
S HG) | REG
FM I
TOM
TEI
(UG | CCOV. BOT- I MA- CRIAL IG/G NI) | ZINC,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS ZN) | |----------------------------|--|--|--|---|---|--|------------------------------|---|--|-----------------------------------|--|---|--|---|----------------------------------|---|--| | OCT 1987
14
AUG 1988 | 1330 | 25 | 700 | | <1 | <10 | | 10 | 14000 | | 30 | 260 | 0 < | <0.10 | | 20 | 60 | | 16 | 1030 | 290 | 000 | 7200 | <10 | | | 10 | 12000 | | <100 | 240 | 0 | 0.03 | | 20 | 60 | | DATE | AROCLO
1221
IN
BOTTOI
MAT
(UG/KO |) A
) M
! E | AROCLOR
1248
PCB
BOT.MAT
(UG/KG) | AROCLOR
1254
PCB
BOT.MAT
(UG/KG) | AROCLOF
1260
PCB
BOT.MAT
(UG/KG) | IN BOM TOM T | AL
OT-
MA-
IAL | ALPHA
BHC
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | | E,
TAL
SOT-
MA-
RIAL | BETA
BENZEN
HEXA-
CHLOF
IDE
BOT.MA | NE DA
- TO
R- IN
TOA
AT TI | HLOR-
PANE,
OTAL
BOT-
M MA-
PERIAL
G/KG) | CHLOI
PYRII
IN BO
MAT
(UG/I | FOS
OT | DELT
BENZE
HEXA
CHLC
IDE
BOT.N
(UG/H | ENE
A-
OR-
E
MAT | | OCT 1987
14 | | | | | | _ | _ | | _ | _ | | | | _ | _ | | _ | | AUG 1988
16 | N D | | ND | ND | ND | ND | , | ND | ND | , | ND | | ND | ND | ı | ND | | | DATE | DI-
AZINOI
TOTAI
IN BO
TOM MA
TERIA
(UG/KO | DN, E
L
VT- I
IA- I | DI-
ELDRIN,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | ENDO-
SULFAN
ALPHA
BOT.MAT
(UG/KG) | ENDO-
SULFAN
BETA
BOT.MAI
(UG/KG) | | FAN
ATE
MAT | ENDRIN,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | HY!
BOT. | DE-
DE
MAT | ETHION
TOTAL
IN BOT
TOM MA
TERIA
(UG/KG | N, CI
L TY
T- IN
A- TOI
AL TI | EPTA-
CHLOR,
OTAL
BOT-
M MA-
PERIAL
(G/KG) | HEP
CHLC
EPOX:
TOT.
BOT
MAT
(UG/I | OR
IDE
IN
TOM
TL. | MALA
THIC
TOTA
IN BO
TOM N
TERI
(UG/H | ON,
AL
OT-
MA-
IAL | | OCT 1987
14 | | | | | | _ | _ | | - | | | | | _ | _ | | - | | AUG 1988
16 | ND | | ND | ND | ND | ND | ı | ND | ND | , | ND | 1 | ND | ND | 1 | ND | | | DATE | METHOXY - CHLOITOTO : BOTTK MATT | R,
IN I
OM I | MIREX,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | P,P' DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) | P,P' DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) | DD
TOT.
- IN B
- TOM I
L TER | AL
OT-
MA-
IAL | PARA-
THION,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | TOM 1 | NE,
PAL
SOT-
MA-
RIAL | BED
MAT.
FALI
DIAM.
% FINE
THAN | . !
L S:
. D:
ER % ! | BED
MAT.
IEVE
IAM.
FINER
THAN
62 MM | BEI
MA'
SIEV
DIAI
% FIL
THA | T.
VE
M.
NER | BEI
MAT
SIEV
DIAN
* FIN
THA
2.00 | T.
VE
M.
NER
AN | | OCT 1987
14
AUG 1988 | | | | | | - | - | | - | - | | 1 | 17 | | 33 | | 99 | | 16 | ND | | ND | ND | ND | ND | | ND | ND | ı | | 1 | 10 | | 100 | | - | ### 01329650 HUDSON RIVER AT SCHUYLERVILLE, NY LOCATION.--Lat 43 05'54", long 73 34'25", at Saratoga-Washington County line, Hydrologic Unit 02020003, at bridge on State Highway 29, 0.2 mi east of Schuylerville, 0.8 mi downstream from Batten Kill, and 1.0 mi downstream from Champlain (Barge) Canal lock 5. DRAINAGE AREA. -- 3,440 mi 2 , approximately. PERIOD OF RECORD.--Water years 1976 to current year. CHEMICAL DATA: 1976 (a), 1980 (b), 1981 (c), 1982-84 (e), 1985-87 (d), 1988 (c), 1989 (a). MINOR ELEMENTS DATA: 1976 (a), 1977 (e), 1978-79 (d), 1980, 1987 (b), 1988 (c), 1989 (a). PESTICIDE DATA: 1977 (e), 1978-79 (d), 1987 (b), 1988 (c), 1989 (a). ORGANIC DATA: PCB--1977 (e), 1978-80 (d), 1981-84 (e), 1985-88 (d), 1989 (c). PCN--1977 (e), 1978-79 (d). NUTRIENT DATA: 1977 (e), 1978 (d), 1987 (b), 1988 (c), 1989 (a). BIOLOGICAL DATA: Bacteria--1987 (b), 1988 (c), 1989 (a). SEDIMENT DATA: 1976 (b), 1977 (e), 1978-80 (d), 1981-84 (e), 1985 (d), 1986 (e), 1987 (d), 1988 (e), 1989 (c). PERIOD OF DAILY RECORD. -- SUSPENDED-SEDIMENT DISCHARGE: March 1977 to September 1979. REMARKS.--Water-discharge data obtained from a discharge rating developed for this site. Streamflow affected by regulation for power generation and diversion for canal operations. Samples for PCB analysis are collected at this site but are not included in this report. #### WATER-QUALITY DATA | DATE | TIME | DIS-
CHARGE,
IN
CUBIC
FEET
PER
SECOND | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | SPE-
CIFIC
CON-
DUCT-
ANCE
LAB
(US/CM) | PH WATER WHOLE FIELD (STAND- ARD UNITS) | TEMPER-
ATURE
WATER
(DEG C) | TUR-
BID-
ITY
(NTU) | BARO~
METRIC
PRES-
SURE
(MM
OF
HG) | OXYGEN,
DIS-
SOLVED
(MG/L) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION) | COLI-
FORM,
TOTAL,
IMMED.
(COLS.
PER
100 ML) | FECAL
COLI-
FORM
24-HR
MEM.FIL
(COLS./
100 ML) | |------------------|-----------------------|---|---|--|---|--------------------------------------|------------------------------|--|-------------------------------------|--|--|--| | APR 1987 | | | | | | | | | | | | | | 22
MAY | 1200 | | 87 | | | | 2,0 | | | | | | | 14 | 1330 | | | 127 | 7.5 | 20.0 | 1.0 | | 9.9 | | 4000 | 1000 | | JUN
15 | 1105 | | -~ | 115 | 7.4 | 23.0 | 1.2 | | 8.7 | | >6800 | >500 | | JUL
29 | 0945 | ~- | | | 7.4 | 23.5 | 0.50 | | 7.7 | | 7000 | 800 | | SEP 24 | 1200 | | | | 7.6 | 16.0 | 1.9 | | 10.5 | | 14000 | 1300 | | OCT
26
DEC | 1330 | | | 113 | 7.2 | 19.0 | 1.3 | | 11.9 | | 170000 | >2000 | | 07 | 1330 | ~- | | | 7.2 | 2.0 | 3.0 | | 18.8 | | 9000 | 1000 | | MAR 1988 | 1200 | 9100 | 82 | 117 | 6.2 | 4.0 | 2.9 | 772 | 14.0 | 105 | 5900 | 660 | | APR
13
25 | 1330
1130 | 6800
3000 | 80
1 4 6 | 104
160 | 6.6
6.4 | 9.5
9.0 | 1.6
1.2 | 765
755 | 12.1
11.7 | 105
102 | 36000
7000 | 800
>800 | | MAY
10 | 1230 | 4300 | 98 | 139 | 6.8 | 14.5 | 7.5 | | 10.6 | | 5600 | 500 | | JUN
01
13 | 1130
12 4 5 | 2700
1 4 00 | 139
1 4 9 | 1 4 1
16 4 | 6.7
6.8 | 20.5
22.5 | 2.0
1.0 |
765 | 8.0
7.6 |
87 | 2000
10000 | 200
700 | | AUG
15
OCT | 1230 | 3700 | 130 | 125 | 6.7 | 29.0 | 1.6 | 757 | 7.5 | 98 | 400 | ND | | 04
NOV | 1230 | 770 | 129 | 130 | 7.6 | 17.5 | 1.2 | 763 | 9.2 | 96 | 19000 | >1200 | | 07 | 1200 | 14000 | 76 | 77 | 6.6 | 7.0 | 6.4 | 754 | 14.2 | 118 | ~- | | # 01329650 HUDSON RIVER AT SCHUYLERVILLE, NY - continued | DATE | HARD-
NESS
TOTAL
(MG/L
AS
CACO3) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K) | ALKA-
LINITY
LAB
(MG/L
AS
CACO3) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | SOLIDS,
RESIDUE
AT 105
DEG. C,
TOTAL
(MG/L) | |--|--|--|--|--|--|---|--|--|--|---
---|---| | APR 1987
22 | 27 | 8.3 | 1.5 | | | | | | | 43 | | 68 | | MAY
14 | 21 | | | | | | | | | 67 | | 79 | | JUN
15 | 40 | 13 | 1.9 | | | | | | | 96 | | 96 | | JUL
29 | 44 | 14 | 2.3 | | | | | | | 87 | | 117 | | SEP
24 | 34 | 11 | 1.9 | | | | | | | 62 | | 73 | | OCT 26 | 44 | 14 | 2.3 | | | | | | | 60 | | 71 | | DEC 07 | 30 | 9.0 | 1.9 | | | | | | | 61 | | 73 | | MAR 1988
31 | 49 | 15 | 2.7 | 4.1 | 0.60 | 34 | 13 | 5.8 | 0.10 | 88 | 62 | 90 | | APR 13 | 37 | 11 | 2.3 | 4.0 | 0.60 | 27 | 15 | 6.2 | 0.10 | 74 | 55 | 80 | | 25
MAY | 59 | 18 | 3.3 | 7.2 | 0.70 | 39 | 20 | 10 | 0.10 | 112 | 83 | 124 | | 10
JUN | 50 | 15 | 3.1 | 5.3 | 0.60 | 37 | 14 | 7.9 | 0.20 | 91 | 68 | 135 | | 01
13
AUG | 51
59 | 16
18 | 2.7
3.5 | 6. 4
7.3 | 0.70
0.70 | 35
40 | 19
15 | 10
10 | 0.30
0.10 | 8 4
111 | 76
79 | 108
123 | | 15 | 40 | 13 | 1.9 | 7.8 | 0.70 | 23 | 16 | 9.7 | 0.10 | 78 | 63 | 81 | | 04
NOV | 42 | 13 | 2.2 | 6.7 | 0.80 | 22 | 23 | 8.6 | 0.10 | 95 | 68 | 99 | | 07 | 27 | 8.2 | 1.6 | 3.5 | 0.60 | 15 | 14 | 5.1 | 0.10 | 54 | 42 | 93 | | | | | | | | | | | | | | | | DATE | SOLIDS,
VOLA-
TILE ON
IGNI-
TION,
TOTAL
(MG/L) | RESIDUE
TOTAL
FIXED
(MG/L) | NITRO-
GEN,
NITRATE
TOTAL
(MG/L
AS N) | NITRO-
GEN,
NITRITE
TOTAL
(MG/L
AS N) | NITRO-
GEN,
NO2+NO3
TOTAL
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS NH4) | NITRO-
GEN,
ORGANIC
TOTAL
(MG/L
AS N) | NITRO-
GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | NITRO-
GEN,
TOTAL
(MG/L
AS N) | NITRO-
GEN,
TOTAL
(MG/L
AS NO3) | PHOS-
PHORUS
TOTAL
(MG/L
AS P) | | APR 1987
22 | VOLA-
TILE ON
IGNI-
TION,
TOTAL | TOTAL
FIXED | GEN,
NITRATE
TOTAL
(MG/L | GEN,
NITRITE
TOTAL
(MG/L | GEN,
NO2+NO3
TOTAL
(MG/L | GEN,
AMMONIA
TOTAL
(MG/L | GEN,
AMMONIA
TOTAL
(MG/L | GEN,
ORGANIC
TOTAL
(MG/L | GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L | GEN,
TOTAL
(MG/L | GEN,
TOTAL
(MG/L | PHORUS
TOTAL
(MG/L | | APR 1987
22
MAY
14 | VOLA-
TILE ON
IGNI-
TION,
TOTAL
(MG/L) | TOTAL
FIXED
(MG/L) | GEN,
NITRATE
TOTAL
(MG/L
AS N) | GEN,
NITRITE
TOTAL
(MG/L
AS N) | GEN,
NO2+NO3
TOTAL
(MG/L
AS N) | GEN,
AMMONIA
TOTAL
(MG/L
AS N) | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4) | GEN,
ORGANIC
TOTAL
(MG/L
AS N) | GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | GEN,
TOTAL
(MG/L
AS N) | GEN,
TOTAL
(MG/L
AS NO3) | PHORUS
TOTAL
(MG/L
AS P) | | APR 1987
22
MAY
14
JUN
15 | VOLA-
TILE ON
IGNI-
TION,
TOTAL
(MG/L) | TOTAL
FIXED
(MG/L) | GEN,
NITRATE
TOTAL
(MG/L
AS N) | GEN, NITRITE TOTAL (MG/L AS N) | GEN,
NO2+NO3
TOTAL
(MG/L
AS N) | GEN,
AMMONIA
TOTAL
(MG/L
AS N) | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4) | GEN,
ORGANIC
TOTAL
(MG/L
AS N) | GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | GEN,
TOTAL
(MG/L
AS N) | GEN,
TOTAL
(MG/L
AS NO3) | PHORUS
TOTAL
(MG/L
AS P) | | APR 1987
22
MAY
14
JUN
15
JUL
29 | VOLA-
TILE ON
IGNI-
TION,
TOTAL
(MG/L)
28 | TOTAL
FIXED
(MG/L)
38 | GEN,
NITRATE
TOTAL
(MG/L
AS N)
0.430 | GEN,
NITRITE
TOTAL
(MG/L
AS N)
0.00 | GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
0.430 | GEN,
AMMONIA
TOTAL
(MG/L
AS N)
0.080 | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4)
0.10 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.32 | GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
0.40 | GEN,
TOTAL
(MG/L
AS N)
0.83 | GEN,
TOTAL
(MG/L
AS NO3)
3.7
5.4 | PHORUS
TOTAL
(MG/L
AS P)
0.020 | | APR 1987 22 MAY 14 JUN 15 JUL 29 SEP 24 | VOLA-
TILE ON
IGNI-
TION,
TOTAL
(MG/L)
28
22 | TOTAL
FIXED
(MG/L)
38
53 | GEN,
NITRATE
TOTAL
(MG/L
AS N)
0.430
0.590 | GEN,
NITRITE
TOTAL
(MG/L
AS N)
0.00
0.020 | GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
0.430
0.610 | GEN,
AMMONIA
TOTAL
(MG/L
AS N)
0.080
0.190 | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4)
0.10
0.24 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.32
0.41 | GEN, AM-
MONIA +
ORGANIC
TOTATAL
(MG/L
AS N)
0.40
0.60 | GEN,
TOTAL
(MG/L
AS N)
0.83
1.2 | GEN,
TOTAL
(MG/L
AS NO3)
3.7
5.4 | PHORUS
TOTAL
(MG/L
AS P)
0.020
0.020 | | APR 1987 22 MAY 14 JUN 15 JUL 29 SEP 24 OCT 26 | VOLA- TILE ON IGNI- TION, TOTAL (MG/L) 28 22 43 36 | TOTAL
FIXED
(MG/L)
38
53
53 | GEN,
NITRATE
TOTAL
(MG/L
AS N)
0.430
0.590 | GEN, NITRITE TOTAL (MG/L AS N) 0.00 0.020 0.010 ND | GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
0.430
0.610
0.430 | GEN,
AMMONIA
TOTAL
(MG/L
AS N)
0.080
0.190
0.050 | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4)
0.10
0.24
0.06 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.32
0.41
0.25 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.40 0.60 0.30 0.26 | GEN,
TOTAL
(MG/L
AS N)
0.83
1.2
0.73 | GEN,
TOTAL
(MG/L
AS NO3)
3.7
5.4
3.2
2.3 | PHORUS
TOTAL
(MG/L
AS P)
0.020
0.020
0.020 | | APR 1987 22 MAY 14 JUN 15 JUL 29 SEP 24 OCT 26 DEC 07 | VOLA- TILE ON IGNI- TION, TOTAL (MG/L) 28 22 43 36 47 | TOTAL
FIXED
(MG/L)
38
53
53
81
33 | GEN, NITRATE TOTAL (MG/L AS N) 0.430 0.590 0.420 0.330 | GEN, NITRITE TOTAL (MG/L AS N) 0.00 0.020 0.010 ND 0.00 | GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
0.430
0.610
0.430
0.270
0.330 | GEN,
AMMONIA
TOTAL
(MG/L
AS N)
0.080
0.190
0.050
0.010 | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4)
0.10
0.24
0.06
0.01 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.32
0.41
0.25
0.25 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.40 0.60 0.30 0.26 | GEN,
TOTAL
(MG/L
AS N)
0.83
1.2
0.73
0.53 | GEN,
TOTAL
(MG/L
AS NO3)
3.7
5.4
3.2
2.3 | PHORUS
TOTAL
(MG/L
AS P)
0.020
0.020
0.020
0.020 | | APR 1987 22 MAY 14 JUN 15 JUL 29 SEP 24 OCT 26 DEC 07 MAR 1988 31 | VOLA- TILE ON IGNI- TION, TOTAL (MG/L) 28 22 43 36 47 68 | TOTAL
FIXED
(MG/L)
38
53
53
81
33 | GEN,
NITRATE
TOTAL
(MG/L
AS N)
0.430
0.590
0.420

0.330
0.320 | GEN, NITRITE TOTAL (MG/L AS N) 0.00 0.020 0.010 ND 0.00 0.00 | GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
0.430
0.610
0.430
0.270
0.330
0.320 | GEN,
AMMONIA
TOTAL
(MG/L
AS N)
0.080
0.190
0.050
0.010 | GEN, AMMONIA TOTAL (MG/L AS NH4) 0.10 0.24 0.06 0.01 0.05 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.32
0.41
0.25
0.25
0.27 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.40 0.60 0.30 0.26 0.31 0.15 | GEN,
TOTAL
(MG/L
AS N)
0.83
1.2
0.73
0.53
0.64 | GEN,
TOTAL
(MG/L
AS NO3)
3.7
5.4
3.2
2.3
2.8 | PHORUS
TOTAL
(MG/L
AS P)
0.020
0.020
0.020
0.020
0.020 | | APR 1987 22 MAY 14 JUN 15 JUL 29 SEP 24 OCT 26 DEC 07 MAR 1988 31 APR 13 | VOLA- TILE ON IGNI- TION, TOTAL (MG/L) 28 22 43 36 47 68 35 28 31 | TOTAL
FIXED
(MG/L)
38
53
53
81
33
32
39
62
49 | GEN, NITRATE TOTAL (MG/L AS N) 0.430 0.590 0.420 0.330 0.320 0.360 | GEN, NITRITE TOTAL (MG/L AS N) 0.00 0.020 0.010 ND 0.00 0.00 ND ND | GEN, NO2+NO3 TOTAL (MG/L AS N) 0.430 0.610 0.430 0.270 0.330 0.320 0.360 0.640 0.670 | GEN,
AMMONIA
TOTAL
(MG/L
AS N)
0.080
0.190
0.050
0.010
0.040
0.050
0.050 | GEN, AMMONIA TOTAL (MG/L AS NH4) 0.10 0.24 0.06 0.01 0.05 0.01 0.06 0.06 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.32
0.41
0.25
0.25
0.27
0.14
0.38
0.25 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.40 0.60 0.30 0.26 0.31 0.15 0.43 0.30 0.25 | GEN, TOTAL (MG/L AS N) 0.83 1.2 0.73 0.53 0.64 0.47 0.79 0.94 | GEN,
TOTAL
(MG/L
AS NO3)
3.7
5.4
3.2
2.3
2.8
2.1
3.5
4.2 | PHORUS
TOTAL
(MG/L
AS P)
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.040 | | APR 1987 22 MAY 14 JUN 15 JUL 29 SEP 24 OCT 26 DEC 07 MAR 1988 31 APR 13 25 MAY 10 | VOLA- TILE ON IGNI- TION, TOTAL (MG/L) 28 22 43 36 47 68 35 | TOTAL
FIXED
(MG/L)
38
53
53
81
33
32
39
62 | GEN,
NITRATE
TOTAL
(MG/L
AS N)
0.430
0.590
0.420

0.330
0.320
0.360 | GEN, NITRITE TOTAL (MG/L AS N) 0.00 0.020 0.010 ND 0.00 0.00 0.00 ND | GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
0.430
0.610
0.430
0.270
0.330
0.320
0.360
0.640 | GEN,
AMMONIA
TOTAL
(MG/L
AS N)
0.080
0.190
0.050
0.010
0.040
0.010 | GEN, AMMONIA TOTAL (MG/L AS NH4) 0.10 0.24 0.06 0.01 0.05 0.01 0.06 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.32
0.41
0.25
0.25
0.27
0.14 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.40 0.60 0.30 0.26 0.31 0.15 0.43 | GEN,
TOTAL
(MG/L
AS N)
0.83
1.2
0.73
0.53
0.64
0.47 | GEN,
TOTAL
(MG/L
AS NO3)
3.7
5.4
3.2
2.3
2.8
2.1
3.5
4.2 | PHORUS
TOTAL
(MG/L
AS P)
0.020
0.020
0.020
0.020
0.020
0.020
0.020 | | APR 1987 22 MAY 14 JUN 15 JUL 29 SEP 24 OCT 26 DEC 07 MAR 1988 31 APR 13 25 MAY 10 JUN 01 | VOLA- TILE ON IGNI-
TION, TOTAL (MG/L) 28 22 43 36 47 68 35 28 31 48 50 35 | TOTAL
FIXED
(MG/L)
38
53
53
81
33
32
39
62
49
76
85
54 | GEN, NITRATE TOTAL (MG/L AS N) 0.430 0.590 0.420 0.330 0.320 0.360 0.720 0.490 0.400 | GEN, NITRITE TOTAL (MG/L AS N) 0.00 0.020 0.010 ND 0.00 0.00 ND ND ND 0.020 0.010 0.010 | GEN, NO2+NO3 TOTAL (MG/L AS N) 0.430 0.610 0.430 0.270 0.330 0.320 0.360 0.640 0.670 0.740 0.500 0.410 | GEN, AMMONIA TOTAL (MG/L AS N) 0.080 0.190 0.050 0.010 0.050 0.050 0.050 0.050 0.060 0.080 0.030 | GEN, AMMONIA TOTAL (MG/L AS NH4) 0.10 0.24 0.06 0.01 0.05 0.06 0.06 0.06 0.06 0.06 0.06 0.07 0.06 0.08 0.10 0.04 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.32
0.41
0.25
0.25
0.27
0.14
0.38
0.25
0.19
0.13 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.40 0.60 0.30 0.26 0.31 0.15 0.43 0.30 0.25 0.21 0.34 | GEN, TOTAL (MG/L AS N) 0.83 1.2 0.73 0.53 0.64 0.47 0.79 0.94 0.92 0.95 0.84 0.80 | GEN,
TOTAL
(MG/L
AS NO3)
3.7
5.4
3.2
2.3
2.8
2.1
3.5
4.2
4.1
4.2
3.7 | PHORUS
TOTAL
(MG/L
AS P)
0.020
0.020
0.020
0.020
0.020
0.010
0.040
0.060
0.030
0.070 | | APR 1987 22 MAY 14 JUN 15 JUL 29 SEP 24 OCT 26 DEC 07 MAR 1988 31 APR 13 25 MAY 10 JUN 01 13 AUG | VOLA- TILE ON IGNI- TION, TOTAL (MG/L) 28 22 43 36 47 68 35 28 31 48 50 35 47 | TOTAL
FIXED
(MG/L) 38 53 53 81 33 32 39 62 49 76 85 54 76 | GEN, NITRATE TOTAL (MG/L AS N) 0.430 0.590 0.420 0.330 0.320 0.360 0.720 0.490 0.400 0.540 | GEN, NITRITE TOTAL (MG/L AS N) 0.00 0.020 0.010 ND 0.00 ND ND ND 0.020 0.010 0.020 | GEN, NO2+NO3 TOTAL (MG/L AS N) 0.430 0.610 0.430 0.270 0.330 0.320 0.360 0.640 0.670 0.740 0.500 0.410 0.560 | GEN, AMMONIA TOTAL (MG/L AS N) 0.080 0.190 0.050 0.010 0.040 0.050 0.060 0.080 0.030 0.040 0.050 | GEN, AMMONIA TOTAL (MG/L AS NH4) 0.10 0.24 0.06 0.01 0.05 0.06 0.06 0.06 0.06 0.06 0.06 0.06 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.32
0.41
0.25
0.27
0.14
0.38
0.25
0.19
0.13 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.40 0.60 0.30 0.26 0.31 0.15 0.43 0.30 0.25 0.21 0.34 | GEN, TOTAL (MG/L AS N) 0.83 1.2 0.73 0.53 0.64 0.47 0.79 0.94 0.92 0.95 0.84 0.80 0.98 | GEN,
TOTAL
(MG/L
AS NO3)
3.7
5.4
3.2
2.3
2.8
2.1
3.5
4.2
4.1
4.2
3.7
3.5 | PHORUS
TOTAL
(MG/L
AS P)
0.020
0.020
0.020
0.020
0.020
0.040
0.040
0.060
0.030
0.070 | | APR 1987 22 MAY 14 JUN 15 JUL 29 SEP 24 OCT DEC 07 MAR 1988 31 APR 13 25 MAY 10 JUN 01 13 | VOLA- TILE ON IGNI- TION, TOTAL (MG/L) 28 22 43 36 47 68 35 28 31 48 50 35 | TOTAL
FIXED
(MG/L)
38
53
53
81
33
32
39
62
49
76
85
54 | GEN, NITRATE TOTAL (MG/L AS N) 0.430 0.590 0.420 0.330 0.320 0.360 0.720 0.490 0.400 | GEN, NITRITE TOTAL (MG/L AS N) 0.00 0.020 0.010 ND 0.00 0.00 ND ND ND 0.020 0.010 0.010 | GEN, NO2+NO3 TOTAL (MG/L AS N) 0.430 0.610 0.430 0.270 0.330 0.320 0.360 0.640 0.670 0.740 0.500 0.410 | GEN, AMMONIA TOTAL (MG/L AS N) 0.080 0.190 0.050 0.010 0.050 0.050 0.050 0.050 0.060 0.080 0.030 | GEN, AMMONIA TOTAL (MG/L AS NH4) 0.10 0.24 0.06 0.01 0.05 0.06 0.06 0.06 0.06 0.06 0.06 0.07 0.06 0.08 0.10 0.04 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.32
0.41
0.25
0.25
0.27
0.14
0.38
0.25
0.19
0.13 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.40 0.60 0.30 0.26 0.31 0.15 0.43 0.30 0.25 0.21 0.34 | GEN, TOTAL (MG/L AS N) 0.83 1.2 0.73 0.53 0.64 0.47 0.79 0.94 0.92 0.95 0.84 0.80 | GEN,
TOTAL
(MG/L
AS NO3)
3.7
5.4
3.2
2.3
2.8
2.1
3.5
4.2
4.1
4.2
3.7 | PHORUS
TOTAL
(MG/L
AS P)
0.020
0.020
0.020
0.020
0.020
0.010
0.040
0.060
0.030
0.070 | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). ### 01329650 HUDSON RIVER AT SCHUYLERVILLE, NY - continued | | | | | | | | IA (CONCI | | | | | | |---|--|---|---|---|---|--|--|--|--|---|--|--| | DATE | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P) | PHOS-
PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4) | ALUM-
INUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS AL) | ALUM-
INUM,
DIS-
SOLVED
(UG/L
AS AL) | CADMIUM
TOTAL
RECOV-
ERABLE
(UG/L
AS CD) | CADMIUM
DIS-
SOLVED
(UG/L
AS CD) | COPPER,
TOTAL
RECOV-
ERABLE
(UG/L
AS CU) | COPPER,
DIS-
SOLVED
(UG/L
AS CU) | IRON,
TOTAL
RECOV-
ERABLE
(UG/L
AS FE) | IRON,
DIS-
SOLVED
(UG/L
AS FE) | LEAD,
TOTAL
RECOV-
ERABLE
(UG/L
AS PB) | LEAD,
DIS-
SOLVED
(UG/L
AS PB) | | APR 1987 | | | | | | | | | | | | | | 22
MAY | 0.00 | 0.0 | | | <10 | | <10 | | 230 | | <100 | | | 14 | 0.00 | 0.0 | | | <10 | | <10 | | 210 | | 10 | | | JUN
15 | 0.00 | 0.0 | | | <10 | | 10 | | 230 | | < 5 | | | JUL
29 | 0.00 | 0.0 | | | <10 | <1.0 | 20 | 5 | 210 | | < 5 | 5 | | SEP
24 | 0.00 | 0.0 | | | <1 | | 5 | | 320 | | < 5 | | | ост
26 | 0.00 | 0.0 | | | <1 | <1.0 | 6 | 3 | 230 | | < 5 | < 5 | | DEC
07 | 0.00 | 0.0 | | | <1 | | 5 | | 200 | | < 5 | | | MAR 1988
31 | 0.00 | 0.0 | 470 | 40 | <1 | <1.0 | 3 | <1 | 780 | 60 | < 5 | < 5 | | APR
13 | 0.00 | 0.0 | 400 | | 1 | | 3 | | 630 | | < 5 | | | 25
MAY | 0.00 | 0.0 | 100 | 40 | 1 | <1.0 | 7 | 2 | 180 | 68 | < 5 | < 5 | | 10
JUN | 0.00 | 0.0 | 1000 | | 1 | | 5 | | 2000 | | 6 | | | 01
13
AUG | 0.00 | 0.0 | 110
80 | 4 0 | 1
<1 | <1.0
 | 7
3 | 3 | 240
200 | 93
 | < 5
< 5 | <5
 | | 15 | 0.00 | 0.0 | 60 | | <1 | | 6 | | 30 | | <5 | | | 04 | 0.00 | 0.0 | 70 | | <1 | | 5 | | 170 | | < 5 | | | NOV
07 | ND | | 910 | 40 | <1 | 2.0 | 7 | 5 | 960 | 93 | < 5 | < 5 | | | | | | | | | | | | | | | | DATE | MANGA-
NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN) | MERCURY
TOTAL
RECOV-
ERABLE
(UG/L
AS HG) | NICKEL,
TOTAL
RECOV-
ERABLE
(UG/L
AS NI) | NICKEL,
DIS-
SOLVED
(UG/L
AS NI) | ZINC,
TOTAL
RECOV-
ERABLE
(UG/L
AS ZN) | ZINC,
DIS-
SOLVED
(UG/L
AS ZN) | PHENOL
(C6H-
5OH)
TOTAL
(UG/L) | BROMO-
FORM
TOTAL
(UG/L) | CARBON-
TETRA-
CHLO-
RIDE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
DI-
BROMO-
METHANE
TOTAL
(UG/L) | | APR 1987 | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | NESE,
DIS-
SOLVED
(UG/L | TOTAL
RECOV-
ERABLE
(UG/L
AS HG) | TOTAL
RECOV-
ERABLE
(UG/L
AS NI) | DIS-
SOLVED
(UG/L | TOTAL
RECOV-
ERABLE
(UG/L
AS ZN) | DIS-
SOLVED
(UG/L | (C6H-
5OH)
TOTAL | FORM
TOTAL
(UG/L) | TETRA-
CHLO-
RIDE
TOTAL
(UG/L) | BENZENE
TOTAL
(UG/L) | DI-
BROMO-
METHANE
TOTAL
(UG/L) | | APR 1987
22
MAY | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL
RECOV-
ERABLE
(UG/L
AS HG) | TOTAL
RECOV-
ERABLE
(UG/L
AS NI) | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV- ERABLE (UG/L AS ZN) | DIS-
SOLVED
(UG/L
AS ZN) | (C6H-
5OH)
TOTAL
(UG/L) | FORM TOTAL (UG/L) | TETRA-
CHLO-
RIDE
TOTAL
(UG/L) | BENZENE
TOTAL
(UG/L)
ND | DI-
BROMO-
METHANE
TOTAL
(UG/L) | | APR 1987
22
MAY
14
JUN | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV- ERABLE (UG/L AS HG) <0.10 | TOTAL RECOV- ERABLE (UG/L AS NI) <100 <1 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV- ERABLE (UG/L AS ZN) <10 | DIS-
SOLVED
(UG/L
AS ZN) | (C6H-
5OH)
TOTAL
(UG/L) | FORM TOTAL (UG/L) ND ND | TETRA-
CHLO-
RIDE
TOTAL
(UG/L)
ND | BENZENE
TOTAL
(UG/L)
ND | DI-
BROMO-
METHANE
TOTAL
(UG/L)
ND | | APR 1987
22
MAY
14
JUN
15 | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN)
30
30 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV- ERABLE (UG/L AS HG) <0.10 <0.10 | TOTAL RECOV- ERABLE (UG/L AS NI) <100 <1 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV- ERABLE (UG/L AS ZN) <10 20 <10 | DIS-
SOLVED
(UG/L
AS ZN) | (C6H-
50H)
TOTAL
(UG/L) | FORM TOTAL (UG/L) ND ND | TETRA- CHLO- RIDE TOTAL (UG/L) ND ND | BENZENE
TOTAL
(UG/L)
ND
ND | DI-
BROMO-
METHANE
TOTAL
(UG/L)
ND
ND | | APR 1987 22 MAY 14 JUN 15 JUL 29 SEP | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN)
30
30
30 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV- ERABLE (UG/L AS HG) <0.10 <0.10 <0.10 0.20 | TOTAL RECOV- ERABLE (UG/L AS NI) <100 <1 1 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV-ERABLE (UG/L AS ZN) <10 20 <10 10 |
DIS-
SOLVED
(UG/L
AS ZN) | (C6H-
50H)
TOTAL
(UG/L) | FORM TOTAL (UG/L) ND ND ND | TETRA- CHLO- RIDE TOTAL (UG/L) ND ND ND | BENZENE
TOTAL
(UG/L)
ND
ND
ND | DI-
BROMO-
METHANE
TOTAL
(UG/L)
ND
ND | | APR 1987 22 MAY 14 JUN 15 JUL 29 SEP 24 OCT | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN)
30
30
30 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV-ERABLE (UG/L AS HG) <0.10 <0.10 <0.10 0.20 <0.10 | TOTAL RECOV- ERABLE (UG/L AS NI) <100 <1 1 1 <1 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV- ERABLE (UG/L AS ZN) <10 20 <10 10 <10 | DIS-
SOLVED
(UG/L
AS ZN) | (C6H-
50H)
TOTAL
(UG/L) | FORM TOTAL (UG/L) ND ND ND ND | TETRA- CHLO- RIDE TOTAL (UG/L) ND ND ND ND | BENZENE
TOTAL
(UG/L)
ND
ND
ND
ND | DI- BROMO- METHANE TOTAL (UG/L) ND ND ND ND | | APR 1987 22 MAY 14 JUN 15 JUL 29 SEP 24 CCT 26 DEC | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN)
30
30
30
30 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV- ERABLE (UG/L AS HG) <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 | TOTAL RECOV- ERABLE (UG/L AS NI) <100 <1 1 1 1 1 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV-ERABLE (UG/L AS ZN) <10 | DIS-
SOLVED
(UG/L
AS 2N)

20

<10 | (C6H-
50H)
TOTAL
(UG/L) | FORM TOTAL (UG/L) ND ND ND ND ND | TETRA- CHLO- RIDE TOTAL (UG/L) ND ND ND ND ND ND | BENZENE
TOTAL
(UG/L)
ND
ND
ND
ND | DI-
BROMO-
METHANE
TOTAL
(UG/L)
ND
ND
ND | | APR 1987 22 MAY 14 JUN 15 JUL 29 SEP 24 OCT 26 DEC 07 MAR 1988 | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN)
30
30
30
30 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV-ERABLE (UG/L AS HG) <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 | TOTAL RECOV- ERABLE (UG/L AS NI) <100 <1 1 1 <1 <1 <1 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV-ERABLE (UG/L AS ZN) <10 20 <10 10 <10 <10 <10 <10 | DIS-SOLVED (UG/L AS ZN) 20 <10 | (C6H-
50H)
TOTAL
(UG/L) | FORM TOTAL (UG/L) ND ND ND ND ND ND ND | TETRA- CHLO- RIDE TOTAL (UG/L) ND ND ND ND ND | BENZENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND
ND | DI- BROMO- METHANE TOTAL (UG/L) ND ND ND ND ND ND | | APR 1987 22 MAY 14 JUN 15 JUL 29 SEP 24 OCT 26 DEC 07 MAR 1988 31 APR | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN)
30
30
30
30
30
30 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV- ERABLE (UG/L AS HG) <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 | TOTAL RECOV- ERABLE (UG/L AS NI) <100 <1 1 1 <1 2 | DIS- SOLVED (UG/L AS NI) 1 4 | TOTAL RECOV-ERABLE (UG/L AS ZN) <10 | DIS-
SOLVED
(UG/L
AS ZN) 20 <10 <10 | (C6H-
50H)
TOTAL
(UG/L) | FORM TOTAL (UG/L) ND ND ND ND ND ND ND ND ND | TETRA- CHLO- RIDE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | BENZENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND
ND | DI- BROMO- METHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | | APR 1987 22 MAY 14 JUN 15 JUL 29 SEP 24 OCT 26 DEC 07 MAR 1988 31 APR 13 25 | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN)
30
30
30
30 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV-ERABLE (UG/L AS HG) <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 | TOTAL RECOV- ERABLE (UG/L AS NI) <100 <1 1 1 <1 <1 <1 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV-ERABLE (UG/L AS ZN) <10 20 <10 10 <10 <10 <10 <10 | DIS-SOLVED (UG/L AS ZN) 20 <10 | (C6H-
50H)
TOTAL
(UG/L) | FORM TOTAL (UG/L) ND ND ND ND ND ND ND | TETRA- CHLO- RIDE TOTAL (UG/L) ND ND ND ND ND | BENZENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND
ND | DI- BROMO- METHANE TOTAL (UG/L) ND ND ND ND ND ND | | APR 1987 22 MAY 14 JUN 15 JUL 29 SEP 24 CCT 26 DEC 07 MAR 1988 31 APR 13 APR 13 APR 13 APR 13 | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN)
30
30
30
30
30
50 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV- ERABLE (UG/L AS HG) <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 | TOTAL RECOVERABLE (UG/L AS NI) <100 <1 1 1 | DIS-SOLVED (UG/L AS NI) | TOTAL RECOV-ERABLE (UG/L AS ZN) <10 | DIS-
SOLVED
(UG/L
AS ZN) 20 <10 <10 | (C6H-
50H)
TOTAL
(UG/L) | FORM TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TETRA- CHLO- RIDE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | BENZENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND
ND | DI- BROMO- METHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | | APR 1987 22 MAY 14 JUN 15 JUL 29 SEP 24 CCT 26 DEC 07 MAR 1988 31 APR 13 25 MAY 10 JUN 01 13 | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN)
30
30
30
30
10
50
50 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV- ERABLE (UG/L AS HG) <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 | TOTAL RECOVERABLE (UG/L AS NI) <100 <1 1 1 <1 2 7 5 | DIS-SOLVED (UG/L AS NI) | TOTAL RECOV-ERABLE (UG/L AS ZN) <10 | DIS-
SOLVED
(UG/L
AS 2N) 20 <10 <10 <3 | (C6H-
50H)
TOTAL
(UG/L) | FORM TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TETRA-CHLO-RIDE TOTAL (UG/L) ND | BENZENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND
ND
ND | DI- BROMO- METHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | | APR 1987 22 MAY 14 JUN 15 JUL 29 SEP 24 OCT 26 DEC 07 MAR 1988 31 APR 13 25 MAY 10 JUN 01 13 AUG 15 | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN)
30
30
30
30
10
50
40
120 | NESE,
DIS-
SOLVED
(UG/L
AS MN) 10 34 | TOTAL RECOVERABLE (UG/L AS HG) <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 | TOTAL RECOVERABLE (UG/L AS NI) <100 <1 1 1 <1 1 <1 2 7 5 3 8 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOVERABLE (UG/L AS ZN) <10 | DIS-SOLVED (UG/L AS ZN) 20 <10 <10 <3 18 | (C6H-
50H)
TOTAL
(UG/L) | FORM TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TETRA-CHLO-RIDE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | BENZENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND
ND
ND
ND | DI- BROMO- METHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | | APR 1987 22 MAY 14 JUN 15 JUL 29 SEP 24 OCT 26 DEC 07 MAR 1988 31 APR 13 25 MAY 10 JUN 01 13 AUG | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN)
30
30
30
30
10
50
40 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV- REABLE (UG/L AS HG) <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 | TOTAL RECOVERABLE (UG/L AS NI) <100 <1 1 1 <1 2 7 5 3 8 4 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV-ERABLE (UG/L AS ZN) <10 | DIS-SOLVED (UG/L AS 2N) 20 <10 <10 <3 18 | (C6H-
50H)
TOTAL
(UG/L) | FORM TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TETRA-CHLO-RIDE TOTAL (UG/L) ND | BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | DI- BROMO- METHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | # 01329650 HUDSON RIVER AT SCHUYLERVILLE, NY - continued | DATE | CHLORO-
ETHANE
TOTAL
(UG/L) | CHLORO-
FORM
TOTAL
(UG/L) | CIS
1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | DI-
CHLORO-
BROMO-
METHANE
TOTAL
(UG/L) | METHYL-
BROMIDE
TOTAL
(UG/L) | METHYL-
CHLO-
RIDE
TOTAL
(UG/L) | METHYL-
ENE
CHLO-
RIDE
TOTAL
(UG/L) | 1,1,1-
TRI-
CHLORO-
ETHANE
TOTAL
(UG/L) | 1,1-DI-
CHLORO-
ETHANE
TOTAL
(UG/L) | 1,1-DI-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 1,1,2-
TRI-
CHLORO-
ETHANE
TOTAL
(UG/L) | 1,1,2,2
TETRA-
CHLORO-
ETHANE
TOTAL
(UG/L) | |-----------------------|--------------------------------------|------------------------------------|---|--|---------------------------------------|---|--|--|---|--|--|---| | APR 1987 | | | | | | | | | | | | | | 22 | ND | MAY
14
JUN | ND | 15 | ND | JUL
29
SEP | ND | 24 | ND ИD | ND | ND | ND | | OCT
26
DEC | ND | 07 | ND | MAR 1988
31
APR | ND | ND | ND | ND | ND | ND | 0.5 | ND | ND | ND | ND | ND | | 13 | ND | 25 | ND | MAY
10
JUN | ND | 01 | ND | ND | ND | ИD | ND | 13 | ND | AUG
15 | ND | 0.2 | ND | 04 | ND | 0.2 | ND | 07 | ND | 0.1 | ND | DATE | 1,2-DI-
CHLORO-
BENZENE
TOTAL
(UG/L) | 1,2-DI-
CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L) | 1,2-DI-
CHLORO-
PROPANE
TOTAL
(UG/L) | 1,2-
TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L) | 1,3-DI-
CHLORO-
BENZENE
TOTAL
(UG/L) | 1,4-DI-
CHLORO-
BENZENE
TOTAL
(UG/L) | TETRA-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | TRANS-
1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | TRI-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 2-
CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L) | VINYL
CHLO-
RIDE
TOTAL
(UG/L) | |-----------------|--|---|--|---|--|--|---|--|---|---|---| | APR 1987 | | | | | | | | | | | | | 22
MAY | ND | 14
JUN | ND | 15
JUL | ND | 29
SEP | ND | 24
OCT | ND | 26
DEC | ND | 07 | ND | MAR 1988
31 | ND | APR
13
25 | ND
ND | MAY
10 | ND | JUN | | | | | 2 | | | | |
 | | 01
13 | ND
ND | AUG | 110 | ND | | | | | | | | | | | 15
OCT | ND | 04 | ND | 07 | ND 01329650 HUDSON RIVER AT SCHUYLERVILLE, NY - continued # SUSPENDED SEDIMENT DISCHARGE | DATE | TIME | DIS- CHARGE, IN CUBIC FEET PER SECOND | SEDI-
MENT,
SUS-
PENDED
(MG/L) | SEDI-
MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY) | |----------|------|---------------------------------------|--|--| | JUN 1988 | | | | | | 01 | 1130 | 2700 | 2 | 15 | | 13 | 1245 | 1400 | 3 | 11 | | AUG | | | | | | 15 | 1230 | 3700 | 2 | 20 | | NOV | | | | | | 07 | 1200 | 14000 | 38 | 1440 | | | | | | | ### BED MATERIAL ANALYSES | DATE OCT 1987 26 AUG 1988 15 | | SOLIDS VOLA- TILE 1 BOTTOM MA- TERIA (MG/KG | IN RE TON TON AL TE | IUM, RECOV. FM BOT- TOM MA- TE CRIAL (U | ECOV. M
BOT- F
MA- FM
ERIAL TO
JG/G T | IIUM,
RECOV. | | OV. RE
OT FM
IA TOM
IAL TE
'G (U | ECOV. RI
BOT- FM
MA- TOI
ERIAL TI
JG/G (I | ECOV. N
BOT- R
M MA- FM
ERIAL TO
JG/G T | ESE, F
ECOV. FR
BOT- TO
M MA- T
ERIAL | RECOV.
M BOT- | NICKEL,
RECOV.
FM BOT-
TOM MA-
TERIAI
(UG/G
AS NI) | RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN) | |-------------------------------|--|---|---|--|---|-----------------|----------------------------|--|---|---|--|-------------------------|--|--| | DATE
OCT 1987 | AROCL
1221
IN
BOTTO
MAT
(UG/K | M
BC | ROCLOR
1248
PCB
PT.MAT
JG/KG) | AROCLOR
1254
PCB
BOT.MAT
(UG/KG) | AROCLOF
1260
PCB
BOT.MAT
(UG/KG) | IN BO
TOM M | N,
L T
T- I
IA- T | LPHA
BHC
OTAL
N BOT-
OM MA-
PERIAL
UG/KG) | ATRA-
ZINE,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | BETA
BENZENE
HEXA-
CHLOR-
IDE
BOT.MAT
(UG/KG) | CHLOR-
DANE,
TOTAL
IN BOT-
TOM MA-
TERIAI
(UG/KG) | CHLOR
PYRIF
IN BO | BEN
- HE
OS CH
T. I | ELTA
NZENE
SXA-
HLOR-
IDE
LMAT
G/KG) | | 26
AUG 1988 | | | | | | | | | | - | | | | | | 15 | ND | | ND | ND | ND | ND | | ND | ND | ND | ND | N D | ŀ | 1D | | DATE | DI- AZINO TOTA IN BO TOM M TERI (UG/K | L I
T- IN
A- TC
AL I | DI-
DRIN,
POTAL
BOT-
DM MA-
PERIAL
JG/KG) | ENDO-
SULFAN
ALPHA
BOT.MAT
(UG/KG) | ENDO-
SULFAN
BETA
BOT.MAT
(UG/KG) | |)-
'AN I
TE T
IAT | ENDRIN, TOTAL IN BOT- OM MA- TERIAL UG/KG) | ENDRIN
ALDE-
HYDE
BOT.MAT
(UG/KG) | ETHION,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | HEPTA-
CHLOR,
TOTAL
IN BOT-
TOM MA-
TERIAI
(UG/KG) | CHLO EPOXI TOT BOTT MAT | R TH
DE TO
IN IN
OM TON
L. TE | ALA- HION, DTAL BOT- MA- GRIAL G/KG) | | ОСТ 1987
26 | | | | | | | | | | | | | | | | AUG 1988
15 | ND | | ND | ND | ND | ND | | ND | ND | ND | N D | ND | h | I D | | DATE
OCT 1987 | METH
OXY-
CHLO
TOT.
BOTTN
MAT:
(UG/K | R, T
IN IN
OM TO
L. T | MIREX, NOTAL MOT- MMA- PERIAL MG/KG) | P,P' DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) | P,P' DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) | TOM M | ',
L
T- I
IA- T | PARA-
THION,
TOTAL
N BOT-
OM MA-
TERIAL
UG/KG) | TOXA-
PHENE,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | BED
MAT.
FALL
DIAM.
% FINER
THAN
.004 MM | BED
MAT.
SIEVE
DIAM.
% FINEF
THAN
.062 MM | THA | . N
E SI
. DI
ER % F | BED
MAT.
LEVE
AM.
FINER
THAN
O MM | | 26
AUG 1988 | | | | | | | | | | 1 | 16 | | 40 | 100 | | 15 | ND | | ND | ND | ND | ND | | ND | ND | 3 | 9 | 1 | 00 | | ### 01329907 CLOVER MILL BROOK ON SHAW HILL ROAD NEAR ROCK CITY FALLS, NY LOCATION.--Lat 43*04'09", long 73*56'20", Saratoga County, Hydrologic Unit 0202003, at bridge on Shaw Hill Road, 600 ft west of Route 29, approx 1.5 mi northwest of Rock City Falls. DRAINAGE AREA. -- 2.51 mi2. PERIOD OF RECORD.--Water years 1987 to 1989. CHEMICAL DATA: 1987 (b), 1988 (c), 1989 (a). MINOR ELEMENT DATA: 1987 (b), 1988 (c), 1989 (a). PESTICIDE DATA: 1987 (b), 1988 (c), 1989 (a). ORGANIC DATA: PCB--1988 (a). NUTRIENT DATA: 1987 (b), 1988 (c), 1989 (a). BIOLOGICAL DATA: Bacteria-- 1987 (b), 1988 (c), 1989 (a). SEDIMENT DATA: 1988 (a), 1989 (a). REMARKS. -- Water-discharge data obtained from a discharge rating developed for this site. ### WATER-QUALITY DATA | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | SPE-
CIFIC
CON-
DUCT-
ANCE
LAB
(US/CM) | PH WATER WHOLE FIELD (STAND- ARD UNITS) | TEMPER-
ATURE
WATER
(DEG C) | TUR-
BID-
ITY
(NTU) | BARO-
METRIC
PRES-
SURE
(MM
OF
HG) | OXYGEN,
DIS-
SOLVED
(MG/L) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION) | COLI-
FORM,
TOTAL,
IMMED.
(COLS.
PER
100 ML) | FECAL
COLI-
FORM
24-HR
MEM.FIL
(COLS./
100 ML) | |------------------|--------------|--|---|--|---|--------------------------------------|------------------------------|--|-------------------------------------|--|--|--| | APR 1987 | | | | | | | | | | | | | | 30
May | 1310 | | | | 7.8 | 8.5 | 1.2 | | 11.1 | | | | | 14
JUN | 1015 | | | 332 | 8.0 | 13.5 | 1.1 | | 10.4 | | 100 | ND | | 11
JUL | 0955 | | | 328 | 8.0 | 16.0 | 1.5 | | 9.9 | | 200 | 35.0 | | 28 | 1020 | | | | 8.0 | 18.5 | 1.3 | | 9.0 | | 650 | 140 | | SEP
24
OCT | 0945 | | | 310 | 7.8 | 13.0 | 1.6 | | 10.4 | | 250 | 25.0 | | 26
DEC | 1100 | | | 315 | 7.9 | 5.0 | 1.3 | | 12.1 | | 650 | ND | | 07
MAR 1988 | 1030 | | | 289 | 8.0 | 2.0 | 1.5 | | 19.0 | | | | | 28 | 1100 | 5.2 | 170 | 174 | 7.9 | 2.5 | 3.0 | 768 | 13.8 | 101 | 140 | ND | | APR
13 | 1045 | 3.2 | 290 | 284 | 7.3 | 7.5 | 0.80 | 765 | 11.9 | 98 | 30 | 5.00 | | 25
May | 1030 | 3.2 | 299 | 300 | 7.9 | 7.5 | 1.4 | 755 | 11.7 | 99 | 40 | ND | | 10
24 | 1000
0900 | 3.7 | 295
279 | 333
275 | 7.7
7.9 | 10.0
14.0 | 1.5
4.7 | | 10.7
9.4 | | 100
300 | 90.0
10.0 | | JUN
13 | 1015 | | 358 | 366 | 8.1 | 15.5 | 2.0 | 765 | 8.0 | 80 | 50 | 25.0 | | AUG
15
OCT | 1000 | | 362 | 363 | 7.9 | 20.0 | 1.4 | 757 | 8.1 | 90 | 900 | 150 | | 04
NOV | 1000 | 2.9 | 367 | 385 | 7.7 | 11.0 | 1.1 | 763 [°] | 10.9 | 98 | >90 | 10.0 | | 02 | 1100 | 4.5 | 198 | 204 | 7.6 | 5.5 | 6.3 | 764 | 14.0 | 110 | 500 | 190 | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). # 01329907 CLOVER MILL BROOK ON SHAW HILL ROAD NEAR ROCK CITY FALLS, NY - continued | DATE | HARD-
NESS
TOTAL
(MG/L
AS
CACO3) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K) | ALKA-
LINITY
LAB
(MG/L
AS
CACO3) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | SOLIDS,
RESIDUE
AT 105
DEG. C,
TOTAL
(MG/L) | |---|---|---|--|---|--|---|--|---|--|--|--|---| | APR 1987 | | • | | | | | | | | | | 4.50 | |
30
May | 110 | 28 | 9.6 | | | | | | | 141 | | 160 | | 14
JUN | 130 | 32 | 11 | | | | | | | 177 | | 193 | | 11
JUL | 140 | 35 | 12 | | | | | | | | | 244 | | 28 | 140 | 35 | 12 | | | | | | | 109 | | 222 | | SEP 24 | 120 | 30 | 11 | | | | | | | 192 | | 228 | | ост
26 | 120 | 30 | 12 | | | | | | | 170 | | 205 | | DEC
07 | 100 | 24 | 9.7 | | | | | | | 138 | | 180 | | MAR 1988
28 | 64 | 16 | 5.8 | 9.4 | 1.2 | 54 | 12 | 13 | 0.10 | 98 | 90 | 117 | | APR
13 | 100 | 24 | 9.9 | 15 | 2.3 | 100 | 14 | 22 | 0.10 | 165 | 147 | 174 | | 25
MAY | 110 | 26 | 11 | 16 | 2.3 | 100 | 12 | 22 | 0.10 | 180 | 150 | 191 | | 10
24 | 120
99 | 28
24 | 11
9.6 | 17
14 | 2.6
2.0 | 111
90 | 12
12 | 2 4
19 | 0.20
0.20 | 2 0 5
140 | 1 61
135 | 214
177 | | JUN
13 | 130 | 32 | 13 | 18 | 3.9 | 123 | 9.9 | 24 | 0.10 | 207 | 175 | 220 | | AUG
15 | 150 | 35 | 14 | 17 | 4.2 | 131 | 10 | 23 | 0.10 | | 182 | 204 | | OCT
04 | 150 | 35 | 14 | 18 | 3.8 | 141 | 11 | 25 | 0.10 | 222 | 191 | 235 | | NOV
02 | 76 | 18 | 7.6 | 11 | 1.5 | 5 9 | 22 | 15 | <0.10 | | 111 | 138 | | | | | , , , | | | | | | 10120 | | | | | | | | | | | | | | | | | | | DATE | SOLIDS,
VOLA-
TILE ON
IGNI-
TION,
TOTAL
(MG/L) | RESIDUE
TOTAL
FIXED
(MG/L) | NITRO-
GEN,
NITRATE
TOTAL
(MG/L
AS N) | NITRO-
GEN,
NITRITE
TOTAL
(MG/L
AS N) | NITRO-
GEN,
NO2+NO3
TOTAL
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS NH4) | NITRO-
GEN,
ORGANIC
TOTAL
(MG/L
AS N) | NITRO-
GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | NITRO-
GEN,
TOTAL
(MG/L
AS N) | NITRO-
GEN,
TOTAL
(MG/L
AS NO3) | PHOS-
PHORUS
TOTAL
(MG/L
AS P) | | APR 1987 | VOLA-
TILE ON
IGNI-
TION,
TOTAL
(MG/L) | TOTAL
FIXED
(MG/L) | GEN,
NITRATE
TOTAL
(MG/L
AS N) | GEN,
NITRITE
TOTAL
(MG/L
AS N) | GEN,
NO2+NO3
TOTAL
(MG/L
AS N) | GEN,
AMMONIA
TOTAL
(MG/L
AS N) | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4) | GEN,
ORGANIC
TOTAL
(MG/L
AS N) | GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | GEN,
TOTAL
(MG/L
AS N) | GEN,
TOTAL
(MG/L
AS NO3) | PHORUS
TOTAL
(MG/L
AS P) | | APR 1987
30
MAY | VOLA-
TILE ON
IGNI-
TION,
TOTAL
(MG/L) | TOTAL
FIXED
(MG/L) | GEN,
NITRATE
TOTAL
(MG/L
AS N) | GEN,
NITRITE
TOTAL
(MG/L
AS N) | GEN,
NO2+NO3
TOTAL
(MG/L
AS N) | GEN,
AMMONIA
TOTAL
(MG/L
AS N) | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4) | GEN,
ORGANIC
TOTAL
(MG/L
AS N) | GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | GEN,
TOTAL
(MG/L
AS N) | GEN,
TOTAL
(MG/L
AS NO3) | PHORUS
TOTAL
(MG/L
AS P) | | APR 1987
30
MAY
14
JUN | VOLA-
TILE ON
IGNI-
TION,
TOTAL
(MG/L) | TOTAL
FIXED
(MG/L)
106
147 | GEN,
NITRATE
TOTAL
(MG/L
AS N) | GEN,
NITRITE
TOTAL
(MG/L
AS N) | GEN,
NO2+NO3
TOTAL
(MG/L
AS N) | GEN,
AMMONIA
TOTAL
(MG/L
AS N) | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4) | GEN,
ORGANIC
TOTAL
(MG/L
AS N) | GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | GEN,
TOTAL
(MG/L
AS N) | GEN,
TOTAL
(MG/L
AS NO3) | PHORUS
TOTAL
(MG/L
AS P) | | APR 1987
30
MAY
14 | VOLA-
TILE ON
IGNI-
TION,
TOTAL
(MG/L) | TOTAL
FIXED
(MG/L) | GEN,
NITRATE
TOTAL
(MG/L
AS N) | GEN,
NITRITE
TOTAL
(MG/L
AS N) | GEN,
NO2+NO3
TOTAL
(MG/L
AS N) | GEN,
AMMONIA
TOTAL
(MG/L
AS N) | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4) | GEN,
ORGANIC
TOTAL
(MG/L
AS N) | GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | GEN,
TOTAL
(MG/L
AS N) | GEN,
TOTAL
(MG/L
AS NO3) | PHORUS
TOTAL
(MG/L
AS P) | | APR 1987
30
MAY
14
JUN
11 | VOLA-
TILE ON
IGNI-
TION,
TOTAL
(MG/L) | TOTAL
FIXED
(MG/L)
106
147 | GEN,
NITRATE
TOTAL
(MG/L
AS N)
0.570 | GEN,
NITRITE
TOTAL
(MG/L
AS N)
0.00 | GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
0.570 | GEN,
AMMONIA
TOTAL
(MG/L
AS N)
0.780 | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4)
1.0 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.20
0.93 | GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
0.98 | GEN,
TOTAL
(MG/L
AS N)
1.6
2.3 | GEN,
TOTAL
(MG/L
AS NO3)
6.9 | PHORUS
TOTAL
(MG/L
AS P)
0.030 | | APR 1987
30
MAY
14
JUN
11
JUL
28
SEP
24 | VOLA-
TILE ON
IGNI-
TION,
TOTAL
(MG/L)
58
46 | TOTAL
FIXED
(MG/L)
106
147
123 | GEN,
NITRATE
TOTAL
(MG/L
AS N)
0.570
0.900 | GEN,
NITRITE
TOTAL
(MG/L
AS N)
0.00
0.020 | GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
0.570
0.920 | GEN,
AMMONIA
TOTAL
(MG/L
AS N)
0.780
0.470 | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4)
1.0
0.61 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.20
0.93 | GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
0.98
1.4
2.3 | GEN,
TOTAL
(MG/L
AS N)
1.6
2.3
3.6 | GEN,
TOTAL
(MG/L
AS NO3)
6.9
10 | PHORUS
TOTAL
(MG/L
AS P)
0.030
0.00 | | APR 1987 30 MAY 14 JUN 11 JUL 28 SEP 24 OCT 26 | VOLA-
TILE ON
IGNI-
TION,
TOTAL
(MG/L)
58
46
77
74 | TOTAL
FIXED
(MG/L)
106
147
123
168 | GEN,
NITRATE
TOTAL
(MG/L
AS N)
0.570
0.900
1.28
1.66 | GEN,
NITRITE
TOTAL
(MG/L
AS N)
0.00
0.020
0.040
0.180 | GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
0.570
0.920
1.32 | GEN,
AMMONIA
TOTAL
(MG/L
AS N)
0.780
0.470
1.00
0.630 | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4)
1.0
0.61
1.3 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.20
0.93
1.3 | GEN, AM-
MONIA +
ORGANIC
TOTTAL
(MG/L
AS N)
0.98
1.4
2.3 | GEN,
TOTAL
(MG/L
AS N)
1.6
2.3
3.6 | GEN,
TOTAL
(MG/L
AS NO3)
6.9
10
16 | PHORUS
TOTAL
(MG/L
AS P)
0.030
0.00
0.00 | | APR 1987 30 MAY 14 JUN 11 JUL 28 SEP 24 OCT 26 DEC 07 | VOLA-
TILE ON
IGNI-
TION,
TOTAL
(MG/L)
58
46
77
74
66 | TOTAL
FIXED
(MG/L)
106
147
123
168
162 | GEN,
NITRATE
TOTAL
(MG/L
AS N)
0.570
0.900
1.28
1.66
0.840 | GEN,
NITRITE
TOTAL
(MG/L
AS N)
0.00
0.020
0.040
0.180
0.030 | GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
0.570
0.920
1.32
1.84
0.870 | GEN,
AMMONIA
TOTAL
(MG/L
AS N)
0.780
0.470
1.00
0.630
0.850 | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4)
1.0
0.61
1.3
0.81 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.20
0.93
1.3
0.57 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.98 1.4 2.3 1.2 | GEN,
TOTAL
(MG/L
AS N)
1.6
2.3
3.6
3.0
2.3 | GEN,
TOTAL
(MG/L
AS NO3)
6.9
10
16
13 | PHORUS
TOTAL
(Mg/L
AS P)
0.030
0.00
0.00
0.010 | | APR 1987 30 MAY 14 JUN 11 JUL 28 SEP 24 OCT 26 DEC 07 MAR 1988 28 | VOLA-
TILE ON
IGNI-
TION,
TOTAL
(MG/L)
58
46
77
74
66
86 | TOTAL
FIXED
(MG/L)
106
147
123
168
162
119 | GEN,
NITRATE
TOTAL
(MG/L
AS N)
0.570
0.900
1.28
1.66
0.840
0.620 | GEN,
NITRITE
TOTAL
(MG/L
AS N)
0.00
0.020
0.040
0.190
0.030 | GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
0.570
0.920
1.32
1.84
0.870
0.620 | GEN,
AMMONIA
TOTAL
(MG/L
AS N)
0.780
0.470
1.00
0.630
0.850
0.720 | GEN, AMMONIA TOTAL (MG/L AS NH4) 1.0 0.61 1.3 0.81 1.1 0.93 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.20
0.93
1.3
0.57
0.55 | GEN, AM-
MONIA +
ORGANIC
TOTTAL
(MG/L
AS N)
0.98
1.4
2.3
1.2
1.4 | GEN,
TOTAL
(MG/L
AS N)
1.6
2.3
3.6
3.0
2.3 | GEN,
TOTAL
(MG/L
AS NO3)
6.9
10
16
13 | PHORUS
TOTAL
(MG/L
AS P)
0.030
0.00
0.00
0.010
0.010 | | APR 1987 30 MAY 14 JUN 11 JUL 28 SEP 24 OCT 26 DEC 07 MAR 1988 28 APR | VOLA-
TILE ON
IGNI-
TION,
TOTAL
(MG/L)
58
46
77
74
66
86
61
29
54 | TOTAL
FIXED
(MG/L)
106
147
123
168
162
119
119
88 | GEN,
NITRATE
TOTAL
(MG/L
AS N)
0.570
0.900
1.28
1.66
0.840
0.620 | GEN, NITRITE TOTAL (MG/L AS N) 0.00 0.020 0.040 0.180 0.030 0.00 ND 0.00 | GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
0.570
0.920
1.32
1.84
0.870
0.620
0.470
0.220 | GEN,
AMMONIA
TOTAL
(MG/L
AS N)
0.780
0.470
1.00
0.630
0.850
0.720
1.00
0.340
0.660 | GEN, AMMONIA TOTAL (MG/L AS NH4) 1.0 0.61 1.3 0.81 1.1 0.93 1.3 0.44 0.85 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.20
0.93
1.3
0.57
0.55
0.98
5.6
0.32 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.98 1.4 2.3 1.2 1.4 1.7 6.6 0.66 0.99 | GEN,
TOTAL
(MG/L
AS N)
1.6
2.3
3.6
3.0
2.3
2.3
7.1
0.88 | GEN,
TOTAL
(MG/L
AS NO3)
6.9
10
16
13
10
10
31
3.9
7.3 | PHORUS
TOTAL
(MG/L
AS P)
0.030
0.00
0.010
0.010
0.010
0.00
0.00 | | APR 1987 30 MAY 14 JUN 11 JUL 28 SEP 24 OCT 26 DEC 07 MAR 1988 28 APR 13 25 MAY | VOLA- TILE ON IGNI- TION, TOTAL (MG/L) 58 46 77 74 66 86 61 29 54 69 | TOTAL
FIXED
(MG/L)
106
147
123
168
162
119
119
88
120
122 | GEN, NITRATE TOTAL (MG/L AS N) 0.570 0.900 1.28 1.66
0.840 0.620 0.220 0.640 | GEN,
NITRIE
TOTAL
(MG/L
AS N)
0.00
0.020
0.040
0.180
0.030
0.00
ND
0.00 | GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
0.570
0.920
1.32
1.84
0.870
0.620
0.470
0.220 | GEN, AMMONIA TOTAL (MG/L AS N) 0.780 0.470 1.00 0.630 0.850 0.720 1.00 0.340 0.660 0.620 | GEN, AMMONIA TOTAL (MG/L AS NH4) 1.0 0.61 1.3 0.81 1.1 0.93 1.3 0.44 0.85 0.80 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.20
0.93
1.3
0.57
0.55
0.98
5.6
0.32
0.33 | GEN, AM- MONIA + ORGANIC TOTTAL (MG/L AS N) 0.98 1.4 2.3 1.2 1.4 1.7 6.6 0.66 0.99 2.0 | GEN,
TOTAL
(MG/L
AS N)
1.6
2.3
3.6
3.0
2.3
2.3
7.1
0.88
1.7
2.6 | GEN,
TOTAL
(MG/L
AS NO3)
6.9
10
16
13
10
10
31
3.9
7.3 | PHORUS TOTAL (MG/L AS P) 0.030 0.00 0.010 0.010 0.00 0.00 0.000 0.000 0.000 0.000 | | APR 1987 30 MAY 14 JUN 11 JUL 28 SEP 24 OCT 26 DEC 07 MAR 1988 28 APR 13 25 MAY | VOLA-
TILE ON
IGNI-
TION,
TOTAL
(MG/L)
58
46
77
74
66
86
61
29
54 | TOTAL
FIXED
(MG/L)
106
147
123
168
162
119
119
88 | GEN,
NITRATE
TOTAL
(MG/L
AS N)
0.570
0.900
1.28
1.66
0.840
0.620 | GEN, NITRITE TOTAL (MG/L AS N) 0.00 0.020 0.040 0.180 0.030 0.00 ND 0.00 | GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
0.570
0.920
1.32
1.84
0.870
0.620
0.470
0.220 | GEN,
AMMONIA
TOTAL
(MG/L
AS N)
0.780
0.470
1.00
0.630
0.850
0.720
1.00
0.340
0.660 | GEN, AMMONIA TOTAL (MG/L AS NH4) 1.0 0.61 1.3 0.81 1.1 0.93 1.3 0.44 0.85 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.20
0.93
1.3
0.57
0.55
0.98
5.6
0.32 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.98 1.4 2.3 1.2 1.4 1.7 6.6 0.66 0.99 | GEN,
TOTAL
(MG/L
AS N)
1.6
2.3
3.6
3.0
2.3
2.3
7.1
0.88 | GEN,
TOTAL
(MG/L
AS NO3)
6.9
10
16
13
10
10
31
3.9
7.3 | PHORUS
TOTAL
(MG/L
AS P)
0.030
0.00
0.010
0.010
0.010
0.00
0.00 | | APR 1987 30 MAY 14 JUN 11 JUL 28 SEP 24 OCT 26 DEC 07 MAR 1988 28 APR 13 25 MAY 10 24 JUN 13 | VOLA-
TILE ON IGNI-
TION, TOTAL (MG/L) 58 46 77 74 66 86 61 29 54 69 72 | TOTAL
FIXED (MG/L) 106 147 123 168 162 119 119 88 120 122 142 | GEN, NITRATE TOTAL (MG/L AS N) 0.570 0.900 1.28 1.66 0.840 0.620 0.220 0.640 0.560 | GEN, NITRITE TOTAL (MG/L AS N) 0.00 0.020 0.040 0.180 0.030 0.00 ND 0.00 ND 0.00 | GEN, NO2+NO3 TOTAL (MG/L AS N) 0.570 0.920 1.32 1.84 0.870 0.620 0.470 0.220 0.660 0.640 0.570 | GEN, AMMONIA TOTAL (MG/L AS N) 0.780 0.470 1.00 0.630 0.950 1.00 0.340 0.660 0.620 0.610 | GEN, AMMONIA TOTAL (MG/L AS NH4) 1.0 0.61 1.3 0.81 1.1 0.93 1.3 0.44 0.85 0.80 0.79 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.20
0.93
1.3
0.57
0.55
0.98
5.6
0.32
0.33
1.4 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.98 1.4 2.3 1.2 1.4 1.7 6.6 0.66 0.99 2.0 1.0 | GEN,
TOTAL
(MG/L
AS N)
1.6
2.3
3.6
3.0
2.3
7.1
0.88
1.7
2.6
1.6 | GEN,
TOTAL
(MG/L
AS NO3)
6.9
10
16
13
10
10
31
3.9
7.3
12
6.9 | PHORUS TOTAL (MG/L AS P) 0.030 0.00 0.010 0.010 0.000 0.000 0.000 0.000 0.010 0.010 | | APR 1987 30 MAY 14 JUN 11 JUL 28 SEP 24 OCT 26 DEC 07 MAR 1988 28 APR 13 25 MAY 10 24 JUN 13 AUG 15 | VOLA-
TILE ON
IGNI-
TION,
TOTAL
(MG/L)
58
46
77
74
66
86
61
29
54
69
72
59 | TOTAL
FIXED
(MG/L)
106
147
123
168
162
119
119
88
120
122
142
118 | GEN, NITRATE TOTAL (MG/L AS N) 0.570 0.900 1.28 1.66 0.840 0.620 0.220 0.640 0.560 0.700 | GEN, NITRITE TOTAL (MG/L AS N) 0.00 0.020 0.040 0.180 0.030 0.00 ND 0.00 ND 0.00 0.010 0.020 | GEN, NO2+NO3 TOTAL (MG/L AS N) 0.570 0.920 1.32 1.84 0.870 0.620 0.470 0.220 0.660 0.640 0.570 0.720 | GEN, AMMONIA TOTAL (MG/L AS N) 0.780 0.470 1.00 0.630 0.850 0.720 1.00 0.340 0.660 0.620 0.610 0.390 | GEN, AMMONIA TOTAL (MG/L AS NH4) 1.0 0.61 1.3 0.81 1.1 0.93 1.3 0.44 0.85 0.80 0.79 0.50 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.20
0.93
1.3
0.57
0.55
0.98
5.6
0.32
0.33
1.4 | GEN, AM- MONIA + ORGANIC TOTTAL (MG/L AS N) 0.98 1.4 2.3 1.2 1.4 1.7 6.6 0.66 0.99 2.0 1.0 1.2 | GEN,
TOTAL
(MG/L
AS N)
1.6
2.3
3.6
3.0
2.3
7.1
0.88
1.7
2.6
1.6
1.9 | GEN,
TOTAL
(MG/L
AS NO3)
6.9
10
16
13
10
31
3.9
7.3
12
6.9
8.5 | PHORUS TOTAL (MG/L AS P) 0.030 0.00 0.010 0.010 0.000 0.020 0.000 0.010 0.010 0.020 | | APR 1987 30 MAY 14 JUN 11 JUL 28 SEP 24 OCT 26 DEC 07 MAR 1988 28 APR 13 25 MAY 10 JUN 13 AUG | VOLA-
TILE ON IGNI-
TION, TOTAL (MG/L) 58 46 77 74 66 86 61 29 54 69 72 59 | TOTAL
FIXED (MG/L) 106 147 123 168 162 119 119 88 120 122 142 118 141 | GEN,
NITRATE
TOTAL
(MG/L
AS N)
0.570
0.900
1.28
1.66
0.840
0.620

0.220

0.640
0.560
0.700
1.45 | GEN, NITRITE TOTAL (MG/L AS N) 0.00 0.020 0.040 0.180 0.030 0.00 ND 0.00 ND 0.00 0.010 0.020 0.060 | GEN, NO2+NO3 TOTAL (MG/L AS N) 0.570 0.920 1.32 1.84 0.870 0.620 0.470 0.220 0.660 0.640 0.570 0.720 1.51 | GEN, AMMONIA TOTAL (MG/L AS N) 0.780 0.470 1.00 0.630 0.850 0.720 1.00 0.340 0.660 0.620 0.610 0.390 0.720 | GEN, AMMONIA TOTAL (MG/L AS NH4) 1.0 0.61 1.3 0.81 1.1 0.93 1.3 0.44 0.85 0.80 0.79 0.50 0.93 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.20
0.93
1.3
0.57
0.55
0.98
5.6
0.32
0.33
1.4
0.39
0.81 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.98 1.4 2.3 1.2 1.4 1.7 6.6 0.66 0.99 2.0 1.0 1.2 1.1 | GEN,
TOTAL
(MG/L
AS N)
1.6
2.3
3.6
3.0
2.3
7.1
0.88
1.7
2.6
1.6
1.9
2.6 | GEN,
TOTAL
(MG/L
AS NO3)
6.9
10
16
13
10
10
31
3.9
7.3
12
6.9
8.5 | PHORUS TOTAL (MG/L) AS P) 0.030 0.00 0.010 0.010 0.000 0.000 0.000 0.010 0.010 0.010 0.010 0.010 | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). 01329907 CLOVER MILL BROOK ON SHAW HILL ROAD NEAR ROCK CITY FALLS, NY - continued | DATE | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P) | PHOS-
PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4) | ALUM-
INUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS AL) | ALUM-
INUM,
DIS-
SOLVED
(UG/L
AS AL) | CADMIUM
TOTAL
RECOV-
ERABLE
(UG/L
AS CD) | CADMIUM
DIS-
SOLVED
(UG/L
AS CD) | COPPER, TOTAL RECOV- ERABLE (UG/L AS CU) | COPPER,
DIS-
SOLVED
(UG/L
AS CU) | IRON, TOTAL RECOV- ERABLE (UG/L AS FE) | IRON,
DIS-
SOLVED
(UG/L
AS FE) | LEAD,
TOTAL
RECOV-
ERABLE
(UG/L
AS PB) | LEAD,
DIS-
SOLVED
(UG/L
AS PB) | |--|--|---|---|---|---|---|---|--|--|--|--|---| | APR 1987
30 | 0.00 | 0.0 | | | <10 | | <10 | | 560 | | <100 | | | MAY
14 | 0.00 | 0.0 | | | <10 | | <10 | | 470 | | <100 | | | JUN
11 | 0.00 | 0.0 | | | <10 | | <10 | | 640 | | 8 | | | JUL
28 | 0.00 | 0.0 | | | <10 | | 20 | | 840 | | < 5 | ~~ | | SEP 24 | 0.00 | 0.0 | | | <1 | <1.0 | 7 | 1 | 640 | | <5 | 5 | | ОСТ
26 | ND | | | | <1 | | 2 | | 450 | | < 5 | | | DEC
07
MAR 1988 | ND | | | | <1 | | 4 | | 540 | | < 5 | | | 28
APR | 0.00 | 0.0 | 160 | 20 | 1 | <1.0 | 6 | <1 | 990 | 270 | <5 | < 5 | | 13
25 | ND
ND | | 4 0
50 |
< 10 | <1
1 | <1.0 | 1 2 | 1 | 540
620 | 270 | <5
<5 |
< 5 | | MAY
10 | 0.00 | 0.0 | 60 | | <1 | | 1 |
5 | 690 | | < 5 | 6 | | 24
JUN
13 | 0.00
ND | 0.0 | 170
70 | 10 | 8
<1 | <1.0 | 16
5 | | 1100
520 | 230 | < 5
< 5 | | | AUG
15 | ND | | 60 | | 1 | | 5 | | 740 | | < 5 | | | OCT
04 | ND | | 30 | | <1 | | 7 | | 530 | | <5 | | | NOV
02 | ND | | 210 | 30 | 1 | <1.0 | 2 | 3 | 1100 | 270 | < 5 | < 5 | | | | | | | | | | | | | | | | DATE | MANGA-
NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN) | MERCURY
TOTAL
RECOV-
ERABLE
(UG/L
AS HG) | NICKEL,
TOTAL
RECOV-
ERABLE
(UG/L
AS NI) | NICKEL,
DIS-
SOLVED
(UG/L
AS NI) | ZINC,
TOTAL
RECOV-
ERABLE
(UG/L
AS ZN) | ZINC,
DIS-
SOLVED
(UG/L
AS ZN) | BROMO-
FORM
TOTAL
(UG/L) | CARBON-
TETRA-
CHLO-
RIDE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
DI-
BROMO-
METHANE
TOTAL
(UG/L) | CHLORO-
ETHANE
TOTAL
(UG/L) | | DATE
APR 1987
30 | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | NESE,
DIS-
SOLVED
(UG/L | TOTAL
RECOV-
ERABLE
(UG/L | TOTAL
RECOV-
ERABLE
(UG/L | DIS-
SOLVED
(UG/L | TOTAL
RECOV-
ERABLE
(UG/L | DIS-
SOLVED
(UG/L | FORM
TOTAL
| TETRA-
CHLO-
RIDE
TOTAL | BENZENE
TOTAL | DI-
BROMO-
METHANE
TOTAL | ETHANE
TOTAL | | APR 1987
30
MAY
14 | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL
RECOV-
ERABLE
(UG/L
AS HG) | TOTAL
RECOV-
ERABLE
(UG/L
AS NI) | DIS-
SOLVED
(UG/L
AS NI) | TOTAL
RECOV-
ERABLE
(UG/L
AS ZN) | DIS-
SOLVED
(UG/L
AS ZN) | FORM
TOTAL
(UG/L) | TETRA-
CHLO-
RIDE
TOTAL
(UG/L) | BENZENE
TOTAL
(UG/L) | DI-
BROMO-
METHANE
TOTAL
(UG/L) | ETHANE
TOTAL
(UG/L) | | APR 1987
30
MAY
14
JUN
11 | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL
RECOV-
ERABLE
(UG/L
AS HG) | TOTAL
RECOV-
ERABLE
(UG/L
AS NI) | DIS-
SOLVED
(UG/L
AS NI) | TOTAL
RECOV-
ERABLE
(UG/L
AS ZN) | DIS-
SOLVED
(UG/L
AS ZN) | FORM TOTAL (UG/L) | TETRA-
CHLO-
RIDE
TOTAL
(UG/L) | BENZENE
TOTAL
(UG/L)
ND | DI-
BROMO-
METHANE
TOTAL
(UG/L) | ETHANE
TOTAL
(UG/L)
ND | | APR 1987
30
MAY
14
JUN
11
JUL
28 | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV- ERABLE (UG/L AS HG) <0.10 | TOTAL RECOV- ERABLE (UG/L AS NI) <100 <100 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV- ERABLE (UG/L AS ZN) <10 <10 | DIS-
SOLVED
(UG/L
AS ZN) | FORM TOTAL (UG/L) ND | TETRA-
CHLO-
RIDE
TOTAL
(UG/L)
ND | BENZENE
TOTAL
(UG/L)
ND | DI-
BROMO-
METHANE
TOTAL
(UG/L)
ND | ETHANE
TOTAL
(UG/L)
ND | | APR 1987
30
MAY
14
JUN
11
JUL
28
SEP
24 | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN)
20
<10 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV- ERABLE (UG/L AS HG) <0.10 <0.10 | TOTAL RECOV- ERABLE (UG/L AS NI) <100 <100 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV- ERABLE (UG/L AS ZN) <10 <10 20 | DIS-
SOLVED
(UG/L
AS ZN) | FORM TOTAL (UG/L) ND ND | TETRA- CHLO- RIDE TOTAL (UG/L) ND ND | BENZENE
TOTAL
(UG/L)
ND
ND | DI-
BROMO-
METHANE
TOTAL
(UG/L)
ND
ND | ETHANE TOTAL (UG/L) ND ND ND | | APR 1987 30 MAY 14 JUN 11 JUL 28 SEP 24 OCT 26 | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN)
20
<10
30 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV- ERABLE (UG/L AS HG) <0.10 <0.10 <0.10 <0.10 | TOTAL RECOV- ERABLE (UG/L AS NI) <100 <100 1 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV- ERABLE (UG/L AS ZN) <10 <10 20 <10 | DIS-
SOLVED
(UG/L
AS ZN) | FORM TOTAL (UG/L) ND ND ND | TETRA-CHLO-RIDE RIDE TOTAL (UG/L) ND ND ND ND | BENZENE
TOTAL
(UG/L)
ND
ND
ND | DI-
BROMO-
METHANE
TOTAL
(UG/L)
ND
ND
ND | ETHANE TOTAL (UG/L) ND ND ND ND | | APR 1987 30 MAY 14 JUN 11 JUL 28 SEP 24 OCT 26 DEC 07 | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN)
20
<10
30
20
10
20 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV- ERABLE (UG/L AS HG) <0.10 <0.10 <0.10 0.10 | TOTAL RECOV- ERABLE (UG/L AS NI) <100 <100 1 <1 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV- ERABLE (UG/L AS ZN) <10 <10 20 <10 <10 | DIS-
SOLVED
(UG/L
AS ZN) | FORM TOTAL (UG/L) ND ND ND ND ND | TETRA- CHLO- RIDE TOTAL (UG/L) ND ND ND ND | BENZENE
TOTAL
(UG/L)
ND
ND
ND
ND | DI-
BROMO-
METHANE
TOTAL
(UG/L)
ND
ND
ND | ETHANE TOTAL (UG/L) ND ND ND ND ND | | APR 1987 30 MAY 14 JUN 11 JUL 28 SEP 24 OCT 26 DEC 07 MAR 1988 28 | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN)
20
<10
30
20
10
20 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV-ERABLE (UG/L AS HG) <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 | TOTAL RECOV- ERABLE (UG/L AS NI) <100 <100 1 <1 2 <1 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV- ERABLE (UG/L AS ZN) <10 <10 <10 <10 <10 <10 <10 <10 | DIS-
SOLVED
(UG/L
AS ZN) | FORM TOTAL (UG/L) ND ND ND ND ND | TETRA-CHLO-RIDE TOTAL (UG/L) ND ND ND ND ND ND | BENZENE
TOTAL
(UG/L)
ND
ND
ND
ND | DI- BROMO- METHANE TOTAL (UG/L) ND ND ND ND ND | ETHANE TOTAL (UG/L) ND ND ND ND ND ND | | APR 1987 30 MAY 14 JUN 11 JUL 28 SEP 24 OCT 26 DEC 07 MAR 1988 28 APR 13 25 | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN)
20
<10
30
20
10
20 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV- ERABLE (UG/L AS HG) <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 | TOTAL RECOV- ERABLE (UG/L AS NI) <100 <100 1 <1 2 <1 <1 <1 | DIS- SOLVED (UG/L AS NI) <1 | TOTAL RECOV- ERABLE (UG/L AS ZN) <10 <10 <10 <10 <10 <10 <10 <10 <10 | DIS-
SOLVED
(UG/L
AS ZN) | FORM TOTAL (UG/L) ND ND ND ND ND ND ND ND ND | TETRA- CHLO- RIDE TOTAL (UG/L) ND ND ND ND ND ND ND | BENZENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND | DI- BROMO- METHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND | ETHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | | APR 1987 30 MAY 14 JUN 11 JUL 28 SEP 24 OCT 26 DEC 07 MAR 1988 28 APR 13 25 MAY 10 24 | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) 20 410 30 20 10 20 50 20 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV-ERABLE (UG/L AS HG) <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 | TOTAL RECOV-ERABLE (UG/L AS NI) <100 <100 1 <1 2 <1 41 5 44 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV- ERABLE (UG/L AS ZN) <10 <10 <10 <10 <10 <10 <10 <10 10 <10 10 <10 10 <10 10 | DIS-
SOLVED
(UG/L
AS ZN) | FORM TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TETRA- CHLO- RIDE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | BENZENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND
ND | DI- BROMO- METHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | ETHANE TOTAL (UG/L) ND | | APR 1987 30 MAY 14 JUN 11 JUL 28 SEP 24 OCT 26 DEC 07 MAR 1988 28 APR 13 25 MAY 10 24 JUN 13 | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) 20 410 30 20 10 20 50 20 20 20 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV-ERABLE (UG/L AS HG) <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 | TOTAL RECOV-ERABLE (UG/L AS NI) <100 <100 1 <1 2 <1 41 5 45 55 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV- ERABLE (UG/L AS ZN) <10 <10 <10 <10 <10 <10 <10 <10 <10 <1 | DIS-
SOLVED
(UG/L
AS ZN) 20 <10 <3 | FORM TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TETRA-CHLO-RIDE TOTAL (UG/L) ND | BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | DI- BROMO- METHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | ETHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | | APR 1987 30 MAY 14 JUN 11 28 SEP 24 OCT 26 DEC 07 MAR 1988 28 APR 13 25 MAY 10 24 JUN 13 AUG 15 | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) 20 <10 20 20 20 20 20 30 20 70 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV-ERABLE (UG/L AS HG) <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 | TOTAL RECOVERABLE (UG/L AS NI) <100 <100 1 <1 2 <1 <1 5 4 5 8 | DIS- SOLVED (UG/L AS NI) | TOTAL RECOV- ERABLE (UG/L AS ZN) <10 <10 <10 <10 <10 <10 <10 <10 <10 <1 | DIS-
SOLVED (UG/L
AS ZN) | FORM TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TETRA-CHLO-RIDE RIDE TOTAL (UG/L) ND | BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | DI- BROMO- METHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | ETHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | | APR 1987 30 MAY 14 JUN 11 JUL 28 SEP 24 OCT 26 DEC 07 MAR 1988 28 APR 13 25 MAY 10 24 JUN 13 AUG | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) 20 <10 30 20 10 20 50 20 30 20 70 30 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOVERABLE (UG/L AS HG) <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 | TOTAL RECOVERABLE (UG/L AS NI) <100 <100 1 <1 <1 4 5 4 5 8 8 | DIS- SOLVED (UG/L AS NI) 41 4 | TOTAL RECOV- ERABLE (UG/L AS ZN) <10 <10 <10 <10 <10 <10 <10 <10 <10 <1 | DIS-
SOLVED
(UG/L
AS ZN) 20 <10 <3 11 | FORM TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TETRA-CHLO-RIDE TOTAL (UG/L) ND | BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | DI- BROMO- METHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | ETHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). # 01329907 CLOVER MILL BROOK ON SHAW HILL ROAD NEAR ROCK CITY FALLS, NY - continued | | | | | | | | continued | , | | | | |---|---|--|--|---|---|---|---|--|---|--|--| | DATE | CHLORO-
FORM
TOTAL
(UG/L) | CIS
1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | DI-
CHLORO-
BROMO-
METHANE
TOTAL
(UG/L) | METHYL-
BROMIDE
TOTAL
(UG/L) | METHYL-
CHLO-
RIDE
TOTAL
(UG/L) | METHYL-
ENE
CHLO-
RIDE
TOTAL
(UG/L) | 1,1,1-
TRI-
CHLORO-
ETHANE
TOTAL
(UG/L) | 1,1-DI-
CHLORO-
ETHANE
TOTAL
(UG/L) | 1,1-DI-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 1,1,2-
TRI-
CHLORO-
ETHANE
TOTAL
(UG/L) |
1,1,2,2
TETRA-
CHLORO-
ETHANE
TOTAL
(UG/L) | | APR 1987 | | | | | | | | | | | | | 30
MAY | ND | 14
JUN | ND | 11
JUL | ND | 28
SEP | ND | 24
OCT | ND | 26 | ND | 07 | 1.0 | ND | 2.0 | ND | ND | ND | 3.0 | ND | ND | ND | ND | | MAR 1988
28 | ND | APR
13 | ND | 25
MAY | ND | 10 | ND | 24
Jun | ND | 13
AUG | ND | 15
⊙CT | ND | 04
NOV | ND | 02 | 0.1 | ND | N D | ND | | | | | | | | | | | | | | DATE | 1,2-DI-
CHLORO-
BENZENE
TOTAL
(UG/L) | 1,2-DI-
CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L) | 1,2-DI-
CHLORO-
PROPANE
TOTAL
(UG/L) | 1,2-
TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L) | 1,3-DI-
CHLORO-
BENZENE
TOTAL
(UG/L) | 1,4-DI-
CHLORO-
BENZENE
TOTAL
(UG/L) | TETRA-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | TRANS-
1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | TRI-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 2-
CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L) | VINYL
CHLO-
RIDE
TOTAL
(UG/L) | | DATE
APR 1987
30 | CHLORO-
BENZENE
TOTAL | CHLORO-
ETHANE
WATER
WHOLE
TOTAL | CHLORO-
PROPANE
TOTAL | TRANSDI
CHLORO-
ETHENE
TOTAL | CHLORO-
BENZENE
TOTAL | CHLORO-
BENZENE
TOTAL | CHLORO-
ETHYL-
ENE
TOTAL | 1,3-DI-
CHLORO-
PROPENE
TOTAL | CHLORO-
ETHYL-
ENE
TOTAL | CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL | CHLO-
RIDE
TOTAL | | APR 1987 | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L) | CHLORO-
PROPANE
TOTAL
(UG/L) | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L) | CHLO-
RIDE
TOTAL
(UG/L) | | APR 1987
30
MAY
14
JUN
11 | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L) | CHLORO-
PROPANE
TOTAL
(UG/L) | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L) | CHLO-
RIDE
TOTAL
(UG/L) | | APR 1987
30
MAY
14
JUN | CHLORO-
BENZENE
TOTAL
(UG/L)
ND | CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L)
ND | CHLORO-
PROPANE
TOTAL
(UG/L)
ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND | CHLORO-
BENZENE
TOTAL
(UG/L)
ND | CHLORO-
BENZENE
TOTAL
(UG/L)
ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND | CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L)
ND | CHLO-
RIDE
TOTAL
(UG/L)
ND | | APR 1987
30
MAY
14
JUN
11
JUL
28
SEP | CHLORO-
BENZENE
TOTAL
(UG/L)
ND
ND | CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L)
ND
ND | CHLORO-
PROPANE
TOTAL
(UG/L)
ND
ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND | CHLORO-
BENZENE
TOTAL
(UG/L)
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND ND ND ND | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
ND
ND
ND | CHLORO-ETHYL-ENE ENE TOTAL (UG/L) ND ND ND ND | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND ND ND | CHLO- RIDE TOTAL (UG/L) ND ND ND | | APR 1987
30
MAY
14
JUN
11
JUL
28 | CHLORO-BENZENE TOTAL (UG/L) ND ND ND | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND ND ND | CHLORO-
PROPANE
TOTAL
(UG/L)
ND
ND
ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND ND ND ND ND | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
ND
ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND
ND | CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L)
ND
ND | CHLO- RIDE TOTAL (UG/L) ND ND ND ND | | APR 1987 30 MAY 14 JUN 11 JUL 28 SEP 24 OCT | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND | CHLORO- ETHANE WATER WHOLE TOTAL (UG/L) ND ND ND ND ND | CHLORO-PROPANE TOTAL (UG/L) ND ND ND ND ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND ND ND ND ND ND ND | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
ND
ND
ND
ND | CHLORO-ETHYL-ENETOTAL (UG/L) ND ND ND ND ND ND ND | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND ND ND ND | CHLO- RIDE TOTAL (UG/L) ND ND ND | | APR 1987 30 MAY 14 JUN 11 JUL 28 SEP 24 OCT 26 DEC | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND | CHLORO-PROPANE TOTAL (UG/L) ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLO- RIDE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | | APR 1987 30 MAY 14 JUN 11 JUL 28 SEP 24 OCT 26 DEC 07 MAR 1988 28 APR | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND | CHLORO-PROPANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-ETHYL-ENE TOTAL (UG/L) ND | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLO- RIDE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | | APR 1987 30 MAY 14 JUN 11 JUL 28 SEP 24 OCT 26 DEC 07 MAR 1988 28 APR 13 25 | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND | CHLORO-PROPANE TOTAL (UG/L) ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLO- RIDE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | | APR 1987 30 MAY 14 JUN 11 JUL 28 SEP 24 CCT 26 DEC 07 MAR 1988 28 APR 13 25 MAY 10 | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND | CHLORO-PROPANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-ETHYL-ENE TOTAL (UG/L) ND | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLO-RIDE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | | APR 1987 30 MAY 14 JUN 11 SEP 24 OCT 26 DEC 07 MAR 1988 28 APR 13 25 MAY 10 24 JUN | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND | CHLORO-PROPANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-ETHYL-ENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLO- RIDE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | | APR 1987 30 MAY 14 JUN 11 JUL 28 SEP 24 CCT 26 DEC 07 MAR 1988 28 APR 13 25 MAY 10 24 JUN 13 AUG | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND | CHLORO-PROPANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND
ND
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-ETHYL-ENE TOTAL (UG/L) ND | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-ETHYL-ENE TOTAL (UG/L) ND | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLO- RIDE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | | APR 1987 30 MAY 14 JUN 11 JUL 28 SEP 24 OCT 26 DEC 07 MAR 1988 28 APR 13 25 MAY 10 24 JUN 13 AUG 15 OCT | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND | CHLORO-PROPANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLOROBENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-ETHYL-ENE TOTAL (UG/L) ND N | 1,3-DI-CHLORO-PROPENDE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-ETHYL-ENE TOTAL (UG/L) ND | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLO- RIDE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | | APR 1987 30 MAY 14 JUN 11 JUL 28 SEP 24 OCT 26 DEC 07 MAR 1988 28 APR 13 25 MAY 10 24 JUN 13 AUG 15 | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND | CHLORO-PROPANE TOTAL
(UG/L) ND ND ND ND ND ND ND ND ND N | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND
ND
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-ETHYL-ENE TOTAL (UG/L) ND | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-ETHYL-ENE TOTAL (UG/L) ND | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLO- RIDE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). # 01329907 CLOVER MILL BROOK ON SHAW HILL ROAD NEAR ROCK CITY FALLS, NY - continued SUSPENDED SEDIMENT DISCHARGE | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND | SEDI-
MENT,
SUS-
PENDED
(MG/L) | SEDI-
MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY) | |----------|------|--|--|--| | MAY 1988 | | | | | | 10 | 1000 | 3.7 | 4 | 0.04 | | 24 | 0900 | | 21 | | | JUN | | | | | | 13 | 1015 | | 4 | | | AUG | | | | | | 15 | 1000 | | 4 | | | OCT | | | | | | 04 | 1000 | 2.9 | 2 | 0.02 | | NOV | | | | | | 02 | 1100 | 4.5 | 13 | 0.16 | # BED MATERIAL ANALYSES | DATE OCT 1987 26 AUG 1988 15 | T
B
TIME | OLIDS,
VOLA-
TLE IN
OTTOM
MA-
TERIAL
MG/KG)
8360 | ALUM-
INUM,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G) | CADMIUM
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS CD) | MI
REC
FM TOM
TEI
(UC | UM, RE
COV. FM
BOT- TOM
MA- TE
RIAL (U | COV. RE BOT- FM MA- TOM RIAL TE G/G (U | COV. RE BOT- FM MA- TOM CRIAL TE | COV. NE
BOT- RE
MA- FM
RIAL TOM
G/G TE | SE, RE COV. FM BOT- TOM MA- TE RIAL (U G/G) AS | COV. RE BOT- FM MA- TOM RIAL TE G/G (U HG) AS | BOT- FM E
MA- TOM
RIAL TEF
G/G (UG | COV. | |--------------------------------|---|---|--|--|---------------------------------------|---|--|--|---|--|---|---|------| | DATE | AROCLO
1221
IN
BOTTOM
MAT.
(UG/KG | AROC
12
PC
BOT. | 48 12
B PC
MAT BOT. | 54 12
B F
MAT BOT | OCLOR
260
PCB
T.MAT
G/KG) | ALDRIN,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | ALPHA
BHC
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | ATRA-
ZINE,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | BETA
BENZENE
HEXA-
CHLOR-
IDE
BOT.MAT
(UG/KG) | CHLOR-
DANE,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | CHLOR-
PYRIFOS
IN BOT.
MAT.
(UG/KG) | DELTA
BENZENE
HEXA-
CHLOR-
I DE
BOT.MAT
(UG/KG) | | | 26
AUG 1988 | | - | | - | | | | | | | | | | | 15 | ND | ND | NI |) <u> </u> | 1D | ND | ND | ND | NÐ | ND | ND | ND | | | DATE | DI-
AZINON
TOTAL
IN BOT
TOM MA
TERIA
(UG/KG | TOT
IN B
IN TOM
L TER | IN,
AL END
OT-SULF
MA-ALF
IAL BOT. | AN SUI
PHA BE
MAT BOT | IDO-
LFAN
ETA
T.MAT
E/KG) | ENDO-
SULFAN
SULFATE
BOT.MAT
(UG/KG) | ENDRIN,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | ENDRIN
ALDE-
HYDE
BOT.MAT
(UG/KG) | ETHION,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | HEPTA-
CHLOR,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | HEPTA-
CHLOR
EPOXIDE
TOT. IN
BOTTOM
MATL.
(UG/KG) | MALA-
THION,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | | | OCT 1987
26 | | _ | | | | | | | | | | | | | AUG 1988 | | | | | | | | | | | | | | | 15
DATE | METH-
OXY-
CHLOR
TOT. I
BOTTC
MATL
(UG/KG | MIR
TOT
IN IN B
OM TOM | P,
EX, DI
AL TOI
OT- IN E
MA- TOM
IAL TEF | P' E
DD, I
PAL TO
SOT- IN
MA- TON
RIAL TE | P, P' DDE, DTAL BOT- MA- ERIAL G/KG) | P,P' DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) | PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) | TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) | BED
MAT.
FALL
DIAM.
% FINER
THAN | BED
MAT.
SIEVE
DIAM.
% FINER
THAN | BED
MAT.
SIEVE
DIAM.
% FINER
THAN
.125 MM | BED
MAT.
SIEVE
DIAM.
% FINER
THAN
2.00 MM | | | OCT 1987 | | | | | | | | | _ | | | | | | 26
AUG 1988 | | - | | - | | | | | 0 | 3 | 15 | 98 | | | 15 | ND | ND | NI |) 1 | 4D | ND | ND | ND | 1 | 4 | 100 | | | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). ### 01330907 FISH CREEK NEAR GRANGERVILLE, NY LOCATION.--Lat 43*05'42", long 73*36'47", Saratoga County, Hydrologic Unit 02020003, at unnamed road bridge off Haas Road near Victory Mills, 1 mi south of Schuylerville. DRAINAGE AREA .-- 247mi2. PERIOD OF RECORD.--Water years 1987 to 1989. CHEMICAL DATA: 1987 (b), 1988 (c), 1989 (a). MINOR ELEMENTS DATA: 1987 (b), 1988 (c), 1989 (a). PESTICIDE DATA: 1987 (b), 1988 (c), 1989 (a). ORGANIC DATA: PCE--1988 (a). NUTRIENT DATA: 1987 (b), 1988 (c), 1989 (a). BIOLOGICAL DATA: Bacteria--1987 (a), 1988 (c), 1989 (a). SEDIMENT DATA: 1988 (b), 1989 (a). REMARKS .-- Water-discharge data obtained from a discharge rating developed for this site. ### WATER-QUALITY DATA | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | SPE-
CIFIC
CON-
DUCT-
ANCE
LAB
(US/CM) | PH WATER WHOLE FIELD (STAND- ARD UNITS) | TEMPER-
ATURE
WATER
(DEG C) | TUR-
BID-
ITY
(NTU) | BARO-
METRIC
PRES-
SURE
(MM
OF
HG) | OXYGEN,
DIS-
SOLVED
(MG/L) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION) | COLI-
FORM,
TOTAL,
IMMED.
(COLS.
PER
100 ML) | FECAL
COLI-
FORM
24-HR
MEM.FIL
(COLS./
100 ML) | |------------------|------|--|---|--|---|--------------------------------------|------------------------------|--|-------------------------------------|--|--|--| | APR 1987 | | | | | | | | | | | | | | 22 | 1445 | | | | 7.8 | 20.0 | 3.9 | | 21.9 | | | | | MAY
12
JUN | 1315 | | | 275 | 7.9 | 17.5 | 3.8 | • | 9.3 | | 830 | 80.0 | | 11 | 1115 | | | 273 | 8.1 | 21.0 | 3.0 | | 9.2 | | | | | JUL
29 | 1045 | | | | 7.8 | 23.5 | 2.0 | | 7.8 | | >200 | 200 | | SEP
24
OCT | 1100 | | | | 7.6 | 16.0 | 3.0 | | 8.6 | | 300 | 30.0 | | 26 | 1200 | | | 275 | 7.8 | 9.0 | 2.5 | | 12.5 | | 3000 | 20.0 | | DEC 07 | 1130 | | | | 7.8 | 2.0 | 2.0 | | 17.5 | | 2000 | 40.0 | | MAR 1988 | | | | | | | | | | | | | | 28
APR | 1300 | 720 | 268 | 275 | 6.7 | 3.5 | 4.5 | 768 | 13.1 | 98 | 800 | 20.0 | | 13 | 1150 | 654 | 270 | 266 | 7.3 | 7.5 | 1.6 | 765 | 11.8 | 98 | 200 | 20.0 | | 25
MAY | 1300 | 226 | 275 | 272 | 7.1 | 8.5 | 1.2 | 755 | 11.7 | 101 | 12000 | 40.0 | | 10 | 1045 | 200 | 239 | 271 | 7.1 | 14.5 | 2.0 | | 10.2 | | >1200 | 260 | | 24 | 1030 | 526 | 273 | 268 | 7.1 | 19.0 | 5.7 | | 9.2 | | 2000 | >180 | | JUN
13 | 1115 | 93 | | 277 | 8.1 | 22.0 | 3.8 | 765 | 7.6 | | 800 | 240 | | AUG | 1113 | 93 | | 211 | 0.1 | 22.0 | 3.0 | ,65 | 7.0 | | 000 | 240 | | 15
∞T | 1100 | 62 | 280 | 280 | 7.7 | 28.5 | 2.9 | 757 | 6.9 | 90 | 1100 | 360 | | 04 | 1100 | 62 | 289 | 293 | 7.7 | 16.5 | 1.2 | 763 | 8.1 | 83 | 2400 | 200 | | NOV
02 | 1300 | 407 | 269 | 278 | 7.3 | 4.0 | 26 | 764 | 11.3 | 86 | 19000 | >4000 | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). # 01330907 FISH CREEK NEAR GRANGERVILLE, NY - continued | DATE | HARD-
NESS
TOTAL
(MG/L
AS
CACO3) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K) | ALKA-
LINITY
LAB
(MG/L
AS
CACO3) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | SOLIDS,
RESIDUE
AT 105
DEG. C,
TOTAL
(MG/L) | |---|--|---|--|--|--
---|---|--|--|---|--|---| | APR 1987 | | | | | | | | | | | | | | 22
May | 110 | 31 | 6.9 | | | | | | | 135 | | 170 | | 12
JUN | 110 | 31 | 6.9 | | | | | | | 155 | | 178 | | 11 | 110 | 31 | 7.1 | | | | | | | 173 | | 178 | | JUL
29 | 110 | 31 | 7.0 | | | | | | | 161 | | 180 | | SEP 24 | 39 | 12 | 2.1 | | | | | | | 141 | | 223 | | ост
26 | 120 | 33 | 8.2 | | | | | | | 164 | | 183 | | DEC
07 | 99 | 28 | 7.0 | | | | | | | 133 | | 157 | | MAR 1988
28 | 100 | 29 | 7.0 | 13 | 1.3 | 85 | 18 | 21 | 0.20 | | 141 | 187 | | APR 13 | 95 | 26 | 7.4 | 14 | 1.3 | 88 | 16 | 20 | 0.10 | 15 4 | 138 | 163 | | 25 | 100 | 29 | 7.5 | 13 | 1.2 | 88 | 14 | 20 | 0.10 | 158 | 138 | 170 | | MAY
10
24 | 100
100 | 2 9
28 | 7.4
7.5 | 13
13 | 1.1
1.1 | 82
85 | 15
17 | 20
20 | 0.20
0.30 | 162
144 | 135
138 | 178
174 | | JUN
13 | 100 | 28 | 7.7 | 14 | 1.0 | 88 | 16 | 21 | 0.30 | 160 | 141 | 174 | | AUG
15 | 110 | 31 | 8.4 | 15 | 1.1 | 91 | 15 | 22 | 0.10 | 155 | 147 | 160 | | OCT
04 | 110 | 31 | 8.3 | 14 | 1.5 | 97 | 15 | 22 | 0.10 | 186 | 150 | 213 | | NOV
02 | 110 | 30 | 8.2 | 13 | 2.5 | 85 | 19 | 20 | 0.10 | 149 | 144 | 185 | SOLIDS, | | N.T.M.D.O. | NIMBO | N7mpo | NIMBO | NT TO C | NITTO | NITRO- | | | | | | VOLA-
TILE ON | | NITRO-
GEN, | NITRO-
GEN, | NITRO-
GEN, | NITRO-
GEN, | NITRO-
GEN, | NITRO-
GEN, | GEN, AM-
MONIA + | NITRO- | NITRO- | PHOS- | | | VOLA- | RESIDUE
TOTAL | | | | GEN,
AMMONIA | GEN,
AMMONIA | GEN,
ORGANIC | GEN, AM- | NITRO-
GEN,
TOTAL | NITRO-
GEN,
TOTAL | PHOS-
PHORUS
TOTAL | | DATE | VOLA-
TILE ON
IGNI-
TION,
TOTAL | TOTAL
FIXED | GEN,
NITRATE
TOTAL
(MG/L | GEN,
NITRITE
TOTAL
(MG/L | GEN,
NO2+NO3
TOTAL
(MG/L | GEN,
AMMONIA
TOTAL
(MG/L | GEN,
AMMONIA
TOTAL
(MG/L | GEN,
ORGANIC
TOTAL
(MG/L | GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L | GEN,
TOTAL
(MG/L | GEN,
TOTAL
(MG/L | PHORUS
TOTAL
(MG/L | | | VOLA-
TILE ON
IGNI-
TION, | TOTAL | GEN,
NITRATE
TOTAL | GEN,
NITRITE
TOTAL | GEN,
NO2+NO3
TOTAL | GEN,
AMMONIA
TOTAL | GEN,
AMMONIA
TOTAL | GEN,
ORGANIC
TOTAL | GEN, AM-
MONIA +
ORGANIC
TOTAL | GEN,
TOTAL | GEN,
TOTAL | PHORUS
TOTAL | | APR 1987
22 | VOLA-
TILE ON
IGNI-
TION,
TOTAL | TOTAL
FIXED | GEN,
NITRATE
TOTAL
(MG/L | GEN,
NITRITE
TOTAL
(MG/L | GEN,
NO2+NO3
TOTAL
(MG/L | GEN,
AMMONIA
TOTAL
(MG/L | GEN,
AMMONIA
TOTAL
(MG/L | GEN,
ORGANIC
TOTAL
(MG/L | GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L | GEN,
TOTAL
(MG/L | GEN,
TOTAL
(MG/L | PHORUS
TOTAL
(MG/L | | APR 1987
22
MAY
12 | VOLA-
TILE ON
IGNI-
TION,
TOTAL
(MG/L) | TOTAL
FIXED
(MG/L) | GEN,
NITRATE
TOTAL
(MG/L
AS N) | GEN,
NITRITE
TOTAL
(MG/L
AS N) | GEN,
NO2+NO3
TOTAL
(MG/L
AS N) | GEN,
AMMONIA
TOTAL
(MG/L
AS N) | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4) | GEN,
ORGANIC
TOTAL
(MG/L
AS N) | GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | GEN,
TOTAL
(MG/L
AS N) | GEN,
TOTAL
(MG/L
AS NO3) | PHORUS
TOTAL
(MG/L
AS P) | | APR 1987
22
MAY
12
JUN
11 | VOLA-
TILE ON
IGNI-
TION,
TOTAL
(MG/L) | TOTAL
FIXED
(MG/L) | GEN,
NITRATE
TOTAL
(MG/L
AS N) | GEN, NITRITE TOTAL (MG/L AS N) | GEN,
NO2+NO3
TOTAL
(MG/L
AS N) | GEN,
AMMONIA
TOTAL
(MG/L
AS N) | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4) | GEN,
ORGANIC
TOTAL
(MG/L
AS N) | GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | GEN,
TOTAL
(MG/L
AS N) | GEN,
TOTAL
(MG/L
AS NO3) | PHORUS
TOTAL
(MG/L
AS P) | | APR 1987 22 MAY 12 JUN 11 JUL 29 | VOLA-
TILE ON
IGNI-
TION,
TOTAL
(MG/L) | TOTAL
FIXED
(MG/L)
123
140 | GEN,
NITRATE
TOTAL
(MG/L
AS N)
0.310 | GEN, NITRITE TOTAL (MG/L AS N) 0.00 | GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
0.310 | GEN,
AMMONIA
TOTAL
(MG/L
AS N)
0.070 | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4)
0.09 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.11 | GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
0.18 | GEN,
TOTAL
(MG/L
AS N)
0.49 | GEN,
TOTAL
(MG/L
AS NO3)
2.2 | PHORUS
TOTAL
(MG/L
AS P)
0.030 | | APR 1987 22 MAY 12 JUN 11 JUL 29 SEP 24 | VOLA-
TILE ON
IGNI-
TION,
TOTAL
(MG/L)
47
38 | TOTAL
FIXED
(MG/L)
123
140 | GEN, NITRATE TOTAL (MG/L AS N) 0.310 0.110 | GEN,
NITRITE
TOTAL
(MG/L
AS N)
0.00
ND
0.00 | GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
0.310
0.160 | GEN,
AMMONIA
TOTAL
(MG/L
AS N)
0.070
0.030 | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4)
0.09
0.04 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.11
0.13 | GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
0.18
0.16 | GEN,
TOTAL
(MG/L
AS N)
0.49
0.32 | GEN,
TOTAL
(MG/L
AS NO3)
2.2
1.4 | PHORUS
TOTAL
(MG/L
AS P)
0.030
0.030 | | APR 1987 22 MAY 12 JUN 11 JUL 29 SEP 24 OCT 26 | VOLA- TILE ON IGNI- TION, TOTAL (MG/L) 47 38 74 68 | TOTAL
FIXED
(MG/L)
123
140
104 | GEN, NITRATE TOTAL (MG/L AS N) 0.310 0.110 | GEN, NITRITE TOTAL (MG/L AS N) 0.00 ND 0.00 | GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
0.310
0.160
0.110 | GEN,
AMMONIA
TOTAL
(MG/L
AS N)
0.070
0.030
0.030 | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4)
0.09
0.04
0.03 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.11
0.13
0.10 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.18 0.16 0.13 | GEN,
TOTAL
(MG/L
AS N)
0.49
0.32 | GEN,
TOTAL
(MG/L
AS NO3)
2.2
1.4 | PHORUS
TOTAL
(MG/L
AS P)
0.030
0.030
0.020 | | APR 1987 22 MAY 12 JUN 11 JUL 29 SEP 24 OCT 26 DEC 07 | VOLA- TILE ON IGNI- TION, TOTAL (MG/L) 47 38 74 68 54 | TOTAL
FIXED (MG/L)
123
140
104
112 | GEN, NITRATE TOTAL (MG/L AS N) 0.310 0.110 | GEN, NITRITE TOTAL (MG/L AS N) 0.00 ND 0.00 ND 0.00 | GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
0.310
0.160
0.110
ND
0.110 | GEN,
AMMONIA
TOTAL
(MG/L
AS N)
0.070
0.030
0.030
0.020 | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4)
0.09
0.04
0.04
0.03 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.11
0.13
0.10
0.20 | GEN, AM- MONIA + ORGANIC TYOTAL (MG/L AS N) 0.18 0.16 0.13 0.22 0.39 | GEN,
TOTAL
(MG/L
AS N)
0.49
0.32
0.24 | GEN,
TOTAL
(MG/L
AS NO3)
2.2
1.4
1.1 | PHORUS
TOTAL
(MG/L
AS P)
0.030
0.030
0.020
0.020 | | APR 1987 22 MAY 12 JUN 11 JUL 29 SEP 24 OCT 26 DEC | VOLA- TILE ON IGNI- TION, TOTAL (MG/L) 47 38 74 68 54 | TOTAL
FIXED (MG/L)
123
140
104
112
169
96 | GEN, NITRATE TOTAL (MG/L AS N) 0.310 0.110 | GEN, NITRITE TOTAL (MG/L AS N) 0.00 ND 0.00 ND ND ND | GEN, NO2+NO3 TOTAL (MG/L AS N) 0.310 0.160 0.110 ND 0.110 0.080 | GEN,
AMMONIA
TOTAL
(MG/L
AS N)
0.070
0.030
0.030
0.020
0.030 | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4)
0.09
0.04
0.03
0.04 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.11
0.13
0.10
0.20
0.36 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.18 0.16 0.13 0.22 0.39 | GEN,
TOTAL
(MG/L
AS N)
0.49
0.32
0.24

0.50 | GEN,
TOTAL
(MG/L
AS NO3)
2.2
1.4
1.1

2.2 | PHORUS
TOTAL
(MG/L
AS P)
0.030
0.030
0.020
0.020
0.030 | | APR 1987 22 MAY 12 JUN 11 JUL 29 SEP 24 OCT 26 DEC 07 MAR 1988 28 APR | VOLA- TILE ON IGNI- TION, TOTAL (MG/L) 47 38 74 68 54 87 73 | TOTAL
FIXED (MG/L) 123 140 104 112 169 96 105 139 | GEN, NITRATE TOTAL (MG/L AS N) 0.310 0.110 0.1180 | GEN, NITRITE TOTAL (MG/L AS N) 0.00 ND 0.00 ND ND ND ND ND ND ND ND | GEN, NO2+NO3 TOTAL (MG/L AS N) 0.310 0.160 0.110 ND 0.110 0.080 0.180 0.360 | GEN,
AMMONIA
TOTAL
(MG/L
AS N)
0.070
0.030
0.030
0.020
0.030
0.000 | GEN, AMMONIA TOTAL (MG/L AS NH4) 0.09 0.04 0.03 0.04 0.00 0.06 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.11
0.13
0.10
0.20
0.36
0.32 | GEN, AM- MONIA + ORGANIC TOTTAL (MG/L AS N) 0.18 0.16 0.13 0.22 0.39 0.32 | GEN,
TOTAL
(MG/L
AS N)
0.49
0.32
0.24

0.50
0.40
0.49 | GEN,
TOTAL
(MG/L
AS NO3)
2.2
1.4
1.1

2.2
1.8
2.2 | PHORUS
TOTAL
(MG/L
AS P)
0.030
0.030
0.020
0.020
0.030
0.010 | | APR 1987 22 MAY 12 JUN 11 JUL 29 SEP 24 OCT 26 DEC 07 MAR 1988 28 APR 13 25 | VOLA- TILE ON IGNI- TION, TOTAL (MG/L) 47 38 74 68 54 87 73 | TOTAL
FIXED
(MG/L)
123
140
104
112
169
96 | GEN, NITRATE TOTAL (MG/L AS N) 0.310 0.110 0.180 0.360 | GEN, NITRITE TOTAL (MG/L AS N) 0.00 ND 0.00 ND ND ND 0.00 O.00 O.00 O.00 | GEN, NO2+NO3 TOTAL
(MG/L AS N) 0.310 0.160 0.110 ND 0.110 0.080 0.180 | GEN,
AMMONIA
TOTAL
(MG/L
AS N)
0.070
0.030
0.030
0.020
0.030
0.000 | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4)
0.09
0.04
0.04
0.03
0.04
0.0 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.11
0.13
0.10
0.20
0.36
0.32 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.18 0.16 0.13 0.22 0.39 0.32 0.31 0.36 | GEN,
TOTAL
(MG/L
AS N)
0.49
0.32
0.24

0.50
0.40 | GEN,
TOTAL
(MG/L
AS NO3)
2.2
1.4
1.1

2.2
1.8
2.2 | PHORUS
TOTAL
(MG/L
AS P)
0.030
0.030
0.020
0.020
0.030
0.010
0.010 | | APR 1987 22 MAY 12 JUN 11 JUL 29 SEP 24 OCT 26 DEC 07 MAR 1988 28 APR 13 25 MAY 10 | VOLA- TILE ON IGNI- TION, TOTAL (MG/L) 47 38 74 68 54 87 73 48 38 68 70 | TOTAL
FIXED (MG/L) 123 140 104 112 169 96 105 139 125 102 108 | GEN, NITRATE TOTAL (MG/L AS N) 0.310 0.110 0.180 0.360 0.270 | GEN, NITRITE TOTAL (MG/L AS N) 0.00 ND 0.00 ND ND 0.00 ND | GEN, NO2+NO3 TOTAL (MG/L AS N) 0.310 0.160 0.110 ND 0.110 0.080 0.180 0.360 0.310 0.270 0.260 | GEN,
AMMONIA
TOTAL
(MG/L
AS N)
0.070
0.030
0.020
0.030
0.050
0.050
0.040
0.070
0.030 | GEN, AMMONIA TOTAL (MG/L AS NH4) 0.09 0.04 0.03 0.04 0.00 0.05 0.09 0.04 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.11
0.13
0.10
0.20
0.36
0.32
0.26
0.32 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.18 0.16 0.13 0.22 0.39 0.32 0.31 0.36 0.30 0.24 0.33 | GEN,
TOTAL
(MG/L
AS N)
0.49
0.32
0.24

0.50
0.40
0.49
0.72
0.61
0.51 | GEN,
TOTAL
(MG/L
AS NO3)
2.2
1.4
1.1

2.2
1.8
2.2
3.2
2.7
2.3 | PHORUS
TOTAL
(MG/L
AS P)
0.030
0.020
0.020
0.030
0.010
0.010
0.030
0.010
0.020 | | APR 1987 22 MAY 12 JUN 11 JUL 29 SEP 24 OCT 26 DEC 07 MAR 1988 28 APR 13 25 MAY 10 24 JUN | VOLA- TILE ON IGNI- TION, TOTAL (MG/L) 47 38 74 68 54 87 73 48 38 68 70 60 | TOTAL
FIXED
(MG/L)
123
140
104
112
169
96
105
139
125
102 | GEN, NITRATE TOTAL (MG/L AS N) 0.310 0.110 0.180 0.360 0.270 | GEN, NITRITE TOTAL (MG/L AS N) 0.00 ND 0.00 ND ND 0.00 ND ND 0.00 ND ND ND ND ND ND ND ND ND | GEN, NO2+NO3 TOTAL (MG/L AS N) 0.310 0.160 0.110 ND 0.110 0.080 0.180 0.360 0.310 0.270 0.260 0.200 | GEN,
AMMONIA
TOTAL
(MG/L
AS N)
0.070
0.030
0.020
0.030
0.050
0.040
0.070
0.030
0.030 | GEN, AMMONIA TOTAL (MG/L AS NH4) 0.09 0.04 0.03 0.04 0.0 0.06 0.05 0.09 0.04 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.11
0.13
0.10
0.20
0.36
0.32
0.26
0.32
0.21 | GEN, AM- MONIA + ORGANIC (MG/L AS N) 0.18 0.16 0.13 0.22 0.39 0.32 0.31 0.36 0.30 0.24 0.33 0.32 | GEN, TOTAL (MG/L AS N) 0.49 0.32 0.24 0.50 0.49 0.72 0.61 0.51 0.59 0.52 | GEN, TOTAL (MG/L AS NO3) 2.2 1.4 1.1 2.2 1.8 2.2 3.2 2.7 2.3 2.6 2.3 | PHORUS TOTAL (MG/L AS P) 0.030 0.030 0.020 0.020 0.010 0.010 0.010 0.020 0.020 0.040 | | APR 1987 22 MAY 12 JUN 11 JUL 29 SEP 24 OCT 26 DEC 07 MAR 1988 28 APR 13 25 MAY 10 24 JUN 13 AUG | VOLA- TILE ON IGNI- TION, TOTAL (MG/L) 47 38 74 68 54 87 73 48 38 68 70 60 55 | TOTAL
FIXED (MG/L) 123 140 104 112 169 96 105 139 125 102 108 114 119 | GEN, NITRATE TOTAL (MG/L AS N) 0.310 0.110 0.180 0.360 0.270 0.080 | GEN, NITRITE TOTAL (MG/L AS N) 0.00 ND 0.00 ND ND 0.00 ND ND 0.00 ND 0.00 ND 0.00 | GEN, NO2+NO3 TOTAL (MG/L AS N) 0.310 0.160 0.110 ND 0.110 0.080 0.360 0.360 0.370 0.270 0.260 0.200 0.080 | GEN,
AMMONIA
TOTAL
(MG/L
AS N)
0.070
0.030
0.020
0.030
0.050
0.040
0.070
0.030
0.030 | GEN, AMMONIA TOTAL (MG/L AS NH4) 0.09 0.04 0.03 0.04 0.05 0.09 0.04 0.05 0.09 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.11
0.13
0.10
0.20
0.36
0.32
0.26
0.32
0.21
0.30
0.28 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.18 0.16 0.13 0.22 0.39 0.32 0.31 0.36 0.30 0.24 0.33 0.32 0.17 | GEN,
TOTAL
(MG/L
AS N)
0.49
0.32
0.24

0.50
0.40
0.49
0.72
0.61
0.51 | GEN, TOTAL (MG/L AS NO3) 2.2 1.4 1.1 2.2 1.8 2.2 3.2 2.7 2.3 2.6 2.3 1.1 | PHORUS TOTAL (MG/L AS P) 0.030 0.030 0.020 0.020 0.010 0.010 0.010 0.020 0.020 0.020 0.020 0.020 | | APR 1987 22 MAY 12 JUN 11 JUL 29 SEP 24 OCT 26 DEC 07 MAR 1988 28 APR 13 25 MAY 10 24 JUN 13 AUG 15 OCT | VOLA- TILE ON IGNI- TION, TOTAL (MG/L) 47 38 74 68 54 87 73 48 38 68 70 60 55 61 | TOTAL
FIXED (MG/L) 123 140 104 112 169 96 105 139 125 102 108 114 119 99 | GEN, NITRATE TOTAL (MG/L AS N) 0.310 0.110 0.180 0.360 0.270 0.080 | GEN, NITRITE TOTAL (MG/L AS N) 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND ND 0.00 ND ND ND ND ND ND ND ND ND | GEN, NO2+NO3 TOTAL (MG/L AS N) 0.310 0.160 0.110 ND 0.110 0.080 0.180 0.360 0.270 0.260 0.200 0.080 0.070 | GEN, AMMONIA TOTAL (MG/L AS N) 0.070 0.030 0.030 0.020 0.030 0.050 0.040 0.070 0.030 0.040 0.070 0.030 0.040 0.020 | GEN, AMMONIA TOTAL (MG/L AS NH4) 0.09 0.04 0.03 0.04 0.0 0.06 0.05 0.09 0.04 0.05 0.09 0.04 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.11
0.13
0.10
0.20
0.36
0.32
0.26
0.32
0.21
0.30
0.28
0.15 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.18 0.16 0.13 0.22 0.39 0.32 0.31 0.36 0.30 0.24 0.33 0.32 0.17 0.33 | GEN, TOTAL (MG/L AS N) 0.49 0.32 0.24 0.50 0.40 0.49 0.72 0.61 0.51 0.59 0.52 0.25 | GEN, TOTAL (MG/L AS NO3) 2.2 1.4 1.1 2.2 1.8 2.2 3.2 2.7 2.3 2.6 2.3 1.1 1.8 | PHORUS TOTAL (MG/L AS P) 0.030 0.030 0.020 0.020 0.010 0.010 0.010 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 | | APR 1987 22 MAY 12 JUN 11 JUL 29 SEP 24 OCT 26 DEC 07 MAR 1988 28 APR 13 25 MAY 10 24 JUN 13 AUG 15 | VOLA- TILE ON IGNI- TION, TOTAL (MG/L) 47 38 74 68 54 87 73 48 38 68 70 60 55 | TOTAL
FIXED (MG/L) 123 140 104 112 169 96 105 139 125 102 108 114 119 | GEN, NITRATE TOTAL (MG/L AS N) 0.310 0.110 0.180 0.360 0.270 0.080 | GEN, NITRITE TOTAL (MG/L AS N) 0.00 ND 0.00 ND ND 0.00 ND ND 0.00 ND 0.00 ND 0.00 | GEN, NO2+NO3 TOTAL (MG/L AS N) 0.310 0.160 0.110 ND 0.110 0.080 0.360 0.360 0.370 0.270 0.260 0.200 0.080 | GEN,
AMMONIA
TOTAL
(MG/L
AS N)
0.070
0.030
0.020
0.030
0.050
0.040
0.070
0.030
0.030 | GEN, AMMONIA TOTAL (MG/L AS NH4) 0.09 0.04 0.03 0.04 0.05 0.09 0.04 0.05 0.09 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.11
0.13
0.10
0.20
0.36
0.32
0.26
0.32
0.21
0.30
0.28 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.18 0.16 0.13 0.22 0.39 0.32 0.31 0.36 0.30 0.24 0.33 0.32 0.17 | GEN,
TOTAL
(MG/L
AS N)
0.49
0.32
0.24

0.50
0.40
0.49
0.72
0.61
0.51 | GEN, TOTAL (MG/L AS NO3) 2.2 1.4 1.1 2.2 1.8 2.2 3.2 2.7 2.3 2.6 2.3 1.1 | PHORUS TOTAL (MG/L AS P) 0.030 0.030 0.020 0.020 0.010 0.010 0.010 0.020 0.020 0.020 0.020 0.020 0.020 | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). # 01330907 FISH CREEK NEAR GRANGERVILLE, NY - continued | DATE | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P) | PHOS-
PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4) | ALUM-
INUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS AL) | ALUM-
INUM,
DIS-
SOLVED
(UG/L
AS AL) | CADMIUM
TOTAL
RECOV-
ERABLE
(UG/L
AS CD) | CADMIUM
DIS-
SOLVED
(UG/L
AS CD) | COPPER,
TOTAL
RECOV-
ERABLE
(UG/L
AS CU) | COPPER,
DIS-
SOLVED
(UG/L
AS CU) | IRON,
TOTAL
RECOV-
ERABLE
(UG/L
AS FE) | IRON,
DIS-
SOLVED
(UG/L
AS FE) | LEAD,
TOTAL
RECOV-
ERABLE
(UG/L
AS PB) | LEAD,
DIS-
SOLVED
(UG/L
AS PB) | |---|---|---|---|--|---|--|---|--|--|---|---|--| | APR 1987 | | | | | | | | | | | | | | 22
MAY | 0.00 | 0.0 | | | <10 | | <10 | | 490 | | <100 | | | 12
JUN | 0.00 | 0.0 | | | <10 | | <10 | | 310 | | 20 | | | 11
JUL | 0.00 | 0.0 | | | <10 | | <10 | | 340 | | <5 | | | 29
SEP | 0.00 | 0.0 | | | <10 | | 20 | | 270 | | <5 | | | 24
OCT | 0.00 | 0.0 | | | <1 | | 5 | | 280 | | <5 | | | 26
DEC | ND | | | | <1 | 1.0 | 5 | 2 | 140 | | <5 | < 5 | | 07
MAR 1988 | 0.00 | 0.0 | | | <1 | | 5 | -~ | 200 | | < 5 | | | 28
APR | 0.00 | 0.0 | 200 | <10 | <1 | <1.0 | 4 | 1 | 520 | 50 | <5 | <5 | | 13
25 | 0.00
ND | 0.0 | 70
46 0 | | 1 | | 3
6 | | 290 | | <5 | | | MAY | | | | <10 | | <1.0 | | 1 | 1100 | 21 | < 5 | <5 | | 10 | 0.00
ND | 0.0 | 130
350 | <10 | 1
5 | <1.0 | 2
14 | 1 | 300
6 4 0 | 26 | <5
<5 |
<5 | | JUN
13 | ND | | 160 | | <1 | | 3 | | 320 | | <5 | | | AUG
15 | 0.00 | 0.0 | 160 | | <1 | | 5 | | 90 | | <5 | | | OCT
04 | ND | ~- | 60 | | <1 | | 3 | | 200 | | <5 | | | NOV
02 | 0.020 | 0.06 | 970 | 20 | 1 | <1.0 | 11 | 3 | 1100 | 61 | 7 | <5 | | | | | | | | | | | | | | | | DATE | MANGA-
NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) |
MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN) | MERCURY
TOTAL
RECOV-
ERABLE
(UG/L
AS HG) | NICKEL,
TOTAL
RECOV-
ERABLE
(UG/L
AS NI) | NICKEL,
DIS-
SOLVED
(UG/L
AS NI) | ZINC,
TOTAL
RECOV-
ERABLE
(UG/L
AS ZN) | ZINC,
DIS-
SOLVED
(UG/L
AS ZN) | BROMO-
FORM
TOTAL
(UG/L) | CARBON-
TETRA-
CHLO-
RIDE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
DI-
BROMO-
METHANE
TOTAL
(UG/L) | CHLORO-
ETHANE
TOTAL
(UG/L) | | APR 1987 | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL
RECOV-
ERABLE
(UG/L
AS HG) | TOTAL
RECOV-
ERABLE
(UG/L
AS NI) | DIS-
SOLVED
(UG/L
AS NI) | TOTAL
RECOV-
ERABLE
(UG/L
AS ZN) | DIS-
SOLVED
(UG/L
AS ZN) | FORM
TOTAL
(UG/L) | TETRA-
CHLO-
RIDE
TOTAL
(UG/L) | BENZENE
TOTAL
(UG/L) | DI-
BROMO-
METHANE
TOTAL
(UG/L) | TOTAL
(UG/L) | | APR 1987
22
MAY | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL
RECOV-
ERABLE
(UG/L
AS HG) | TOTAL
RECOV-
ERABLE
(UG/L
AS NI) | DIS-
SOLVED
(UG/L
AS NI) | TOTAL
RECOV-
ERABLE
(UG/L
AS ZN) | DIS-
SOLVED
(UG/L
AS ZN) | FORM TOTAL (UG/L) | TETRA-
CHLO-
RIDE
TOTAL
(UG/L) | BENZENE
TOTAL
(UG/L)
ND | DI-
BROMO-
METHANE
TOTAL
(UG/L) | ETHANE
TOTAL
(UG/L)
ND | | APR 1987
22
MAY
12
JUN | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL
RECOV-
ERABLE
(UG/L
AS HG)
<0.10 | TOTAL RECOV- ERABLE (UG/L AS NI) <100 <1 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV- ERABLE (UG/L AS ZN) <10 <10 | DIS-
SOLVED
(UG/L
AS ZN) | FORM TOTAL (UG/L) ND | TETRA-
CHLO-
RIDE
TOTAL
(UG/L)
ND | BENZENE
TOTAL
(UG/L)
ND
ND | DI-
BROMO-
METHANE
TOTAL
(UG/L)
ND | ETHANE
TOTAL
(UG/L)
ND
ND | | APR 1987
22
MAY
12
JUN
11 | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN)
50
40 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV- ERABLE (UG/L AS HG) <0.10 <0.10 <0.10 | TOTAL RECOV- ERABLE (UG/L AS NI) <100 <1 <1 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV- ERABLE (UG/L AS ZN) <10 <10 <10 | DIS-
SOLVED
(UG/L
AS ZN) | FORM TOTAL (UG/L) ND ND | TETRA-CHLO-RIDE TOTAL (UG/L) ND ND | BENZENE
TOTAL
(UG/L)
ND
ND | DI-
BROMO-
METHANE
TOTAL
(UG/L)
ND
ND | ETHANE TOTAL (UG/L) ND ND ND | | APR 1987 22 MAY 12 JUN 11 JUL 29 SEP | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN)
50
40
50 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV- ERABLE (UG/L AS HG) <0.10 <0.10 <0.20 | TOTAL RECOV- ERABLE (UG/L AS NI) <100 <1 <1 2 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV- ERABLE (UG/L AS ZN) <10 <10 <10 <10 | DIS-
SOLVED
(UG/L
AS ZN) | FORM TOTAL (UG/L) ND ND ND | TETRA-CHLO-RIDE TOTAL (UG/L) ND ND ND | BENZENE
TOTAL
(UG/L)
ND
ND
ND | DI-
BROMO-
METHANE
TOTAL
(UG/L)
ND
ND
ND | ETHANE TOTAL (UG/L) ND ND ND ND | | APR 1987 22 MAY 12 JUN 11 JUL 29 SEP 24 OCT | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN)
50
40
50
50 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV- ERABLE (UG/L AS HG) <0.10 <0.10 <0.10 <0.10 <0.10 | TOTAL RECOV- ERABLE (UG/L AS NI) <100 <1 <1 2 5 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV- ERABLE (UG/L AS ZN) <10 <10 <10 <10 <10 <10 | DIS-
SOLVED
(UG/L
AS ZN) | FORM TOTAL (UG/L) ND ND ND ND | TETRA-CHLO-RIDE RIDE TOTAL (UG/L) ND ND ND ND ND | BENZENE TOTAL (UG/L) ND ND ND ND ND | DI-
BROMO-
METHANE
TOTAL
(UG/L)
ND
ND
ND | ETHANE TOTAL (UG/L) ND ND ND ND ND | | APR 1987 22 MAY 12 JUN 11 JUL 29 SEP 24 OCT 26 DEC | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN)
50
40
50
50
30 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV- ERABLE (UG/L AS HG) <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 | TOTAL RECOV- ERABLE (UG/L AS NI) <100 <1 <1 2 5 <1 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV- ERABLE (UG/L AS ZN) <10 <10 <10 <10 <10 <10 <10 | DIS-
SOLVED
(UG/L
AS ZN) | FORM TOTAL (UG/L) ND ND ND ND ND ND | TETRA-CHLO-RIDE TOTAL (UG/L) ND ND ND ND ND | BENZENE
TOTAL
(UG/L)
ND
ND
ND | DI- BROMO- METHANE TOTAL (UG/L) ND ND ND ND ND ND ND | ETHANE TOTAL (UG/L) ND ND ND ND ND ND | | APR 1987 22 MAY 12 JUN 11 JUL 29 SEP 24 OCT 26 DEC 07 MAR 1988 | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN)
50
40
50
50
30
20
60 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV- ERABLE (UG/L AS HG) <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 | TOTAL RECOV- ERABLE (UG/L AS NI) <100 <1 <1 2 5 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV- ERABLE (UG/L AS ZN) <10 <10 <10 <10 <10 <10 | DIS-
SOLVED
(UG/L
AS ZN) | FORM TOTAL (UG/L) ND ND ND ND | TETRA-CHLO-RIDE RIDE TOTAL (UG/L) ND ND ND ND ND | BENZENE TOTAL (UG/L) ND ND ND ND ND | DI-
BROMO-
METHANE
TOTAL
(UG/L)
ND
ND
ND | ETHANE TOTAL (UG/L) ND ND ND ND ND | | APR 1987 22 MAY 12 JUN 11 JUL 29 SEP 24 OCT 26 DEC 07 MAR 1988 28 APR | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN)
50
50
50
30
20
60 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV-ERABLE (UG/L AS HG) <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 | TOTAL RECOV- ERABLE (UG/L AS NI) <100 <1 <1 2 5 <1 3 3 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV- ERABLE (UG/L AS ZN) <10 <10 <10 <10 <10 <10 <10 <10 <10 <1 | DIS-
SOLVED
(UG/L
AS ZN) | FORM TOTAL (UG/L) ND ND ND ND ND ND | TETRA-CHLO-RIDE TOTAL (UG/L) ND ND ND ND ND | BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND | DI- BROMO- METHANE TOTAL (UG/L) ND ND ND ND ND ND ND | ETHANE TOTAL (UG/L) ND ND ND ND ND ND | | APR 1987 22 MAY 12 JUN 11 JUL 29 SEP 24 OCT 26 DEC 07 MAR 1988 28 | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN)
50
40
50
50
30
20
60 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV- ERABLE (UG/L AS HG) <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 | TOTAL RECOV- ERABLE (UG/L AS NI) <100 <1 <1 2 5 <11 3 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV- ERABLE (UG/L AS ZN) <10 <10 <10 <10 <10 <10 <10 <10 <10 <1 | DIS-
SOLVED
(UG/L
AS ZN) | FORM TOTAL (UG/L) ND ND ND ND ND ND ND ND | TETRA-CHLO-RIDE RIDE TOTAL (UG/L) ND ND ND ND ND ND ND | BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | DI- BROMO- METHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND | ETHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | | APR 1987 22 MAY 12 JUN 11 JUL 29 SEP 24 OCT 26 DEC 07 MAR 1988 28 APR 13 | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN)
50
50
50
30
20
60
80
70 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV- ERABLE (UG/L AS HG) <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 | TOTAL RECOV- ERABLE (UG/L AS NI) <100 <1 <1 2 5 <1 3 3 9 | DIS-SOLVED (UG/L AS NI) | TOTAL RECOV- ERABLE (UG/L AS ZN) <10 <10 <10 <10 <10 <10 <10 <10 <10 <1 | DIS-
SOLVED
(UG/L
AS ZN) | FORM TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TETRA-CHLO-RIDE TOTAL (UG/L) ND | BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | DI- BROMO- METHANE TOTAL (UG/L) ND | ETHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | | APR 1987 22 MAY 12 JUN 11 JUL 29 SEP 24 OCT 26 DEC 07 MAR 1988 28 APR 13 25 MAY | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN)
50
50
50
30
20
60
80
70
60 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOVERABLE (UG/L AS HG) <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 | TOTAL RECOV-ERABLE (UG/L AS NI) <100 <1 <1 2 5 <1 3 3 9 6 | DIS-SOLVED (UG/L AS NI) | TOTAL RECOV- REABLE (UG/L AS ZN) <10 <10 <10 <10 <10 <10 <10 <10 <20 <10 <10 <10 <10 <10 <10 <10 <10 <10 <1 | DIS-
SOLVED
(UG/L
AS ZN) | FORM TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TETRA-CHLO-RIDE TOTAL (UG/L) ND | BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | DI- BROMO- METHANE TOTAL (UG/L) ND | ETHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | | APR 1987 22 MAY 12 JUN 11 JUL 29 SEP 24 OCT 26 DEC 07 MAR 1988 28 APR 13 25 MAY 10 JUN 13 AUG | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) 50 40 50 30 20 60 80 70 60 50 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV-ERABLE (UG/L AS HG) <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 | TOTAL RECOV-ERABLE (UG/L AS NI) <100 <1 <1 2 5 <1 3 9 6 2 | DIS-SOLVED (UG/L AS NI) | TOTAL RECOV- ERABLE (UG/L AS ZN) <10 <10 <10 <10 <10 <10 <10 <10 <10 <1 | DIS-
SOLVED
(UG/L
AS ZN) | FORM TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TETRA-CHLO-RIDE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | DI- BROMO- METHANE TOTAL (UG/L) ND | ETHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | | APR 1987 22 MAY 12 JUN 11 JUL 29 SEP 24 OCT 26 DEC 07 MAR 1988 28 APR 13 25 MAY 10 24 JUN 13 | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN)
50
50
50
30
20
60
80
70
60
50
60 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOVERABLE (UG/L AS HG) <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 | TOTAL RECOV-ERABLE (UG/L AS NI) <100 <1 <1 2 5 <1 3 3 9 6 2 5 | DIS-SOLVED (UG/L AS NI) | TOTAL RECOV- REABLE (UG/L AS ZN) <10 <10 <10 <10 <10 <10 <10 <10 <10 <1 | DIS-
SOLVED
(UG/L
AS ZN) | FORM TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TETRA-CHLO-RIDE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | DI- BRROMO- METHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | ETHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | | APR 1987 22 MAY 12 JUN 11 JUL 29 SEP 24 OCT 26 DEC 07 MAR 1988 28 APR 13 25
MAY 10 24 JUN 13 AUG 15 | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN)
50
50
30
20
60
80
70
60
50
60 | NESE, DIS- SOLVED (UG/L AS MN) 50 23 11 | TOTAL RECOVERABLE (UG/L AS HG) <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 | TOTAL RECOV-ERABLE (UG/L AS NI) <100 <1 <1 2 5 <1 3 9 6 2 5 2 | DIS-SOLVED (UG/L AS NI) | TOTAL RECOV- ERABLE (UG/L AS ZN) <10 <10 <10 <10 <10 <10 <10 <10 <10 <1 | DIS-
SOLVED
(UG/L
AS ZN) | FORM TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TETRA-CHLO-RIDE TOTAL (UG/L) ND | BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | DI- BROMO- METHANE TOTAL (UG/L) ND | ETHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). # 01330907 FISH CREEK NEAR GRANGERVILLE, NY - continued | | | | | | TER-QUALI | | | • | | | | |---|---|---|---|---|---|---|---|--|---|---|---| | DATE | CHLORO-
FORM
TOTAL
(UG/L) | CIS
1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | DI-
CHLORO-
BROMO-
METHANE
TOTAL
(UG/L) | METHYL-
BROMIDE
TOTAL
(UG/L) | METHYL-
CHLO-
RIDE
TOTAL
(UG/L) | METHYL-
ENE
CHLO-
RIDE
TOTAL
(UG/L) | 1,1,1-
TRI-
CHLORO-
ETHANE
TOTAL
(UG/L) | 1,1-DI-
CHLORO-
ETHANE
TOTAL
(UG/L) | 1,1-DI-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 1,1,2-
TRI-
CHLORO-
ETHANE
TOTAL
(UG/L) | 1,1,2,2
TETRA-
CHLORO-
ETHANE
TOTAL
(UG/L) | | APR 1987
22 | N D | ND | MAY
12 | ND | JUN
11 | ND ND- | ND | | JUL
29 | N D | ND | ND | ND | ND | ND | ND | | SEP
24 | N D | ND | N D | ND | ОСТ
26 | ND N D | | DEC 07 | ND N D | | MAR 1988
28 | ND | ND | ND | ND | ND | 0.5 | ND | ND | ND | ND | N D | | APR 13 | ND | 25
MAY | | | | | | | | | | | | | 10 | ND | 24
JUN | ND | 13
AUG | ND | 15
OCT | ND | 04
NOV | | | | | | | | | | | | | 02 | ND | | | | | | | | | | | | | | DATE | 1,2-DI-
CHLORO-
BENZENE
TOTAL
(UG/L) | 1,2-DI-
CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L) | 1,2-DI-
CHLORO-
PROPANE
TOTAL
(UG/L) | 1,2-
TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L) | 1,3-DI-
CHLORO-
BENZENE
TOTAL
(UG/L) | 1,4-DI-
CHLORO-
BENZENE
TOTAL
(UG/L) | TETRA-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | TRANS-
1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | TRI-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 2-
CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L) | VINYL
CHLO-
RIDE
TOTAL
(UG/L) | | APR 1987 | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L) | CHLORO-
PROPANE
TOTAL
(UG/L) | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L) | CHLO-
RIDE
TOTAL
(UG/L) | | APR 1987
22
MAY | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L) | CHLORO-
PROPANE
TOTAL
(UG/L) | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L) | CHLO-
RIDE
TOTAL
(UG/L) | | APR 1987
22
MAY
12
JUN | CHLORO-
BENZENE
TOTAL
(UG/L)
ND | CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L)
ND | CHLORO-
PROPANE
TOTAL
(UG/L)
ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND | CHLORO-
BENZENE
TOTAL
(UG/L)
ND | CHLORO-
BENZENE
TOTAL
(UG/L)
ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND | CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L)
ND | CHLO-
RIDE
TOTAL
(UG/L)
ND | | APR 1987
22
MAY
12
JUN
11
JUL | CHLORO-BENZENE TOTAL (UG/L) ND ND ND | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND ND | CHLORO-
PROPANE
TOTAL
(UG/L)
ND
ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND | CHLORO-BENZENE TOTAL (UG/L) ND ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND
ND | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
ND
ND
ND | CHLORO-
ETHYL -
ENE
TOTAL
(UG/L)
ND
ND | CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L)
ND
ND | CHLO-
RIDE
TOTAL
(UG/L)
ND
ND | | APR 1987 22 MAY 12 JUN 11 JUL 29 SEP | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND ND ND | CHLORO-PROPANE TOTAL (UG/L) ND ND ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND ND ND ND | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
ND
ND
ND | CHLORO-ETHYL-ENE ENE TOTAL (UG/L) ND ND ND ND | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND ND ND ND | CHLO-
RIDE
TOTAL
(UG/L)
ND
ND
ND | | APR 1987 22 MAY 12 JUN 11 JUL 29 SEP 24 OCT | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND | CHLORO- ETHANE WATER WHOLE TOTAL (UG/L) ND ND ND ND ND | CHLORO- PROPANE TOTAL (UG/L) ND ND ND ND ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND ND ND ND ND | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
ND
ND
ND
ND | CHLORO-ETHYL- ENE TOTAL (UG/L) ND ND ND ND ND | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND ND ND ND ND | CHLO-
RIDE
TOTAL
(UG/L)
ND
ND
ND | | APR 1987 22 MAY 12 JUN 11 JUL 29 SEP 24 OCT 26 DEC | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND ND ND ND ND ND | CHLORO-PROPANE TOTAL (UG/L) ND ND ND | TRANSDI
CHLORO-
ETHENE TOTAL
(UG/L)
ND
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND ND ND ND ND ND ND ND | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND | CHLORO-ETHYL-ENE ENE TOTAL (UG/L) ND ND ND ND ND ND ND ND | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND ND ND ND ND ND ND | CHLO-
RIDE
TOTAL
(UG/L)
ND
ND
ND
ND | | APR 1987 22 MAY 12 JUN 11 JUL 29 SEP 24 OCT 26 | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND | CHLORO- ETHANE WATER WHOLE TOTAL (UG/L) ND ND ND ND ND | CHLORO- PROPANE TOTAL (UG/L) ND ND ND ND ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND ND ND ND ND | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
ND
ND
ND
ND | CHLORO-ETHYL- ENE TOTAL (UG/L) ND ND ND ND ND | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND ND ND ND ND | CHLO-
RIDE
TOTAL
(UG/L)
ND
ND
ND | | APR 1987 22 MAY 12 JUN 11 JUL 29 SEP 24 OCT 26 DEC 07 MAR 1988 28 | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND ND ND ND ND ND | CHLORO-
PROPANE
TOTAL
(UG/L)
ND
ND
ND
ND
ND | TRANSDI
CHLORO-
ETHENE TOTAL
(UG/L)
ND
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND ND ND ND ND ND ND ND | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND | CHLORO-ETHYL-ENE ENE TOTAL (UG/L) ND ND ND ND ND ND ND ND | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND ND ND ND ND ND ND | CHLO-
RIDE
TOTAL
(UG/L)
ND
ND
ND
ND | | APR 1987 22 MAY 12 JUN 11 JUL 29 SEP 24 OCT 26 DEC 07 MAR 1988 | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO- ETHANE WATER WHOLE TOTAL (UG/L) ND ND ND ND ND ND ND ND | CHLORO-PROPANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-ETHYL-ENE TOTAL (UG/L) ND | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND | CHLORO-ETHYL- ENE TOTAL (UG/L) ND | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND | CHLO- RIDE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND | | APR 1987 22 MAY 12 JUN 11 JUL 29 SEP 24 OCT 26 DEC 07 MAR 1988 28 APR 13 25 MAY | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-ETHANE
WATER WHOLE TOTAL (UG/L) ND | CHLORO-PROPANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND
ND | CHLOROBENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND | CHLORO-ETHYL-ENE ENE TOTAL (UG/L) ND | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND | CHLO-RIDE TOTAL (UG/L) ND | | APR 1987 22 MAY 12 JUN 11 JUL 29 SEP 24 OCT 26 DEC 07 MAR 1988 28 APR 13 25 MAY 10 24 | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO- ETHANE WATER WHOLE TOTAL (UG/L) ND | CHLORO-PROPANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TRANSDI
CHLORO-
ETHENE TOTAL
(UG/L)
ND
ND
ND
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-ETHYL-ENE TOTAL (UG/L) ND | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND | CHLORO-ETHYL-ENETOTAL (UG/L) ND | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND | CHLO-RIDE ROTAL (UG/L) ND | | APR 1987 22 MAY 12 JUN 11 JUL 29 SEP 24 OCT 26 DEC 07 MAR 1988 28 APR 13 25 MAY 10 24 JUN 13 | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND | CHLORO-PROPANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TRANSDI
CHLORO-
ETHENE TOTAL
(UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND | CHLO-RIDE RIDE TOTAL (UG/L) ND | | APR 1987 22 MAY 12 JUN 11 JUL 29 SEP 24 OCT 26 DEC 07 MAR 1988 28 APR 13 25 MAY 10 24 JUN 13 AUG 15 | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND | CHLORO-PROPANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-ETHYL-ENE ENE TOTAL (UG/L) ND N | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND | CHLO-RIDE TOTAL (UG/L) ND | | APR 1987 22 MAY 12 JUN 11 JUL 29 SEP 24 OCT 26 DEC 07 MAR 1988 28 APR 13 25 MAY 10 24 JUN 13 AUG | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO- ETHANE WATER WHOLE TOTAL (UG/L) ND | CHLORO-PROPANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TRANSDI
CHLORO-
ETHENE TOTAL
(UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-ETHYL-ENE TOTAL (UG/L) ND | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND | CHLO-RIDE RIDE TOTAL (UG/L) ND | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). # 01330907 FISH CREEK NEAR GRANGERVILLE, NY - continued # SUSPENDED SEDIMENT DISCHARGE | | | DIS-
CHARGE,
INST.
CUBIC
FEET | SEDI-
MENT,
SUS- | SEDI-
MENT,
DIS-
CHARGE,
SUS- | |-----------|------|---|------------------------|---| | DATE | TIME | PER
SECOND | PENDED
(MG/L) | PENDED
(T/DAY) | | MAY 1988 | | | | | | 10
JUN | 1045 | 200 | 9 | 4.9 | | 13 | 1115 | 93 | 9 | 2.3 | | AUG
15 | 1100 | 62 | 7 | 1.2 | | OCT
04 | 1100 | 62 | 3 | 0.50 | | NOV
02 | 1300 | 407 | 40 | 44 | # BED MATERIAL ANALYSES | DATE OCT 1987 26 AUG 1988 15 | TIME | OLIDS,
VOLA-
VILE IN
WOTTOM
MA-
TERIAL
MG/KG)
15000 | INUM,
RECOV. | CADMIUM
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS CD) | CHRO-MIUM, RECOV. FM BOT-TOM MA-TERIAL (UG/G) | COPPER,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS CU) | RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE) | TOM MA
TERIA
(UG/G
AS PB | - RECO
- FM BO
L TOM M
TERI
) (UG/ | , REV. FM T- TOM A- TE AL (UG) AS | COV. REBOT- FM MA- TOM RIAL TE G/G (U HG) AS | COV. RE BOT- FM MA- TOM RIAL TE | NC,
COV.
BOT-
MA-
RIAL
G/G
ZN) | |------------------------------|--|--|---|--|---|--|---|---|--|---|---|---|--| | DATE OCT 1987 26 | AROCLC
1221
IN
BOTTOM
MAT.
(UG/KO | AROC
12
PC
BOT. | 48 125
B PCE
MAT BOT.M | 4 1260
PCI | O IN B
B TOM
MAT TER | AL TOT
OT- IN
MA- TOM
IAL TER | IC ZI
TAL TO
BOT- IN
I MA- TOM
RIAL TE | NE, BEI TAL HI BOT- CI MA- RIAL BO | NZENE
EXA-
HLOR- I
IDE T | CHLOR-
DANE,
TOTAL
N BOT-
OM MA-
TERIAL
UG/KG) | CHLOR-
PYRIFOS
IN BOT.
MAT.
(UG/KG) | DELTA
BENZENE
HEXA-
CHLOR-
IDE
BOT.MAT
(UG/KG) | | | AUG 1988
15 | ND | ND | ND | ND | ND | N | ID N | ו ס | ND | ND | ND | ND | | | DATE | DI- AZINON TOTAL IN BOT TOM MA TERIA | TOT
IN B
TOM
TER | IN,
AL ENDO
OT- SULFA
MA- ALPH
IAL BOT.M | N SULFA
A BETA
AT BOT. | AN SUL
A SULF
MAT BOT. | O- TO
FAN IN
ATE TOM
MAT TE | BOT- AL
I MA- H
CRIAL BOT | RIN TO
DE- IN
YDE TO
MAT T | HION, OTAL DOTAL D | HEPTA-
CHLOR,
TOTAL
N BOT-
OM MA-
TERIAL
UG/KG) | HEPTA-
CHLOR
EPOXIDE
TOT. IN
BOTTOM
MATL.
(UG/KG) | MALA-
THION,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | | | OCT 1987
26 | | _ | | | | _ | | | | | | | | | AUG 1988 | | | | | | | | _ | | | | | | | DATE OCT 1987 | METH-
OXY-
CHLOF
TOT. I
BOTTIC
MATI
(UG/KG | MIR
TOT
N IN B
M TOM | P,P
EX, DDD
AL TOTA
OT- IN BO
MA- TOM M
IAL TERI | , DDE
L TOTA
T- IN BO
A- TOM N
AL TERI | E, DD
AL TOT
DT- IN B
MA- TOM
IAL TER | P' PA T, TH AL TO OT- IN MA- TOM IAL TE | ARA- TO
HION, PH
PTAL TO
BOT- IN
HMA- TOM
CRIAL TE | XA- ENE, ITAL IBOT- DIMA- % IRIAL I | IAM.
FINER %
IHAN
04 MM . | BED
MAT.
SIEVE
DIAM.
FINER
THAN
062 MM | BED
MAT.
SIEVE
DIAM.
% FINER
THAN
.125 MM | BED
MAT.
SIEVE
DIAM.
% FINER
THAN
2.00 MM | | | 26
AUG 1988 | | ~ | | | - | - | | | 0 | 7 | 42 | 100 | | | 15 | ND | 47. | ND | ND | ND | N | ID N | D | 2 | 7 | 100 | | | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). ### 0133335001 HOOSIC RIVER BELOW NY-VT STATELINE, NEAR NORTH POWNAL, VT LOCATION.--Lat 42*48'34", long 73*17'13", Rensselaer County, Hydrologic Unit 02020003, at Route 346 bridge on NY-VT border, 1.5 mi northwest of North Pownal, VT, and 4 mi southeast of North Petersburg, NY. DRAINAGE AREA. -- 302 mi2. PERIOD OF RECORD.--Water years 1987 to 1989. CHEMICAL DATA: 1987 (b), 1988 (c), 1989 (a). MINOR ELEMENTS DATA: 1987 (b), 1988 (c), 1989 (a). PESTICIDE DATA: 1987 (b), 1988 (c), 1989 (a). NUTRIENT DATA: 1987 (b), 1988 (c), 1989 (a). BIOLOGICAL DATA: Bacteria--1987 (b), 1988 (c), 1989 (a). SEDIMENT DATA: 1988 (b), 1989 (a). REMARKS.--Water-discharge data obtained from a discharge rating developed for this site. Diurnal fluctuation at medium and low flow caused by
powerplants upstream from station. ### WATER-QUALITY DATA | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | SPE-
CIFIC
CON-
DUCT-
ANCE
LAB
(US/CM) | PH WATER WHOLE FIELD (STAND- ARD UNITS) | TEMPER-
ATURE
WATER
(DEG C) | TUR-
BID-
ITY
(NTU) | BARO-
METRIC
PRES-
SURE
(MM
OF
HG) | OXYGEN,
DIS-
SOLVED
(MG/L) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION) | COLI-
FORM,
TOTAL,
IMMED.
(COLS.
PER
100 ML) | FECAL
COLI-
FORM
24-HR
MEM.FIL
(COLS./
100 ML) | |------------------|--------------|--|---|--|---|--------------------------------------|------------------------------|--|-------------------------------------|--|--|--| | APR 1987 | | | | | | | | | | | | | | 24
May | 1030 | | | | 8.0 | 11.0 | 8.0 | | 9.9 | | | | | 12
JUN | 0945 | | | 287 | 8.0 | 15.5 | 2.6 | | 9.3 | | 4800 | 180 | | 12
JUL | 1000 | | | 312 | 8.0 | 16.5 | 0.50 | | 8.3 | | >860 | 140 | | 30
SEP | 1020 | | | | 8.2 | 22.0 | 0.50 | | 10.0 | | 100 | 20.0 | | 21
OCT | 1315 | | | 170 | 7.6 | 14.0 | 7.0 | | | | | | | 27 | 1330 | | | 232 | 8.0 | 7.0 | 1.3 | | 13.2 | | | | | 09
MAR 1988 | 1330 | | | 210 | 7.9 | 4.0 | 1.0 | | 19.3 | | | | | 29
APR | 1315 | 1050 | 142 | 148 | 7.1 | 3.5 | 8.8 | 772 | 13.4 | 100 | | | | 11
26 | 1300
1000 | 565
423 | 180
185 | 182
185 | 6.9
7.8 | 7.5
6.5 | 1.4
1.5 | 760
 | 12.2
13.6 | 102 | 480
1300 | 30.0
220 | | MAY | 1000 | 423 | 103 | 103 | 7.0 | 0.5 | 1.3 | | 15.0 | | 1300 | 220 | | 11 | 1130 | 774 | 212 | 219 | 8.0 | 15.0 | 0.90 | 760 | 9.0 | 90 | 2000 | 300 | | 23
JUN | 1300 | 684 | 167 | 161 | 6.9 | 15.5 | 80 | 760 | 9.5 | 96 | >7200 | 450 0 | | 14 | 1400 | | 286 | 295 | 8.7 | 22.0 | 1.3 | | 8.2 | | 600 | 20.0 | | AUG
16
OCT | 1330 | 479 | 240 | 241 | 7.6 | 22.5 | 7.0 | | 8.9 | | >5800 | 1500 | | 03 | 1300 | 166 | 310 | 318 | 8.7 | 17.5 | 1.0 | 763 | 11.9 | 124 | 1300 | 200 | | 01 | 1300 | 239 | 232 | 239 | 7.7 | 4.5 | 1.9 | 764 | 14.0 | 108 | 940 | 180 | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). # 0133335001 HOOSIC RIVER BELOW NY-VT STATELINE, NEAR NORTH POWNAL, VT - continued | DATE | HARD-
NESS
TOTAL
(MG/L
AS
CACO3) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K) | ALKA-
LINITY
LAB
(MG/L
AS
CACO3) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | SOLIDS,
RESIDUE
AT 105
DEG. C,
TOTAL
(MG/L) | |---|--|--|--|--|---|--|--|--|--|---|---|---| | APR 1987
24 | 100 | 29 | 6.8 | | | | | | | 112 | | 148 | | MAY
12 | 120 | 34 | 8.4 | | | | | | | 154 | | 178 | | JUN
12 | 120 | 34 | 9.1 | | | | | | | | | 194 | | JUL
30 | 140 | 39 | 10 | | | | | | | 206 | | 210 | | SEP 21 | 65 | 18 | 4.9 | | ~- | | | | | 124 | | 130 | | ост
27 | 99 | 27 | 7.6 | - - | | | | | | 118 | | 127 | | DEC 09 | 83 | 23 | 6.1 | | ~- | | | | | 122 | | 130 | | MAR 1988
29 | 56 | 16 | 3.9 | 5.3 | 0.80 | 45 | 11 | 8.7 | 0.10 | 92 | 73 | 102 | | APR 11 | 72 | 20 | 5.4 | 6.3 | 0.90 | 61 | 12 | 11 | 0.10 | 97 | 92 | 103 | | 26
MAY | 73 | 20 | 5.5 | 7.2 | 1.0 | 61 | 12 | 11 | 0.10 | 114 | 94 | 121 | | 11
23 | 87
71 | 2 4
21 | 6.6
4.4 | 8.1
4.1 | 1.0 | 79
60 | 13
14 | 11
6.5 | 0.20 | 144 | 111
88 | 151
160 | | JUN
14 | 120 | 32 | 9.4 | 14 | 1.3 | 107 | 13 | 16 | 0.10 | 157 | 150 | 172 | | AUG
16 | 100 | 29 | 7.5 | 8.2 | 1.8 | 83 | 16 | 12 | <0.10 | 142 | 124 | 152 | | 03 | 130 | 34 | 11 | 14 | 1.9 | 116 | 17 | 17 | 0.10 | 191 | 165 | 262 | | NOV
01 | 100 | 27 | 7.9 | 8.8 | 1.2 | 84 | 17 | 12 | 0.10 | 137 | 125 | 139 | | | | | | | | | | | | | | | | DATE | SOLIDS,
VOLA-
TILE ON
IGNI-
TION,
TOTAL
(MG/L) | RESIDUE
TOTAL
FIXED
(MG/L) | NITRO-
GEN,
NITRATE
TOTAL
(MG/L
AS N) | NITRO-
GEN,
NITRITE
TOTAL
(MG/L
AS N) | NITRO-
GEN,
NO2+NO3
TOTAL
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS NH4) | NITRO-
GEN,
ORGANIC
TOTAL
(MG/L
AS N) | NITRO-
GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | NITRO-
GEN,
TOTAL
(MG/L
AS N) | NITRO-
GEN,
TOTAL
(MG/L
AS NO3) | PHOS-
PHORUS
TOTAL
(MG/L
AS P) | | APR 1987 | VOLA-
TILE ON
IGNI-
TION,
TOTAL
(MG/L) | TOTAL
FIXED
(MG/L) | GEN,
NITRATE
TOTAL
(MG/L
AS N) | GEN,
NITRITE
TOTAL
(MG/L
AS N) | GEN,
NO2+NO3
TOTAL
(MG/L
AS N) | GEN,
AMMONIA
TOTAL
(MG/L
AS N) | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4) | GEN,
ORGANIC
TOTAL
(MG/L
AS N) | GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | GEN,
TOTAL
(MG/L
AS N) | GEN,
TOTAL
(MG/L
AS NO3) | PHORUS
TOTAL
(MG/L
AS P) | | APR 1987
24
MAY | VOLA-
TILE ON
IGNI-
TION,
TOTAL
(MG/L) | TOTAL
FIXED
(MG/L) | GEN,
NITRATE
TOTAL
(MG/L
AS N) | GEN, NITRITE TOTAL (MG/L AS N) | GEN,
NO2+NO3
TOTAL
(MG/L
AS N) | GEN,
AMMONIA
TOTAL
(MG/L
AS N) | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4) | GEN,
ORGANIC
TOTAL
(MG/L
AS N) | GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | GEN,
TOTAL
(MG/L
AS N) | GEN,
TOTAL
(MG/L
AS NO3) | PHORUS
TOTAL
(MG/L
AS P) | | APR 1987
24
MAY
12
JUN | VOLA-
TILE ON
IGNI-
TION,
TOTAL
(MG/L) | TOTAL
FIXED
(MG/L)
109 | GEN,
NITRATE
TOTAL
(MG/L
AS N)
0.540 | GEN,
NITRITE
TOTAL
(MG/L
AS N)
0.010 | GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
0.550 | GEN,
AMMONIA
TOTAL
(MG/L
AS N)
0.100 | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4)
0.13 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.06 | GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
0.16 | GEN,
TOTAL
(MG/L
AS N)
0.71 | GEN,
TOTAL
(MG/L
AS NO3)
3.1
3.1 | PHORUS
TOTAL
(MG/L
AS P)
0.180
0.070 | | APR 1987
24
MAY
12
JUN
12 | VOLA-
TILE ON
IGNI-
TION,
TOTAL
(MG/L)
38
39
66 | TOTAL
FIXED
(MG/L)
109
139
133 | GEN,
NITRATE
TOTAL
(MG/L
AS N)
0.540
0.530
0.620 | GEN,
NITRITE
TOTAL
(MG/L
AS N)
0.010
0.020 | GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
0.550
0.550 | GEN,
AMMONIA
TOTAL
(MG/L
AS N)
0.100
0.090
0.180 | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4)
0.13
0.12 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.06
0.06 | GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
0.16
0.15 | GEN,
TOTAL
(MG/L
AS N)
0.71
0.70 | GEN,
TOTAL
(MG/L
AS NO3)
3.1
3.1 | PHORUS
TOTAL
(MG/L
AS P)
0.180
0.070 | | APR 1987
24
MAY
12
JUN
12
JUL
30
SEP | VOLA-
TILE ON
IGNI-
TION,
TOTAL
(MG/L)
38
39
66 | TOTAL
FIXED (MG/L)
109
139
133 | GEN,
NITRATE
TOTAL
(MG/L
AS N)
0.540
0.530
0.620
0.630 | GEN,
NITRITE
TOTAL
(MG/L
AS N)
0.010
0.020
0.030
0.010 | GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
0.550
0.550
0.650 | GEN,
AMMONIA
TOTAL
(MG/L
AS N)
0.100
0.090
0.180 | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4)
0.13
0.12
0.23 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.06
0.06
0.05 | GEN, AM- MONIA + ORGANIC TOTTAL (MG/L AS N) 0.16 0.15 0.23 | GEN,
TOTAL
(MG/L
AS N)
0.71
0.70
0.88 |
GEN,
TOTAL
(MG/L
AS NO3)
3.1
3.1
3.9 | PHORUS
TOTAL
(MG/L
AS P)
0.180
0.070
0.100
0.110 | | APR 1987 24 MAY 12 JUN 30 SEP 21 OCT | VOLA- TILE ON IGNI- TION, TOTAL (MG/L) 38 39 66 72 75 | TOTAL
FIXED
(MG/L)
109
139
133
138 | GEN,
NITRATE
TOTAL
(MG/L
AS N)
0.540
0.530
0.620
0.630
0.350 | GEN,
NITRITE
TOTAL
(MG/L
AS N)
0.010
0.020
0.030
0.010 | GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
0.550
0.550 | GEN,
AMMONIA
TOTAL
(MG/L
AS N)
0.100
0.090
0.180
0.050 | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4)
0.13
0.12
0.23
0.06 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.06
0.05
0.15 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.16 0.15 0.23 0.20 0.22 | GEN,
TOTAL
(MG/L
AS N)
0.71
0.70
0.88
0.84 | GEN,
TOTAL
(MG/L
AS NO3)
3.1
3.1
3.9
3.7 | PHORUS
TOTAL
(MG/L
AS P)
0.180
0.070
0.100
0.110 | | APR 1987 24 MAY 12 JUN 12 JUL 30 SEP 21 | VOLA-
TILE ON
IGNI-
TION,
TOTAL
(MG/L)
38
39
66 | TOTAL
FIXED (MG/L)
109
139
133 | GEN,
NITRATE
TOTAL
(MG/L
AS N)
0.540
0.530
0.620
0.630 | GEN,
NITRITE
TOTAL
(MG/L
AS N)
0.010
0.020
0.030
0.010
0.00 | GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
0.550
0.550
0.650
0.640
0.350
0.490 | GEN,
AMMONIA
TOTAL
(MG/L
AS N)
0.100
0.090
0.180
0.050
0.050 | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4)
0.13
0.12
0.23
0.06
0.06 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.06
0.06
0.05
0.15
0.17 | GEN, AM- MONIA + ORGANIC TOTTAL (MG/L AS N) 0.16 0.15 0.23 0.20 0.22 | GEN,
TOTAL
(MG/L
AS N)
0.71
0.70
0.88
0.84
0.57 | GEN,
TOTAL
(MG/L
AS NO3)
3.1
3.1
3.9
3.7
2.5 | PHORUS
TOTAL
(MG/L
AS P)
0.180
0.070
0.100
0.110
0.050
0.040 | | APR 1987 24 MAY 12 JUN 12 JUL 30 SEP 21 OCT 27 DEC | VOLA- TILE ON IGNI- TION, TOTAL (MG/L) 38 39 66 72 75 50 | TOTAL
FIXED (MG/L)
109
139
133
138
55 | GEN,
NITRATE
TOTAL
(MG/L
AS N)
0.540
0.530
0.620
0.630
0.350
0.490 | GEN,
NITRITE
TOTAL
(MG/L
AS N)
0.010
0.020
0.030
0.010 | GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
0.550
0.550
0.650
0.640 | GEN,
AMMONIA
TOTAL
(MG/L
AS N)
0.100
0.090
0.180
0.050 | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4)
0.13
0.12
0.23
0.06 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.06
0.05
0.15 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.16 0.15 0.23 0.20 0.22 | GEN,
TOTAL
(MG/L
AS N)
0.71
0.70
0.88
0.84 | GEN,
TOTAL
(MG/L
AS NO3)
3.1
3.1
3.9
3.7 | PHORUS
TOTAL
(MG/L
AS P)
0.180
0.070
0.100
0.110 | | APR 1987 24 MAY 12 JUN 12 JUL 30 SEP 21 OCT 27 DEC 09 MAR 1988 | VOLA- TILE ON IGNI- TION, TOTAL (MG/L) 38 39 66 72 75 50 | TOTAL
FIXED
(MG/L)
109
139
133
138
55
87 | GEN, NITRATE TOTAL (MG/L AS N) 0.540 0.530 0.620 0.630 0.350 0.490 0.570 | GEN, NITRITE TOTAL (MG/L AS N) 0.010 0.020 0.030 0.010 0.00 0.00 | GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
0.550
0.550
0.650
0.640
0.350
0.490 | GEN, AMMONIA TOTAL (MG/L AS N) 0.100 0.090 0.180 0.050 0.050 0.030 | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4)
0.13
0.12
0.23
0.06
0.06
0.04 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.06
0.05
0.15
0.17
0.11 | GEN, AM- MONIA + ORGANIC TOTTAL (MG/L AS N) 0.16 0.15 0.23 0.20 0.22 0.14 0.12 | GEN,
TOTAL
(MG/L
AS N)
0.71
0.70
0.88
0.84
0.57
0.63 | GEN,
TOTAL
(MG/L
AS NO3)
3.1
3.1
3.9
3.7
2.5
2.8 | PHORUS
TOTAL
(MG/L
AS P)
0.180
0.070
0.100
0.110
0.050
0.040 | | APR 1987 24 MAY 12 JUN 12 JUL 30 SEP 21 OCT 27 DEC 09 MAR 1988 29 APR 11 26 MAY | VOLA- TILE ON IGNI- TION, TOTAL (MG/L) 38 39 66 72 75 50 51 18 23 57 | TOTAL
FIXED
(MG/L)
109
139
133
138
55
87
79
84
80
64 | GEN,
NITRATE
TOTAL
(MG/L
AS N)
0.540
0.530
0.620
0.630
0.350
0.490
0.570 | GEN, NITRITE TOTAL (MG/L AS N) 0.010 0.020 0.030 0.010 0.00 0.00 0.00 0.00 ND ND | GEN, NO2+NO3 TOTAL (MG/L AS N) 0.550 0.550 0.650 0.640 0.350 0.490 0.570 0.580 0.630 0.390 | GEN,
AMMONIA
TOTAL
(MG/L
AS N)
0.100
0.090
0.180
0.050
0.050
0.030
0.030
0.020 | GEN, AMMONIA TOTAL (MG/L AS NH4) 0.13 0.12 0.23 0.06 0.06 0.04 0.04 0.03 0.05 0.01 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.06
0.05
0.15
0.17
0.11
0.09
0.07 | GEN, AM- MONIA + ORGANIC TOTTAL (MG/L AS N) 0.16 0.15 0.23 0.20 0.22 0.14 0.12 0.09 0.56 0.23 | GEN,
TOTAL
(MG/L
AS N)
0.71
0.70
0.88
0.84
0.57
0.63
0.69
0.67 | GEN,
TOTAL,
TOMG/L
AS NO3)
3.1
3.1
3.9
3.7
2.5
2.8
3.1
3.0
5.3
2.7 | PHORUS
TOTAL
(MG/L
AS P)
0.180
0.070
0.110
0.050
0.040
0.320
0.130
0.070
0.030 | | APR 1987 24 MAY 12 JUN 12 JUL 30 SEP 21 OCT 27 DEC 09 MAR 1988 29 APR 11 26 MAY 11 23 | VOLA- TILE ON IGNI- TION, TOTAL (MG/L) 38 39 66 72 75 50 51 18 23 | TOTAL
FIXED
(MG/L)
109
139
133
138
55
87
79
84 | GEN,
NITRATE
TOTAL
(MG/L
AS N)
0.540
0.530
0.620
0.630
0.350
0.490
0.570 | GEN, NITRITE TOTAL (MG/L AS N) 0.010 0.020 0.030 0.010 0.00 0.00 0.00 ND | GEN, NO2+NO3 TOTAL (MG/L AS N) 0.550 0.550 0.650 0.640 0.350 0.490 0.570 0.580 0.630 | GEN, AMMONIA TOTAL (MG/L AS N) 0.100 0.090 0.180 0.050 0.050 0.030 0.030 0.030 | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4)
0.13
0.12
0.23
0.06
0.06
0.04
0.04 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.06
0.05
0.15
0.17
0.11
0.09
0.07 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.16 0.15 0.23 0.20 0.22 0.14 0.12 0.09 0.56 | GEN,
TOTAL
(MG/L
AS N)
0.71
0.70
0.88
0.84
0.57
0.63
0.69 | GEN,
TOTAL
(MG/L
AS NO3)
3.1
3.1
3.9
3.7
2.5
2.8
3.1
3.0 | PHORUS
TOTAL
(MG/L
AS P)
0.180
0.070
0.100
0.110
0.050
0.040
0.320
0.130 | | APR 1987 24 MAY 12 JUN 12 JUL 30 SEP 21 CCT 27 DEC 09 MAR 1988 29 APR 11 26 MAY 11 23 JUN 14 | VOLA- TILE ON IGNI- TION, TOTAL (MG/L) 38 39 66 72 75 50 51 18 23 57 | TOTAL
FIXED
(MG/L)
109
139
133
138
55
87
79
84
80
64 | GEN, NITRATE TOTAL (MG/L AS N) 0.540 0.530 0.620 0.630 0.350 0.490 0.570 0.580 0.490 | GEN,
NITRITE
TOTAL
(MG/L
AS N)
0.010
0.020
0.030
0.010
0.00
0.00
0.00
ND
ND | GEN, NO2+NO3 TOTAL (MG/L AS N) 0.550 0.550 0.650 0.640 0.350 0.490 0.570 0.580 0.630 0.390 0.520 | GEN, AMMONIA TOTAL (MG/L AS N) 0.100 0.090 0.180 0.050 0.050 0.030 0.030 0.020 0.040 0.010 | GEN, AMMONIA TOTAL (MG/L AS NH4) 0.13 0.12 0.23 0.06 0.06 0.04 0.04 0.03 0.05 0.01 0.03 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.06
0.05
0.15
0.17
0.11
0.09
0.07 | GEN, AM- MONIA + ORGANIC TOTTAL (MG/L AS N) 0.16 0.15 0.23 0.20 0.22 0.14 0.12 0.09 0.56 0.23 0.16 | GEN,
TOTAL
(MG/L
AS N)
0.71
0.70
0.88
0.84
0.57
0.63
0.69
0.67 | GEN,
TOTAL
(MG/L
AS NO3)
3.1
3.1
3.9
3.7
2.5
2.8
3.1
3.0
5.3
2.7 | PHORUS
TOTAL
(MG/L
AS P)
0.180
0.070
0.100
0.110
0.050
0.040
0.320
0.130
0.070
0.030 | | APR 1987 24 MAY 12 JUN 12 JUL 30 SEP 21 OCT 27 DEC 09 MAR 1988 29 APR 11 26 MAY 11 23 JUN 14 AUG 16 | VOLA- TILE ON IGNI- TION, TOTAL (MG/L) 38 39 66 72 75 50 51 18 23 57 57 28 | TOTAL
FIXED
(MG/L)
109
139
133
138
55
87
79
84
80
64 | GEN, NITRATE TOTAL (MG/L AS N) 0.540 0.530 0.620 0.630 0.350 0.490 0.570 0.580 | GEN, NITRITE TOTIAL (MG/L AS N) 0.010 0.020 0.030 0.010 0.00 0.00 0.00 ND ND ND 0.030 0.030 | GEN, NO2+NO3 TOTAL (MG/L AS N) 0.550 0.550 0.650 0.640 0.350 0.490 0.570 0.580 0.630 0.390 0.520 0.380 | GEN, AMMONIA TOTAL (MG/L AS N) 0.100 0.090 0.180 0.050 0.050 0.030 0.030 0.020 0.040 0.010 0.020 0.140 | GEN, AMMONIA TOTAL (MG/L AS NH4) 0.13 0.12 0.23 0.06 0.04 0.04 0.03 0.05 0.01 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.06
0.05
0.15
0.17
0.11
0.09
0.07
0.52
0.22 | GEN, AM- MONIA + ORGANIC TOTTAL (MG/L AS N) 0.16 0.15 0.23 0.20 0.22 0.14 0.12 0.09 0.56 0.23 0.16 0.79 | GEN,
TOTAL
(MG/L
AS N)
0.71
0.70
0.88
0.84
0.57
0.63
0.69
0.67
1.2
0.62
0.68
1.2 | GEN,
TOTAL
(MG/L
AS NO3)
3.1
3.1
3.9
3.7
2.5
2.8
3.1
3.0
5.3
2.7 | PHORUS
TOTAL
(MG/L
AS P)
0.180
0.070
0.100
0.110
0.050
0.040
0.320
0.130
0.070
0.030 | | APR 1987 24 MAY 12 JUN 12 JUL 30 SEP 21 OCT 27 DEC 09 MAR 1988 29 APR 11 26 MAY 11 23 JUN 14 AUG | VOLA- TILE ON IGNI- TION, TOTAL (MG/L) 38 39 66 72 75 50 51 18 23 57 57 28 72 | TOTAL FIXED (MG/L) 109 139 133 138 55 87 79 84 80 64 94 132 100 | GEN, NITRATE TOTAL (MG/L AS N) 0.540 0.530 0.620 0.630 0.350 0.490 0.570 0.580 0.490 0.380 0.540 | GEN, NITRITE TOTAL (MG/L AS N) 0.010 0.020 0.030 0.010 0.00 0.00 0.00 ND ND ND 0.030 0.030 0.030 0.000 | GEN, NO2+NO3 TOTAL (MG/L AS N) 0.550 0.550 0.650 0.640 0.350 0.490 0.570 0.580 0.630 0.390 0.520 0.380 0.560 | GEN, AMMONIA TOTAL (MG/L AS N) 0.100 0.090 0.180 0.050 0.050 0.030 0.030 0.020 0.040 0.010 0.020 0.140 0.010 | GEN, AMMONIA TOTAL (MG/L AS NH4) 0.13 0.12 0.23 0.06 0.04 0.04 0.03 0.05 0.01 0.03 0.18 0.01 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.06
0.05
0.15
0.17
0.11
0.09
0.07
0.52
0.22
0.14
0.65 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.16 0.15 0.23 0.20 0.22 0.14 0.12 0.09 0.56 0.23 0.16 0.79 0.20 |
GEN,
TOTAL
(MG/L
AS N)
0.71
0.70
0.88
0.84
0.57
0.63
0.69
0.67
1.2
0.62
0.68
1.2 | GEN,
TOTAL
(MG/L
AS NO3)
3.1
3.1
3.9
3.7
2.5
2.8
3.1
3.0
5.3
2.7
3.0
5.2 | PHORUS TOTAL (MG/L AS P) 0.180 0.070 0.100 0.110 0.050 0.040 0.320 0.130 0.070 0.030 0.020 0.250 0.030 | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). # 0133335001 HOOSIC RIVER BELOW NY-VT STATELINE, NEAR NORTH POWNAL, VT - continued | DATE | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P) | PHOS-
PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4) | ALUM-
INUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS AL) | ALUM-
INUM,
DIS-
SOLVED
(UG/L
AS AL) | CADMIUM
TOTAL
RECOV-
ERABLE
(UG/L
AS CD) | CADMIUM
DIS-
SOLVED
(UG/L
AS CD) | COPPER,
TOTAL
RECOV-
ERABLE
(UG/L
AS CU) | COPPER,
DIS-
SOLVED
(UG/L
AS CU) | IRON,
TOTAL
RECOV-
ERABLE
(UG/L
AS FE) | IRON,
DIS-
SOLVED
(UG/L
AS FE) | LEAD,
TOTAL
RECOV-
ERABLE
(UG/L
AS PB) | LEAD,
DIS-
SOLVED
(UG/L
AS PB) | |---|---|---|--|--|---|--|---|--|--|---|---|--| | APR 1987 | | | | | | | | | | | | | | 24 | 0.160 | 0.49 | | | <10 | | <10 | | 560 | | 11 | | | MAY
12 | 0.020 | 0.06 | | | <10 | | <10 | | 200 | ~- | 6 | | | JUN
12 | 0.070 | 0.21 | | | <10 | | 10 | | 230 | | <5 | | | JUL 30 | 0.080 | 0.25 | | | <10 | ~- | 20 | | 190 | | < 5 | | | SEP 21 | 0.010 | 0.03 | | | <1 | 1.0 | 8 | 5 | 700 | | < 5 | 5 | | OCT | | | | | | | 5 | | 140 | | < 5 | | | 27
DEC | 0.020 | 0.06 | ~- | | 1 | | | | | | | | | 09
MAR 1988 | 0.280 | 0.86 | | | <1 | | 5 | ~- | 140 | ~- | <5 | | | 29
A PR | 0.090 | 0.28 | 470 | 40 | 1 | <1.0 | 11 | <1 | 930 | 20 | < 5 | <5 | | 11
26 | 0.020
0.010 | 0.06 | 110
110 | 60 | 1 | <1.0 | 3
5 | 4 | 180
120 | 17 | <5
<5 |
<5 | | MAY
11
23 | 0.00 | 0.0 | 70
2500 |
90 | 1
1 | <1.0 | 3
13 | 2 | 170
4700 | 120 | <5
9 |
<5 | | JUN
14
AUG | 0.00 | 0.0 | 80 | | <1 | | 4 | | 190 | | 6 | | | 16 | 0.040 | 0.12 | 400 | | <1 | | 6 | | 230 | | <5 | | | 03 | 0.010 | 0.03 | 90 | | <1 | | 14 | | 200 | | <5 | | | NOV
01 | 0.160 | 0.49 | 100 | 30 | 1 | <1.0 | 11 | 4 | 180 | 34 | <5 | <5 | | | | | | | | | | | | | | | | DATE | MANGA-
NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN) | MERCURY
TOTAL
RECOV-
ERABLE
(UG/L
AS HG) | NICKEL,
TOTAL
RECOV-
ERABLE
(UG/L
AS NI) | NICKEL,
DIS-
SOLVED
(UG/L
AS NI) | ZINC,
TOTAL
RECOV-
ERABLE
(UG/L
AS ZN) | ZINC,
DIS-
SOLVED
(UG/L
AS ZN) | BROMO-
FORM
TOTAL
(UG/L) | CARBON-
TETRA-
CHLO-
RIDE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
DI-
BROMO-
METHANE
TOTAL
(UG/L) | CHLORO-
ETHANE
TOTAL
(UG/L) | | APR 1987 | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL
RECOV-
ERABLE
(UG/L
AS HG) | TOTAL
RECOV-
ERABLE
(UG/L
AS NI) | DIS-
SOLVED
(UG/L
AS NI) | TOTAL
RECOV-
ERABLE
(UG/L
AS ZN) | DIS-
SOLVED
(UG/L
AS ZN) | FORM
TOTAL
(UG/L) | TETRA-
CHLO-
RIDE
TOTAL
(UG/L) | BENZENE
TOTAL
(UG/L) | DI-
BROMO-
METHANE
TOTAL
(UG/L) | ETHANE
TOTAL
(UG/L) | | APR 1987
24
MAY | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL
RECOV-
ERABLE
(UG/L
AS HG) | TOTAL RECOV- ERABLE (UG/L AS NI) | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV- ERABLE (UG/L AS ZN) | DIS-
SOLVED
(UG/L
AS ZN) | FORM
TOTAL
(UG/L)
ND | TETRA-
CHLO-
RIDE
TOTAL
(UG/L) | BENZENE
TOTAL
(UG/L)
ND | DI-
BROMO-
METHANE
TOTAL
(UG/L) | ETHANE
TOTAL
(UG/L)
ND | | APR 1987
24
MAY
12
JUN | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL
RECOV-
ERABLE
(UG/L
AS HG)
<0.10 | TOTAL
RECOV-
ERABLE
(UG/L
AS NI) | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV- ERABLE (UG/L AS ZN) <10 | DIS-
SOLVED
(UG/L
AS ZN) | FORM TOTAL (UG/L) ND | TETRA-
CHLO-
RIDE
TOTAL
(UG/L)
ND | BENZENE
TOTAL
(UG/L)
ND
ND | DI-
BROMO-
METHANE
TOTAL
(UG/L)
ND | ETHANE TOTAL (UG/L) ND ND | | APR 1987
24
MAY
12
JUN
12
JUL | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN)
50
30 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV- ERABLE (UG/L AS HG) <0.10 <0.10 <0.10 | TOTAL RECOV- ERABLE (UG/L AS NI) <1 <1 <1 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV- ERABLE (UG/L AS ZN) <10 20 10 | DIS-
SOLVED
(UG/L
AS ZN) | FORM TOTAL (UG/L) ND ND | TETRA- CHLO- RIDE TOTAL (UG/L) ND ND | BENZENE
TOTAL
(UG/L)
ND
ND | DI-
BROMO-
METHANE
TOTAL
(UG/L)
ND
ND | ETHANE TOTAL (UG/L) ND ND ND | | APR 1987
24
MAY
12
JUN
12
JUL
30
SEP | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN)
50
30
60 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV- ERABLE (UG/L AS HG) <0.10 <0.10 <0.10 0.20 | TOTAL RECOV- ERABLE (UG/L AS NI) <1 <1 <1 <1 <1 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV- ERABLE (UG/L AS ZN) <10 20 10 <10 | DIS-
SOLVED
(UG/L
AS ZN) | FORM TOTAL (UG/L) ND ND ND | TETRA-CHLO-RIDE TOTAL (UG/L) ND ND ND | BENZENE
TOTAL
(UG/L)
ND
ND
ND | DI-
BROMO-
METHANE
TOTAL
(UG/L)
ND
ND
ND | ETHANE TOTAL (UG/L) ND ND ND | | APR 1987 24 MAY 12 JUN 12 JUL 30 SEP 21 OCT | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN)
50
30
60
50 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV- ERABLE (UG/L AS HG) <0.10 <0.10 <0.10 <0.10 0.20 <0.10 | TOTAL RECOV- ERABLE (UG/L AS NI) <1 <1 <1 <1 <1 <1 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV- ERABLE (UG/L AS ZN) <10 20 10 <10 <10 | DIS-
SOLVED
(UG/L
AS ZN) | FORM TOTAL (UG/L) ND ND ND ND ND | TETRA- CHLO- RIDE TOTAL (UG/L) ND ND ND ND | BENZENE
TOTAL
(UG/L)
ND
ND
ND
ND | DI-
BROMO-
METHANE
TOTAL
(UG/L)
ND
ND
ND | ETHANE TOTAL (UG/L) ND ND ND ND ND | | APR 1987 24 MAY 12 JUN 12 JUL 30 SEP 21 | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN)
50
30
60 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV- ERABLE (UG/L AS HG) <0.10 <0.10 <0.10 0.20 | TOTAL RECOV- ERABLE (UG/L AS NI) <1 <1 <1 <1 <1 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV- ERABLE (UG/L AS ZN) <10 20 10 <10 | DIS-
SOLVED
(UG/L
AS ZN) | FORM TOTAL (UG/L) ND ND ND | TETRA-CHLO-RIDE TOTAL (UG/L) ND ND ND | BENZENE
TOTAL
(UG/L)
ND
ND
ND | DI-
BROMO-
METHANE
TOTAL
(UG/L)
ND
ND
ND | ETHANE TOTAL (UG/L) ND ND ND ND ND ND | | APR 1987 24 MAY 12 JUN 12 SEP 21 OCT 27 | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN)
50
30
60
50 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV- ERABLE (UG/L AS HG) <0.10 <0.10 <0.10 <0.10 0.20 <0.10 | TOTAL RECOV- ERABLE (UG/L AS NI) <1 <1 <1 <1 <1 <1 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV- ERABLE (UG/L AS ZN) <10 20 10 <10 <10 | DIS-
SOLVED
(UG/L
AS ZN) | FORM TOTAL (UG/L) ND ND ND ND ND | TETRA- CHLO- RIDE TOTAL (UG/L) ND ND ND ND | BENZENE
TOTAL
(UG/L)
ND
ND
ND
ND | DI-
BROMO-
METHANE
TOTAL
(UG/L)
ND
ND
ND | ETHANE TOTAL (UG/L) ND ND ND ND ND | | APR 1987 24 MAY 12 JUN 12 JUL 30 SEP 21 OCT 27 DEC 09 | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN)
50
30
60
50
40 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV- ERABLE (UG/L AS HG) <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 | TOTAL RECOVERABLE (UG/L AS NI) | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV- ERABLE (UG/L AS ZN) <10 20 10 <10 <10 <10 <10 | DIS-
SOLVED
(UG/L
AS ZN) | FORM TOTAL (UG/L) ND ND ND ND ND | TETRA-CHLO-RIDE RIDE TOTAL (UG/L) ND ND ND ND ND ND | BENZENE
TOTAL
(UG/L)
ND
ND
ND
ND | DI-
BROMO-
METHANE
TOTAL
(UG/L)
ND
ND
ND
ND | ETHANE TOTAL (UG/L) ND ND ND ND ND ND | | APR 1987 24 MAY 12 JUN 12 JUL 30 SEP 21 OCT 27 DEC 09 MAR 1988 29 APR 11 26 | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN)
50
30
60
50
40
30 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV- ERABLE (UG/L AS HG) <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 | TOTAL RECOV- ERABLE (UG/L AS NI) <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV- ERABLE (UG/L AS ZN) <10 20 10 <10 <10 <10 <10 <10 | DIS-
SOLVED
(UG/L
AS ZN) | FORM TOTAL (UG/L) ND ND ND ND ND ND ND ND ND | TETRA- CHLO- RIDE TOTAL
(UG/L) ND ND ND ND ND ND ND | BENZENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND | DI-
BROMO-
METHANE
TOTAL
(UG/L)
ND
ND
ND
ND | ETHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | | APR 1987 24 MAY 12 JUN 12 JUL 30 SEP 21 OCT 27 DEC 09 MAR 1988 29 APR 11 26 MAY | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN)
50
30
60
50
40
30
20
50 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV-ERABLE (UG/L AS HG) <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 | TOTAL RECOVERABLE (UG/L AS NI) <1 <1 <1 <1 <1 <1 <1 <1 <7 <1 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 | DIS- SOLVED (UG/L AS NI) 1 2 | TOTAL RECOV-ERABLE (UG/L AS ZN) <10 20 10 <10 <10 <10 <10 <10 <10 <10 <10 <10 | DIS-
SOLVED
(UG/L
AS 2N) | FORM TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TETRA-CHLO-RIDE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | DI- BROMO- METHANE TOTAL (UG/L) ND | ETHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | | APR 1987 24 MAY 12 JUN 12 JUL 30 SEP 21 CCT 27 DEC 09 MAR 1988 29 APR 11 26 MAY 11 23 JUN 14 | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) 50 30 40 30 20 50 30 30 30 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOVERABLE (UG/L AS HG) <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 | TOTAL RECOV-ERABLE (UG/L AS NI) <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 < | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV-ERABLE (UG/L AS ZN) <10 20 10 <10 <10 <10 <10 <10 <10 <10 <10 <10 | DIS-
SOLVED
(UG/L
AS 2N) | FORM TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TETRA-CHLO-RIDE TOTAL (UG/L) ND | BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | DI- BROMO- METHANE TOTAL (UG/L) ND | ETHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | | APR 1987 24 MAY 12 JUN 12 JUL 30 SEP 21 OCT 27 DEC 09 MAR 1988 29 APR 11 26 MAY 11 23 JUN 14 AUG 16 | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN)
50
30
60
50
40
30
20
50
30
30
30 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOVERABLE (UG/L AS HG) <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 | TOTAL RECOV-ERABLE (UG/L AS NI) <1 <1 <1 <1 <1 <1 <1 <2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOVERABLE (UG/L AS ZN) <10 20 10 <10 <10 <10 <10 <10 <10 <10 <10 <10 | DIS-
SOLVED
(UG/L
AS ZN) 20 <10 <3 | FORM TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TETRA-CHLO-RIDE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | DI- BROMO- METHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | ETHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | | APR 1987 24 MAY 12 JUN 12 JUL 30 SEP 21 OCT 27 DEC 09 MAR 1988 29 APR 11 26 MAY 11 23 JUN 14 AUG | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN)
50
30
60
40
30
20
50
30
30
60
60
60 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV-ERABLE (UG/L AS HG) <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 | TOTAL RECOVERABLE (UG/L AS NI) <1 <1 <1 <1 <1 <1 <2 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOVERABLE (UG/L AS ZN) <10 20 10 <10 <10 <10 <10 <10 <10 <10 <10 <10 | DIS-
SOLVED
(UG/L
AS ZN) | FORM TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TETRA-CHLO-RIDE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | DI- BROMO- METHANE TOTAL (UG/L) ND | ETHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). 0133335001 HOOSIC RIVER BELOW NY-VT STATELINE, NEAR NORTH POWNAL, VT - continued | | | | | | - | | continued | • | | | | |---|---|---|--|---|---|--|---|--|---|---|--| | DATE | CHLORO-
FORM
TOTAL
(UG/L) | CIS
1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | DI-
CHLORO-
BROMO-
METHANE
TOTAL
(UG/L) | METHYL-
BROMIDE
TOTAL
(UG/L) | METHYL-
CHLO-
RIDE
TOTAL
(UG/L) | METHYL-
ENE
CHLO-
RIDE
TOTAL
(UG/L) | 1,1,1-
TRI-
CHLORO-
ETHANE
TOTAL
(UG/L) | 1,1-DI-
CHLORO-
ETHANE
TOTAL
(UG/L) | 1,1-DI-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 1,1,2-
TRI-
CHLORO-
ETHANE
TOTAL
(UG/L) | 1,1,2,2
TETRA-
CHLORO-
ETHANE
TOTAL
(UG/L) | | APR 1987 | ND | ND. | ND | N.D. | MD | ND. | ND | N.D. | ND | ND | ND | | 24
MAY
12 | ND
ND | ND | ND | ND
ND | ND
ND | ND
ND | ND
ND | ND
ND | ND
ND | ND | ND | | JUN | ND
ND | ND
ND | | ND | ND | ND | | ND | ND | ND
ND | ND | | 12
JUL | | | ND | | | | ND | | | | | | 30
SEP | ND | 21
OCT | ND | 27
DEC
09 | nd
nd | MAR 1988 | | | | | | | | | | - | | | 29
APR | ND | ND | ND | ND | ND | 0.5 | ND | ND | ND | ND | ND | | 11
26 | ND
ND | MAY
11 | ND | 23
JUN | ND | 14
AUG | ND | 16 | ND | 03 | ND | 01 | 0.1 | ND | | | | | | | | | | | | | | DATE | 1,2-DI-
CHLORO-
BENZENE
TOTAL
(UG/L) | 1,2-DI-
CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L) | 1,2-DI-
CHLORO-
PROPANE
TOTAL
(UG/L) | 1,2-
TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L) | 1,3-DI-
CHLORO-
BENZENE
TOTAL
(UG/L) | 1,4-DI-
CHLORO-
BENZENE
TOTAL
(UG/L) | TETRA-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | TRANS-
1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | TRI -
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 2-
CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L) | VINYL
CHLO-
RIDE
TOTAL
(UG/L) | | APR 1987
24 | CHLORO-
BENZENE
TOTAL | CHLORO-
ETHANE
WATER
WHOLE
TOTAL | CHLORO-
PROPANE
TOTAL | TRANSDI
CHLORO-
ETHENE
TOTAL | CHLORO-
BENZENE
TOTAL | CHLORO-
BENZENE
TOTAL | CHLORO-
ETHYL-
ENE
TOTAL | 1,3-DI-
CHLORO-
PROPENE
TOTAL | CHLORO-
ETHYL-
ENE
TOTAL | CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL | CHLO-
RIDE
TOTAL | | APR 1987
24
MAY
12 | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L) | CHLORO-
PROPANE
TOTAL
(UG/L) | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L) | CHLO-
RIDE
TOTAL
(UG/L) | | APR 1987
24
MAY
12
JUN
12 | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L) | CHLORO-
PROPANE
TOTAL
(UG/L) | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L) | CHLO-
RIDE
TOTAL
(UG/L) | | APR 1987
24
MAY
12
JUN
12
JUL
30 | CHLORO-
BENZENE
TOTAL
(UG/L)
ND | CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L)
ND | CHLORO-
PROPANE
TOTAL
(UG/L)
ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND | CHLORO-
BENZENE
TOTAL
(UG/L)
ND | CHLORO-
BENZENE
TOTAL
(UG/L)
ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
2.0 | CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L)
ND | CHLO-
RIDE
TOTAL
(UG/L)
ND | | APR 1987 24 MAY 12 JUN 12 JUL 30 SEP 21 | CHLORO-
BENZENE
TOTAL
(UG/L)
ND
ND | CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L)
ND
ND | CHLORO-
PROPANE
TOTAL
(UG/L)
ND
ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND | CHLORO-
BENZENE
TOTAL
(UG/L)
ND
ND | CHLORO-
BENZENE
TOTAL
(UG/L)
ND
ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND
ND | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
ND
ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
2.0
ND | CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L)
ND
ND | CHLO-
RIDE
TOTAL
(UG/L)
ND
ND | | APR 1987 24 MAY 12 JUN 12 30 SEP 21 OCT 27 | CHLORO-BENZENE TOTAL (UG/L) ND ND ND | CHLORO- ETHANE WATER WHOLE TOTAL (UG/L) ND ND ND | CHLORO-
PROPANE
TOTAL
(UG/L)
ND
ND
ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND | CHLORO-
BENZENE
TOTAL
(UG/L)
ND
ND | CHLORO-
BENZENE
TOTAL
(UG/L)
ND
ND
ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND
ND
ND | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
ND
ND
ND | CHLORO-ETHYL-ENE ENE TOTAL (UG/L) 2.0 ND ND | CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L)
ND
ND
| CHLO-
RIDE
TOTAL
(UG/L)
ND
ND | | APR 1987 24 MAY 12 JUN 12 JUL 30 SEP 21 OCT 27 DEC 09 | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND | CHLORO-
ETHANE WATER WHOLE TOTAL (UG/L) ND ND ND ND | CHLORO- PROPANE TOTAL (UG/L) ND ND ND ND ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND
ND
ND | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
ND
ND
ND | CHLORO-ETHYL-ENE TOTAL (UG/L) 2.0 ND ND ND | CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L)
ND
ND
ND | CHLO- RIDE TOTAL (UG/L) ND ND ND ND | | APR 1987 24 MAY 12 JUN 12 30 SEP 21 OCT 27 DEC 09 MAR 1988 29 | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND | CHLORO- ETHANE WATER WHOLE TOTAL (UG/L) ND ND ND ND ND | CHLORO-PROPANE TOTAL (UG/L) ND ND ND ND ND ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND ND ND ND ND ND ND ND | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND ND ND ND ND ND | CHLORO-ETHYL-ENE TOTAL (UG/L) 2.0 ND ND ND ND ND | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND ND ND ND ND ND ND | CHLO- RIDE TOTAL (UG/L) ND ND ND ND ND | | APR 1987 24 MAY 12 JUN 12 JUL 30 SEP 21 OCT 27 DEC 09 MAR 1988 29 APR 11 | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO- ETHANE WATER WHOLE TOTAL (UG/L) ND | CHLORO-PROPANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-ETHYL-ENE TOTAL (UG/L) ND | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND | CHLORO-ETHYL-ENE TOTAL (UG/L) 2.0 ND ND 1.0 ND 1.6 1.6 1.0 | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND | CHLO- RIDE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | | APR 1987 24 MAY 12 JUN 12 JUL 30 SEP 21 OCT 27 DEC 09 MAR 1988 29 APR 11 26 MAY | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND | CHLORO-PROPANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-ETHYL-ENE TOTAL (UG/L) ND N | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-ETHYL-ENETOTAL (UG/L) 2.0 ND ND 1.0 ND 1.0 1.6 1.0 1.0 | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND | CHLO- RIDE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | | APR 1987 24 MAY 12 JUN 12 JUL 30 SEP 21 OCT 27 DEC 09 MAR 1988 29 APR 11 26 | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO- ETHANE WATER WHOLE TOTAL (UG/L) ND | CHLORO-PROPANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-ETHYL-ENE TOTAL (UG/L) ND | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND | CHLORO-ETHYL-ENE TOTAL (UG/L) 2.0 ND ND 1.0 ND 1.6 1.6 1.0 | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND | CHLO- RIDE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | | APR 1987 24 MAY 12 JUN 12 JUL 30 SEP 21 OCT 27 DEC 09 MAR 1988 29 APR 11 26 MAY 11 23 | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-PROPANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-ETHYL-ENE TOTAL (UG/L) ND N | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND | CHLORO-ETHYL-ENE TOTAL (UG/L) 2.0 ND ND 1.0 ND 1.6 1.0 1.0 ND | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND | CHLO- RIDE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | | APR 1987 24 MAY 12 JUN 12 JUL 30 SEP 21 OCT 27 DEC 09 MAR 1988 29 APR 11 26 MAY 11 23 JUN 14 | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO- ETHANE WATER WHOLE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-PROPANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-ETHYL-ENE TOTAL (UG/L) ND N | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-ETHYL-ENE TOTAL (UG/L) 2.0 ND ND 1.0 ND 1.0 ND 1.0 ND ND 1.0 | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLO- RIDE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | | APR 1987 24 MAY 12 JUN 12 JUL 30 SEP 21 OCT 27 DEC 09 MAR 1988 29 APR 11 26 MAY 11 23 JUN 14 AUG 16 | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO- ETHANE WATER WHOLE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-PROPANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-ETHYL-ENE TOTAL (UG/L) ND N | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-ETHYL-ENE TOTAL (UG/L) 2.0 ND ND 1.0 ND 1.6 1.0 1.0 ND ND ND ND ND ND ND ND ND N | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLO- RIDE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). 0133335001 HOOSIC RIVER BELOW NY-VT STATELINE, NEAR NORTH POWNAL, VT - continued ### SUSPENDED SEDIMENT DISCHARGE | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND | SEDI-
MENT,
SUS-
PENDED
(MG/L) | SEDI-
MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY) | |----------|------|--|--|--| | MAY 1988 | | | | | | 11 | 1130 | 774 | 3 | 6.3 | | 23 | 1300 | 684 | 93 | 172 | | JUN | | | | | | 14 | 1400 | | 4 | | | AUG | | | | | | 16 | 1330 | 479 | 14 | 18 | | OCT | | | | | | 03 | 1300 | 166 | 2 | 0.90 | | NOV | | | | | | 01 | 1300 | 239 | 2 | 1.3 | ### BED MATERIAL ANALYSES | DATE | TIME | SOLIDS,
VOLA-
TILE IN
BOTTOM
MA-
TERIAL
(MG/KG) | ALUM-
INUM,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G) | CADMIUM
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS CD) | CHRO-
MIUM,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G) | COPPER,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS CU) | IRON,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS FE) | LEAD,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS PB) | |----------------------------|---|--|--|--|--|--|--|--| | OCT 1987 | | | | | | | | | | 1 4
AUG 1988 | 1200 | 2780 0 | | 1 | 20 | 20 | 7700 | 20 | | 16 | 1330 | 60100 | 9400 | 2 | | 10 | 15000 | 40 | | DATE | MANGA-
NESE,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G) | MERCURY
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS HG) | NICKEL,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS NI) | ZINC,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS ZN) | BED
MAT.
FALL
DIAM.
% FINER
THAN
.004 MM | BED
MAT.
SIEVE
DIAM.
% FINER
THAN
.062 MM | BED
MAT.
SIEVE
DIAM.
% FINER
THAN
.125 MM | BED
MAT.
SIEVE
DIAM.
% FINER
THAN
2.00 MM | | OCT 1987
14
AUG 1988 | 280 | <0.10 | 10 | 60 | 2 | 35 | 60 | 100 | | 16 | 560 | 0.16 | 20 | 120 | 6 | 47 | 100 | | #### 01334805 HOOSIC RIVER AT EAGLE BRIDGE, NY LOCATION.--Lat 42 57'05*, long 73 23'28*, Rensselaer County, Hydrologic Unit 02020003, at Route 67 bridge in Eagle Bridge, 2 mi east of Buskirk. DRAINAGE AREA. -- 571 mi 2 . PERIOD OF RECORD.--Water years 1987 to current year. CHEMICAL DATA: 1987 (b), 1988 (c), 1989 (a). MINOR ELEMENTS DATA: 1987 (b), 1988 (c), 1989 (a). PESTICIDE DATA: 1987 (b), 1988 (c), 1989 (a). ORGANIC DATA: PCB--1988 (a). NUTRIENT DATA: 1987 (b), 1988 (c), 1989 (a). BIOLOGICAL DATA: Bacteria--1987 (b), 1988 (c), 1989 (a). SEDIMENT DATA: 1988 (b), 1989 (a). REMARKS.--Water-discharge data based on records obtained from 01334500 Hoosic River near Eagle Bridge. Diurnal fluctuation at medium and low flow caused by powerplants upstream from station. | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | SPE-
CIFIC
CON-
DUCT-
ANCE
LAB
(US/CM) | PH WATER WHOLE FIELD (STAND- ARD UNITS) | TEMPER-
ATURE
WATER
(DEG C) | TUR-
BID-
ITY
(NTU) | BARO-
METRIC
PRES-
SURE
(MM
OF
HG) | OXYGEN,
DIS-
SOLVED
(MG/L) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION) | COLI-
FORM,
TOTAL,
IMMED.
(COLS.
PER
100 ML) | FECAL
COLI-
FORM
24-HR
MEM.FIL
(COLS./
100 ML) | |-----------------------|------|--|---
--|---|--------------------------------------|------------------------------|--|-------------------------------------|--|--|--| | APR 1987 | | | | | | | | | | | | | | 2 4
MAY | 1200 | 7 56 | | | 7.8 | 10.5 | 3.2 | | 10.5 | | | | | 12
JUN | 1100 | 366 | | 269 | 8.0 | 15.0 | 1.6 | | 9.5 | | 2000 | ND | | 12 | 1130 | 292 | | 268 | 7.8 | 17.5 | 0.60 | | 8.9 | | 500 | 110 | | JUL
30
SEP | 1130 | 178 | | | 8.4 | 22.0 | 0.15 | | 10.0 | | ND | 40.0 | | 21
⊙T | 1145 | 876 | | 176 | 7.6 | 14.0 | 21 | | ~- | | | | | 27 | 1145 | 1010 | | 213 | 8.0 | 7.0 | 1.8 | | 12.9 | | | | | DEC
09
MAR 1988 | 1200 | 864 | | 198 | 8.0 | 4.0 | 2.1 | | 20.5 | | 3500 | 620 | | 29
APR | 1215 | 3040 | 134 | 144 | 7.3 | 3.0 | 14 | 77 2 | 13.9 | 102 | 2100 | 860 | | 11 | 1200 | 1200 | 186 | 177 | 7.2 | 7.5 | | 760 | 12.6 | 105 | 2900 | 260 | | 26
MAY | 1130 | 892 | 208 | 191 | 7.2 | 8.0 | 1.4 | | 13.2 | | 900 | 240 | | 11 | 1230 | 2770 | 190 | 204 | 7.7 | 12.0 | 1.6 | 760 | 11.3 | 105 | 2400 | 360 | | 23 | 1145 | 1370 | 206 | 203 | 7.2 | 17.0 | 39 | 760 | 9.5 | 99 | >4400 | 2600 | | JUN
14 | 1200 | 291 | 266 | 274 | 8.5 | 22.0 | 0.60 | | 7.8 | | 300 | 90.0 | | aug
16
OCT | 1200 | 702 | 232 | 232 | 8.1 | 22.5 | 12 | | 8.9 | | >2000 | 740 | | 03
NOV | 1130 | 222 | 303 | 311 | 8.7 | 17.0 | 0.80 | 763 | 10.8 | 112 | 6200 | 740 | | 01 | 1200 | 345 | 224 | 235 | 7.6 | 4.5 | 1.3 | 764 | 13.6 | 105 | 920 | 280 | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). ### 01334805 HOOSIC RIVER AT EAGLE BRIDGE, NY - continued | DATE | HARD-
NESS
TOTAL
(MG/L
AS
CACO3) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K) | ALKA-
LINITY
LAB
(MG/L
AS
CACO3) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | SOLIDS,
RESIDUE
AT 105
DEG. C,
TOTAL
(MG/L) | |---|---|--|---|---|--|---|--|--|--|---|--|--| | APR 1987
24 | 94 | 27 | 6.4 | | | | | | | 107 | | 136 | | MAY
12 | 110 | 31 | 7.4 | | | | | | | 155 | | 170 | | JUN
12 | 110 | 31 | 7.9 | | | | | | | | | 171 | | JUL
30 | 130 | 35 | 9.2 | | | | | | | 172 | | 188 | | SEP
21
OCT | 67 | 19 | 4.8 | | | | | | | 94 | | 170 | | 27 | 93 | 26 | 6.7 | | | | | | | 97 | | 118 | | 09
MAR 1988 | 76 | 21 | 5.8 | | | | | | | 120 | | 119 | | 29
APR | 61 | 18 | 4.0 | 5.2 | 0.80 | 44 | 11 | 9.2 | 0.10 | 90 | 75 | 108 | | 11
26 | 68
7 4 | 19
20 | 5.1
5.9 | 6.3
3.8 | 0.90
0.90 | 59
63 | 12
12 | 11
11 | 0.10
0.10 | 97
112 | 90
92 | 107
123 | | MAY
11 | 79 | 22 | 5.9 | 7.1 | 1.0 | 70 | 16 | 11 | 0.20 | 126 | 105 | 149 | | 23
JUN | 82 | 23 | 6.0 | 6.9 | 1.0 | 71 | 13 | 10 | 0.20 | 110 | 103 | 143 | | AUG | 110 | 29 | 8.8 | 12 | 1.4 | 94 | 15 | 16 | 0.10 | 153 | 139 | 170 | | 16
⊙CT | 97 | 26 | 7.7 | 9.0 | 1.5 | 80 | 15 | 13 | <0.10 | 130 | 120 | 151 | | 03
NOV
01 | 130
98 | 33
26 | 11
8.1 | 14
9.5 | 1.8 | 112
81 | 15
15 | 19
13 | 0.10 | 192
128 | 161
122 | 207
140 | | 01 | 96 | 26 | 8.1 | 9.3 | 1.3 | 81 | 15 | 13 | 0.10 | 128 | 122 | 140 | | | | | | | | | | | | | | | | DATE | SOLIDS,
VOLA-
TILE ON
IGNI-
TION,
TOTAL
(MG/L) | RESIDUE
TOTAL
FIXED
(MG/L) | NITRO-
GEN,
NITRATE
TOTAL
(MG/L
AS N) | NITRO-
GEN,
NITRITE
TOTAL
(MG/L
AS N) | NITRO-
GEN,
NO2+NO3
TOTAL
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS NH4) | NITRO-
GEN,
ORGANIC
TOTAL
(MG/L
AS N) | NITRO-
GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | NITRO-
GEN,
TOTAL
(MG/L
AS N) | NITRO-
GEN,
TOTAL
(MG/L
AS NO3) | PHOS-
PHORUS
TOTAL
(MG/L
AS P) | | APR 1987 | VOLA-
TILE ON
IGNI-
TION,
TOTAL | TOTAL
FIXED | GEN,
NITRATE
TOTAL
(MG/L | GEN,
NITRITE
TOTAL
(MG/L | GEN,
NO2+NO3
TOTAL
(MG/L | GEN,
AMMONIA
TOTAL
(MG/L | GEN,
AMMONIA
TOTAL
(MG/L | GEN,
ORGANIC
TOTAL
(MG/L | GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L | GEN,
TOTAL
(MG/L | GEN,
TOTAL
(MG/L | PHORUS
TOTAL
(MG/L | | | VOLA-
TILE ON
IGNI-
TION,
TOTAL
(MG/L) | TOTAL
FIXED
(MG/L) | GEN,
NITRATE
TOTAL
(MG/L
AS N) | GEN,
NITRITE
TOTAL
(MG/L
AS N) | GEN,
NO2+NO3
TOTAL
(MG/L
AS N) | GEN,
AMMONIA
TOTAL
(MG/L
AS N) | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4) | GEN,
ORGANIC
TOTAL
(MG/L
AS N) | GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | GEN,
TOTAL
(MG/L
AS N) | GEN,
TOTAL
(MG/L
AS NO3) | PHORUS
TOTAL
(MG/L
AS P) | | APR 1987
24
MAY | VOLA-
TILE ON
IGNI-
TION,
TOTAL
(MG/L) | TOTAL
FIXED
(MG/L) | GEN,
NITRATE
TOTAL
(MG/L
AS N) | GEN, NITRITE TOTAL (MG/L AS N) | GEN,
NO2+NO3
TOTAL
(MG/L
AS N) | GEN,
AMMONIA
TOTAL
(MG/L
AS N) | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4) | GEN,
ORGANIC
TOTAL
(MG/L
AS N) | GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | GEN,
TOTAL
(MG/L
AS N) | GEN,
TOTAL
(MG/L
AS NO3) | PHORUS
TOTAL
(MG/L
AS P) | | APR 1987 24 MAY 12 JUN 12 JUL 30 | VOLA-
TILE ON
IGNI-
TION,
TOTAL
(MG/L) | TOTAL
FIXED
(MG/L)
101
121 | GEN,
NITRATE
TOTAL
(MG/L
AS N)
0.840 | GEN, NITRITE TOTAL (MG/L AS N) 0.010 | GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
0.850 | GEN,
AMMONIA
TOTAL
(MG/L
AS N)
0.030 | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4)
0.04 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.12 | GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
0.15 | GEN,
TOTAL
(MG/L
AS N)
1.0
0.79 | GEN,
TOTAL
(MG/L
AS NO3)
4.4
3.5 | PHORUS
TOTAL
(MG/L
AS P)
0.110
0.030 | | APR 1987 24 MAY 12 JUN 12 JUL 30 SEP 21 | VOLA-
TILE ON
IGNI-
TION,
TOTAL
(MG/L)
30
49 | TOTAL
FIXED
(MG/L)
101
121
111 | GEN,
NITRATE
TOTAL
(MG/L
AS N)
0.840
0.690 | GEN,
NITRITE
TOTAL
(MG/L
AS N)
0.010
0.010 | GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
0.850
0.700 | GEN,
AMMONIA
TOTAL
(MG/L
AS N)
0.030
0.020 | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4)
0.04
0.03 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.12
0.07 | GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
0.15
0.09 | GEN,
TOTAL
(MG/L
AS N)
1.0
0.79 | GEN,
TOTAL
(MG/L
AS NO3)
4.4
3.5 | PHORUS
TOTAL
(MG/L
AS P)
0.110
0.030
0.070 | | APR 1987 24 MAY 12 JUN 12 JUL 30 SEP 21 OCT 27 | VOLA-
TILE ON
IGNI-
TION,
TOTAL
(MG/L)
30
49
60 | TOTAL
FIXED
(MG/L)
101
121
111
125 | GEN,
NITRATE
TOTAL
(MG/L
AS N)
0.840
0.690
0.800 | GEN, NITRITE TOTAL (MG/L AS N) 0.010 0.010 0.020 0.010 | GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
0.850
0.700
0.820
0.380 | GEN, AMMONIA TOTAL (MG/L AS N) 0.030 0.020 0.050 | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4)
0.04
0.03
0.06 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.12
0.07
0.08 | GEN, AM- MONIA + ORGANIC TOTTAL (MG/L AS N) 0.15 0.09 0.13 0.16 | GEN,
TOTAL
(MG/L
AS N)
1.0
0.79
0.95 | GEN,
TOTAL
(MG/L
AS NO3)
4.4
3.5
4.2 | PHORUS
TOTAL
(MG/L
AS P)
0.110
0.030
0.070 | | APR 1987 24 MAY 12 JUN 12 JUL 30 SEP 21 OCT 27 DEC 09 | VOLA-
TILE ON
IGNI-
TION,
TOTAL
(MG/L)
30
49
60
63 | TOTAL
FIXED
(MG/L)
101
121
111
125
93 |
GEN,
NITRATE
TOTAL
(MG/L
AS N)
0.840
0.690
0.800
0.370
0.450 | GEN,
NITRITE
TOTAL
(MG/L
AS N)
0.010
0.010
0.020
0.010 | GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
0.850
0.700
0.820
0.380
0.460 | GEN, AMMONIA TOTAL (MG/L AS N) 0.030 0.020 0.050 0.050 | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4)
0.04
0.03
0.06 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.12
0.07
0.08
0.14 | GEN, AM-
MONIA +
ORGANIC
TYOTAL
(MG/L
AS N)
0.15
0.09
0.13
0.16 | GEN,
TOTAL
(MG/L
AS N)
1.0
0.79
0.95
0.54 | GEN,
TOTAL
(MG/L
AS NO3)
4.4
3.5
4.2
2.4 | PHORUS
TOTAL
(MG/L
AS P)
0.110
0.030
0.070
0.090 | | APR 1987 24 MAY 12 JUN 12 JUL 30 SEP 21 OCT 27 DEC 09 MAR 1988 29 | VOLA- TILE ON IGNI- TION, TOTAL (MG/L) 30 49 60 63 77 48 | TOTAL
FIXED
(MG/L)
101
121
111
125
93
81 | GEN,
NITRATE
TOTAL
(MG/L
AS N)
0.840
0.690
0.800
0.370
0.450
0.710 | GEN, NITRITE TOTAL (MG/L AS N) 0.010 0.010 0.020 0.010 0.010 0.010 | GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
0.850
0.700
0.820
0.380
0.460
0.710 | GEN, AMMONIA TOTAL (MG/L AS N) 0.030 0.020 0.050 0.050 0.050 | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4)
0.04
0.03
0.06
0.03 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.12
0.07
0.08
0.14
0.28 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.15 0.09 0.13 0.16 0.33 | GEN,
TOTAL
(MG/L
AS N)
1.0
0.79
0.95
0.54
0.79 | GEN,
TOTAL
MG/L
AS NO3)
4.4
3.5
4.2
2.4
3.5
3.6 | PHORUS
TOTAL
(MG/L
AS P)
0.110
0.030
0.070
0.090
0.080 | | APR 1987 24 MAY 12 JUN 12 JUL 30 SEP 21 OCT 27 DEC 09 MAR 1988 29 APR 11 | VOLA-
TILE ON
IGNI-
TION,
TOTAL
(MG/L)
30
49
60
63
77
48
60
21
20 | TOTAL
FIXED
(MG/L) 101 121 111 125 93 81 66 87 87 | GEN, NITRATE TOTAL (MG/L AS N) 0.840 0.690 0.800 0.370 0.450 0.710 0.810 | GEN, NITRITE TOTAL (MG/L AS N) 0.010 0.010 0.020 0.010 0.010 0.010 0.000 | GEN, NO2+NO3 TOTAL (MG/L AS N) 0.850 0.700 0.820 0.380 0.460 0.710 0.810 ND 0.660 | GEN, AMMONIA TOTAL (MG/L AS N) 0.030 0.020 0.050 0.020 0.050 0.020 0.020 0.020 | GEN, AMMONIA TOTAL (MG/L AS NH4) 0.04 0.03 0.06 0.03 0.06 0.03 0.03 0.03 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.12
0.07
0.08
0.14
0.28
0.10
0.19
0.19 | GEN, AM- MONTA + ORGANIC TOTAL (MG/L AS N) 0.15 0.09 0.13 0.16 0.33 0.10 0.21 0.21 0.16 | GEN,
TOTAL
(MG/L
AS N)
1.0
0.79
0.95
0.54
0.79
0.81
1.0 | GEN,
TOTAL
(MG/L
AS NO3)
4.4
3.5
4.2
2.4
3.5
3.6
4.5 | PHORUS
TOTAL
(MG/L
AS P)
0.110
0.030
0.070
0.090
0.080
0.020 | | APR 1987 24 MAY 12 JUN 12 JUL 30 SEP 21 OCT 27 DEC 09 MAR 1988 29 APR | VOLA-
TILE ON
IGNI-
TION,
TOTAL
(MG/L)
30
49
60
63
77
48
60
21 | TOTAL
FIXED
(MG/L)
101
121
111
125
93
81
66
87 | GEN, NITRATE TOTAL (MG/L AS N) 0.840 0.690 0.800 0.370 0.450 0.710 0.810 | GEN, NITRITE TOTAL (MG/L AS N) 0.010 0.010 0.020 0.010 0.010 0.010 0.000 ND | GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
0.850
0.700
0.820
0.380
0.460
0.710
0.810
ND | GEN, AMMONIA TOTAL (MG/L AS N) 0.030 0.020 0.050 0.020 0.050 0.020 0.020 | GEN, AMMONIA TOTAL (MG/L AS NH4) 0.04 0.03 0.06 0.03 0.06 0.0 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.12
0.07
0.08
0.14
0.28
0.10
0.19 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.15 0.09 0.13 0.16 0.33 0.10 0.21 | GEN,
TOTAL
(MG/L
AS N)
1.0
0.79
0.95
0.54
0.79
0.81 | GEN,
TOTAL
(MG/L
AS NO3)
4.4
3.5
4.2
2.4
3.5
3.6
4.5 | PHORUS
TOTAL
(MG/L
AS P)
0.110
0.030
0.070
0.090
0.080
0.020
0.240
0.070 | | APR 1987 24 MAY 12 JUN 12 30 SEP 21 OCT 27 DEC 09 MAR 1988 29 APR 11 26 MAY 11 23 JUN | VOLA-
TILE ON
IGNI-
TION,
TOTAL
(MG/L)
30
49
60
63
77
48
60
21
20
51
89 | TOTAL
FIXED
(MG/L)
101
121
111
125
93
81
66
87
87
72
60
99 | GEN,
NITRATE
TOTAL
(MG/L
AS N)
0.840
0.690
0.370
0.450
0.710
0.810 | GEN, NITRITE TOTAL (MG/L AS N) 0.010 0.010 0.020 0.010 0.010 0.00 ND ND ND ND ND 0.030 0.000 | GEN, NO2+NO3 TOTAL (MG/L AS N) 0.950 0.700 0.820 0.380 0.460 0.710 0.810 ND 0.660 0.390 0.580 0.370 | GEN, AMMONIA TOTAL (MG/L AS N) 0.030 0.020 0.050 0.050 0.000 0.020 0.020 0.010 0.00 | GEN, AMMONIA TOTAL (MG/L AS NH4) 0.04 0.03 0.06 0.03 0.06 0.03 0.01 0.00 0.01 0.08 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.12
0.07
0.08
0.14
0.28
0.10
0.19
0.19
0.15
0.20 | GEN, AM- MONIA + ORGANIC TOTTAL (MG/L AS N) 0.15 0.09 0.13 0.16 0.33 0.10 0.21 0.21 0.16 0.20 0.16 0.52 | GEN,
TOTAL
(MG/L
AS N)
1.0
0.79
0.95
0.54
0.79
0.81
1.0

0.82
0.59 | GEN,
TOTAL
(MG/L
AS NO3)
4.4
3.5
4.2
2.4
3.5
3.6
4.5

3.6
2.6
3.3 | PHORUS
TOTAL
(MG/L
AS P)
0.110
0.030
0.070
0.090
0.080
0.020
0.240
0.070
0.030
0.020 | | APR 1987 24 MAY 12 JUN 12 SEP 21 OCT 27 DEC 09 MAR 1988 29 APR 11 26 MAY 11 23 JUN 14 AUG | VOLA- TILE ON IGNI- TION, TOTAL (MG/L) 30 49 60 63 77 48 60 21 20 51 89 44 67 | TOTAL
FIXED
(MG/L) 101 121 111 125 93 81 66 87 72 60 99 103 | GEN, NITRATE TOTAL (MG/L AS N) 0.840 0.690 0.800 0.370 0.450 0.710 0.810 0.550 0.370 0.440 | GEN, NITRITE TOTAL (MG/L AS N) 0.010 0.010 0.020 0.010 0.000 ND ND ND ND 0.030 0.000 0.010 | GEN, NO2+NO3 TOTAL (MG/L AS N) 0.850 0.700 0.820 0.380 0.460 0.710 0.810 ND 0.660 0.390 0.580 0.370 0.450 | GEN, AMMONIA TOTAL (MG/L AS N) 0.030 0.020 0.050 0.020 0.050 0.000 0.020 0.010 0.010 0.010 0.010 | GEN, AMMONIA TOTAL (MG/L AS NH4) 0.04 0.03 0.06 0.03 0.06 0.03 0.01 0.0 0.01 0.08 0.01 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.12
0.07
0.08
0.14
0.28
0.10
0.19
0.19
0.15
0.20
0.15
0.46 | GEN, AM- MONIA + CREANIC TYOTAL (MG/L AS N) 0.15 0.09 0.13 0.16 0.33 0.10 0.21 0.21 0.21 0.16 0.20 0.16 0.52 | GEN,
TOTAL
(MG/L
AS N)
1.0
0.79
0.54
0.79
0.81
1.0

0.82
0.59
0.74
0.89 | GEN,
TOTAL
(MG/L)
AS NO3)
4.4
3.5
4.2
2.4
3.5
3.6
4.5

3.6
2.6
3.3
3.9
2.8 | PHORUS TOTAL (MG/L AS P) 0.110 0.030 0.070 0.090 0.080 0.020 0.240 0.070 0.030 0.020 0.140 0.030 | | APR 1987 24 MAY 12 JUN 12 JUL 30 SEP 21 OCT 09 MAR 1988 29 APR 11 26 MAY 11 23 JUN 14 AUG 16 OCT | VOLA-
TILE ON
IGNI-
TION,
TOTAL
(MG/L)
30
49
60
63
77
48
60
21
20
51
89
44
67 | TOTAL
FIXED
(MG/L) 101 121 111 125 93 81 66 87 72 60 99 103 109 | GEN,
NITRATE
TOTAL
(MG/L
AS N)
0.840
0.690
0.800
0.370
0.450
0.710
0.810 | GEN, NITRITE TOTAL (MG/L AS N) 0.010 0.010 0.020 0.010 0.000 ND ND ND ND 0.030 0.000 0.010 | GEN, NO2+NO3 TOTAL (MG/L AS N) 0.850 0.700 0.820 0.380 0.460 0.710 0.810 ND 0.660 0.390 0.580 0.370 0.450 0.450 | GEN, AMMONIA TOTAL (MG/L AS N) 0.030 0.020 0.050 0.020 0.050 0.000 0.020 0.010 0.000 0.010 0.060 0.010 | GEN, AMMONIA TOTAL (MG/L AS NH4) 0.04 0.03 0.06 0.03 0.06 0.00 0.03 0.01 0.00 0.01 0.09 0.01 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.12
0.07
0.08
0.14
0.28
0.10
0.19
0.19
0.15
0.20
0.15
0.46 | GEN, AM- MONIA + ORGANIC (MG/L AS N) 0.15 0.09 0.13 0.16 0.33 0.10 0.21 0.21 0.16 0.20 0.16 0.52 0.19 | GEN,
TOTAL
(MG/L
AS N)
1.0
0.79
0.54
0.79
0.81
1.0

0.82
0.59
0.74
0.89
0.64 | GEN,
TOTAL
(MG/L
AS NO3)
4.4
3.5
4.2
2.4
3.5
3.6
4.5

3.6
2.6
3.3
3.9
2.8 | PHORUS
TOTAL
(MG/L
AS P)
0.110
0.030
0.070
0.090
0.020
0.240
0.070
0.030
0.020
0.140
0.030 | | APR 1987 24 MAY 12 JUN 12 JUL 30 SEP 21 OCT 27 DEC 09 MAR 1988 29 APR 11 26 MAY 11 23 JUN 14 AUG 16 | VOLA- TILE ON IGNI- TION, TOTAL (MG/L) 30 49 60 63 77 48 60 21 20 51 89 44 67 | TOTAL
FIXED
(MG/L) 101 121 111 125 93 81 66 87 72 60 99 103 | GEN, NITRATE TOTAL (MG/L AS N) 0.840 0.690 0.800 0.370 0.450 0.710 0.810 0.550 0.370 0.440 | GEN, NITRITE TOTAL (MG/L AS N) 0.010 0.010 0.020 0.010 0.000 ND ND ND ND 0.030 0.000 0.010 | GEN, NO2+NO3 TOTAL (MG/L AS N) 0.850 0.700 0.820 0.380 0.460 0.710 0.810 ND 0.660 0.390 0.580 0.370 0.450 | GEN, AMMONIA TOTAL (MG/L AS N) 0.030 0.020 0.050 0.020 0.050 0.000 0.020 0.010 0.010 0.010 0.010 | GEN, AMMONIA TOTAL (MG/L AS NH4) 0.04 0.03 0.06 0.03 0.06 0.03 0.01 0.0 0.01 0.08 0.01 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.12
0.07
0.08
0.14
0.28
0.10
0.19
0.19
0.15
0.20
0.15
0.46 | GEN, AM- MONIA + CORGANIC TYOTAL (MG/L AS N) 0.15 0.09 0.13 0.16 0.33 0.10 0.21 0.21 0.21 0.16 0.20 0.16 0.52 | GEN,
TOTAL
(MG/L
AS N)
1.0
0.79
0.54
0.79
0.81
1.0

0.82
0.59
0.74
0.89 | GEN,
TOTAL
(MG/L)
AS NO3)
4.4
3.5
4.2
2.4
3.5
3.6
4.5

3.6
2.6
3.3
3.9
2.8 | PHORUS TOTAL (MG/L AS P) 0.110 0.030 0.070 0.090 0.080 0.020 0.240 0.070 0.030 0.020 0.140 0.030 | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). ### 01334805 HOOSIC RIVER AT EAGLE BRIDGE, NY - continued | DATE | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P) | PHOS-
PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4) | ALUM-
INUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS AL) | ALUM-
INUM,
DIS-
SOLVED
(UG/L
AS AL) | CADMIUM
TOTAL
RECOV-
ERABLE
(UG/L
AS CD) | CADMIUM
DIS-
SOLVED
(UG/L
AS CD) | COPPER,
TOTAL
RECOV-
ERABLE
(UG/L
AS CU) |
COPPER,
DIS-
SOLVED
(UG/L
AS CU) | IRON,
TOTAL
RECOV-
ERABLE
(UG/L
AS FE) | IRON,
DIS-
SOLVED
(UG/L
AS FE) | LEAD,
TOTAL
RECOV-
ERABLE
(UG/L
AS PB) | LEAD,
DIS-
SOLVED
(UG/L
AS PB) | |---|---|---|---|--|---|---|---|--|--|--|--|---| | APR 1987 | | | | | | | | | | | | | | 24 | 0.090 | 0.28 | | | <10 | | <10 | | 460 | | 7 | | | MAY
12 | 0.010 | 0.03 | | | <10 | | <10 | | 140 | | 6 | | | JUN | | | | | | | _ | | | | | | | 12
JUL | 0.040 | 0.12 | | | <10 | | 10 | | 600 | | 7 | | | 30
SEP | 0.070 | 0.21 | | | <10 | | 20 | | 180 | | <5 | | | 21 | 0.020 | 0.06 | | | <1 | 1.0 | 8 | 1 | 1600 | | <5 | <5 | | ост
27 | 0.010 | 0.03 | | | <1 | | 8 | | 190 | | <5 | | | DEC
09 | 0.210 | 0.64 | | | <1 | | 28 | | 180 | | < 5 | | | MAR 1988
29 | 0.030 | 0.09 | 730 | 30 | <1 | <1.0 | 7 | 1 | 1300 | 20 | < 5 | < 5 | | APR
11 | 0.020 | 0.06 | 170 | | 1 | | 4 | | 270 | | < 5 | | | 26 | 0.00 | 0.0 | 90 | 40 | 1 | <1.0 | 6 | 2 | 120 | 15 | < 5 | <5 | | MAY
11 | 0.00 | 0.0 | 80 | | 1 | | 4 | | 170 | | 5 | | | 23
JUN | 0.00 | 0.0 | 1700 | 50 | 6 | <1.0 | 14 | 2 | 3000 | 30 | 6 | <5 | | 14
AUG | 0.00 | 0.0 | 100 | | 1 | | 7 | | 170 | | <5 | | | 16
OCT | 0.030 | 0.09 | 510 | | <1 | | 8 | | 260 | | <5 | | | 03 | 0.00 | 0.0 | 70 | | <1 | | 7 | | 230 | | <5 | | | NOV
01 | 0.130 | 0.40 | 70 | 20 | <1 | 1.0 | 13 | 7 | 120 | 22 | <5 | < 5 | | | | | | | | | | | | | | | | D ATE | MANGA-
NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN) | MERCURY
TOTAL
RECOV-
ERABLE
(UG/L
AS HG) | NICKEL,
TOTAL
RECOV-
ERABLE
(UG/L
AS NI) | NICKEL,
DIS-
SOLVED
(UG/L
AS NI) | ZINC,
TOTAL
RECOV-
ERABLE
(UG/L
AS ZN) | ZINC,
DIS-
SOLVED
(UG/L
AS ZN) | BROMO-
FORM
TOTAL
(UG/L) | CARBON-
TETRA-
CHLO-
RIDE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
DI-
BROMO-
METHANE
TOTAL
(UG/L) | CHLORO-
ETHANE
TOTAL
(UG/L) | | DATE
APR 1987 | NESE,
TOTAL
RECOV-
ERABLE
(UG/L | NESE,
DIS-
SOLVED
(UG/L | TOTAL
RECOV-
ERABLE
(UG/L | TOTAL
RECOV-
ERABLE
(UG/L | DIS-
SOLVED
(UG/L | TOTAL
RECOV-
ERABLE
(UG/L | DIS-
SOLVED
(UG/L | FORM
TOTAL | TETRA-
CHLO-
RIDE
TOTAL | BENZENE
TOTAL | DI-
BROMO-
METHANE
TOTAL | ETHANE
TOTAL | | APR 1987
24 | NESE,
TOTAL
RECOV-
ERABLE
(UG/L | NESE,
DIS-
SOLVED
(UG/L | TOTAL
RECOV-
ERABLE
(UG/L | TOTAL
RECOV-
ERABLE
(UG/L | DIS-
SOLVED
(UG/L | TOTAL
RECOV-
ERABLE
(UG/L | DIS-
SOLVED
(UG/L | FORM
TOTAL | TETRA-
CHLO-
RIDE
TOTAL | BENZENE
TOTAL | DI-
BROMO-
METHANE
TOTAL | ETHANE
TOTAL | | APR 1987
24
MAY
12 | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL
RECOV-
ERABLE
(UG/L
AS HG) | TOTAL
RECOV-
ERABLE
(UG/L
AS NI) | DIS-
SOLVED
(UG/L
AS NI) | TOTAL
RECOV-
ERABLE
(UG/L
AS ZN) | DIS-
SOLVED
(UG/L
AS ZN) | FORM
TOTAL
(UG/L) | TETRA-
CHLO-
RIDE
TOTAL
(UG/L) | BENZENE
TOTAL
(UG/L) | DI-
BROMO-
METHANE
TOTAL
(UG/L) | ETHANE
TOTAL
(UG/L) | | APR 1987
24
MAY
12
JUN
12 | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL
RECOV-
ERABLE
(UG/L
AS HG) | TOTAL
RECOV-
ERABLE
(UG/L
AS NI) | DIS-
SOLVED
(UG/L
AS NI) | TOTAL
RECOV-
ERABLE
(UG/L
AS ZN) | DIS-
SOLVED
(UG/L
AS ZN) | FORM TOTAL (UG/L) | TETRA-
CHLO-
RIDE
TOTAL
(UG/L) | BENZENE
TOTAL
(UG/L)
ND | DI-
BROMO-
METHANE
TOTAL
(UG/L) | TOTAL
(UG/L) | | APR 1987
24
MAY
12
JUN
12
JUL
30 | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL
RECOV-
ERABLE
(UG/L
AS HG)
<0.10 | TOTAL
RECOV-
ERABLE
(UG/L
AS NI) | DIS-
SOLVED
(UG/L
AS NI) | TOTAL
RECOV-
ERABLE
(UG/L
AS ZN)
<10 | DIS-
SOLVED
(UG/L
AS ZN) | FORM TOTAL (UG/L) ND | TETRA-
CHLO-
RIDE
TOTAL
(UG/L)
ND | BENZENE
TOTAL
(UG/L)
ND
ND | DI-
BROMO-
METHANE
TOTAL
(UG/L)
ND | ETHANE
TOTAL
(UG/L)
ND | | APR 1987
24
MAY
12
JUN
12 | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN)
30
20 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV- ERABLE (UG/L AS HG) <0.10 <0.10 | TOTAL RECOV- ERABLE (UG/L AS NI) <1 <1 <1 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV- ERABLE (UG/L AS ZN) <10 <10 10 <10 | DIS-
SOLVED
(UG/L
AS ZN) | FORM TOTAL (UG/L) ND ND ND | TETRA-CHLO-RIDE TOTAL (UG/L) ND ND | BENZENE
TOTAL
(UG/L)
ND
ND | DI-
BROMO-
METHANE
TOTAL
(UG/L)
ND
ND | ETHANE
TOTAL
(UG/L)
ND
ND | | APR 1987 24 MAY 12 JUN 30 SEP 21 OCT | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN)
30
20
50
40 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV-ERABLE (UG/L AS HG) <0.10 <0.10 <0.10 0.20 <0.10 | TOTAL RECOV- ERABLE (UG/L AS NI) <1 <1 <1 2 3 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV- ERABLE (UG/L AS ZN) <10 <10 <10 <10 <10 | DIS-
SOLVED
(UG/L
AS ZN) | FORM TOTAL (UG/L) ND ND ND ND | TETRA- CHLO- RIDE TOTAL (UG/L) ND ND ND ND | BENZENE
TOTAL
(UG/L)
ND
ND
ND
ND | DI- BROMO- METHANE TOTAL (UG/L) ND ND ND ND | ETHANE TOTAL (UG/L) ND ND ND ND ND ND | | APR 1987 24 MAY 12 JUN 12 JUL 30 SEP 21 OCT 27 DEC | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN)
30
20
50
40
60 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV-ERABLE (UG/L AS HG) <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 | TOTAL RECOV- ERABLE (UG/L AS NI) <1 <1 <1 2 3 <1 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV-ERABLE (UG/L AS ZN) <10 <10 <10 <10 <10 <10 <10 | DIS-
SOLVED
(UG/L
AS ZN) | FORM TOTAL (UG/L) ND ND ND ND ND | TETRA-CHLO-RIDE TOTAL (UG/L) ND ND ND ND ND | BENZENE
TOTAL
(UG/L)
ND
ND
ND
ND | DI- BROMO- METHANE TOTAL (UG/L) ND ND ND ND ND | ETHANE TOTAL (UG/L) ND ND ND ND ND ND | | APR 1987 24 MAY 12 JUN 30 SEP 21 OCT 27 DEC 09 MAR 1988 | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN)
30
20
50
40
60
20 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV-ERABLE (UG/L AS HG) <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 | TOTAL RECOV- ERABLE (UG/L AS NI) <1 <1 <1 <1 2 3 <1 9 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV- ERABLE (UG/L AS ZN) <10 <10 <10 <10 <10 <20 | DIS-
SOLVED
(UG/L
AS ZN) | FORM TOTAL (UG/L) ND ND ND ND ND ND ND ND ND | TETRA-CHLO-RIDE TOTAL (UG/L) ND ND ND ND ND ND | BENZENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND | DI- BROMO- METHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND | ETHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND | | APR 1987 24 MAY 12 JUN 12 JUL 30 SEP 21 CCT 27 DEC 09 MAR 1988 29 APR | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN)
30
20
50
40
60
20
20 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV-ERABLE (UG/L AS HG) <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 | TOTAL RECOV- ERABLE (UG/L AS NI) <1 <1 <1 2 3 <1 9 2 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV-ERABLE (UG/L AS ZN) <10 <10 <10 <10 <10 <10 <10 <10 <10 <1 | DIS-
SOLVED
(UG/L
AS ZN) 10 10 | FORM TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TETRA-CHLO-RIDE TOTAL (UG/L) ND | BENZENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND
ND | DI- BROMO- METHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | ETHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | | APR 1987 24 MAY 12 JUN 12 JUL 30 SEP 21 CCT 27 DEC 09 MAR 1988 29 | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN)
30
20
50
40
60
20 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV-ERABLE (UG/L AS HG) <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 | TOTAL RECOV- ERABLE (UG/L AS NI) <1 <1 <1 <1 2 3 <1 9 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV- ERABLE (UG/L AS ZN) <10 <10 <10 <10 <10 <20 | DIS-
SOLVED
(UG/L
AS ZN) | FORM TOTAL (UG/L) ND ND ND ND ND ND ND ND ND | TETRA-CHLO-RIDE TOTAL (UG/L) ND ND ND ND ND ND | BENZENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND | DI- BROMO- METHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND | ETHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND | | APR 1987 24 MAY 12 JUN 12 JUL 30 SEP 21 OCT 27 DEC 09 MAR 1988 29 APR 11 26 MAY | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) 30 20 40 60 20 20 60 30 20 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV-ERABLE (UG/L AS HG) <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 | TOTAL RECOV-ERABLE (UG/L AS NI) <1 <1 <1 2 3 <1 9 2 7 6 | DIS- SOLVED (UG/L AS NI) 1 5 | TOTAL
RECOV-ERABLE (UG/L AS ZN) <10 <10 <10 <10 <10 <10 <10 <10 <10 <1 | DIS-
SOLVED
(UG/L
AS ZN) | FORM TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TETRA-CHLO-RIDE RIDE TOTAL (UG/L) ND | BENZENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND
ND
ND | DI- BROMO- METHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | ETHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | | APR 1987 24 MAY 12 JUN 12 JUL 30 SEP 21 OCT 27 DEC 09 MAR 1988 29 APR 11 26 MAY 11 23 | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN)
30
20
50
40
60
20
60
30 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV-ERABLE (UG/L AS HG) <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 | TOTAL RECOV-ERABLE (UG/L AS NI) | DIS- SOLVED (UG/L AS NI) 1 5 | TOTAL RECOV- REABLE (UG/L AS ZN) <10 | DIS-
SOLVED
(UG/L
AS ZN) 10 10 3 | FORM TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TETRA-CHLO-RIDE TOTAL (UG/L) ND | BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | DI- BROMO- METHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | ETHANE TOTAL (UG/L) ND | | APR 1987 24 MAY 12 JUN 12 JUL 30 SEP 21 OCT 09 ARR 1988 29 APR 11 26 MAY 11 23 JUN 14 | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) 30 20 40 60 20 60 30 20 30 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV-ERABLE (UG/L AS HG) <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 | TOTAL RECOV-ERABLE (UG/L AS NI) | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV-ERABLE (UG/L AS ZN) <10 <10 <10 <10 <10 <10 <10 <10 <10 <1 | DIS-
SOLVED
(UG/L
AS ZN) 10 10 <3 | FORM TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TETRA-CHLO-RIDE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | DI- BROMO- METHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | ETHANE TOTAL (UG/L) ND | | APR 1987 24 MAY 12 JUN 12 JUL 30 SEP 21 OCT 27 DEC 09 MAR 1988 29 APR 11 26 MAY 11 23 JUN 14 AUG 16 | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) 30 20 60 20 60 30 20 30 150 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV-ERABLE (UG/L AS HG) <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 | TOTAL RECOV-ERABLE (UG/L AS NI) <1 <1 <1 2 3 <1 9 2 76 4 6 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOVERABLE (UG/L AS ZN) <10 <10 <10 <10 <10 <10 <10 <10 <10 <1 | DIS-
SOLVED
(UG/L
AS ZN) 10 10 17 | FORM TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TETRA-CHLO-RIDE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | BENZENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND
ND
ND
ND
ND | DI- BROMO- METHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | ETHANE TOTAL (UG/L) ND | | APR 1987 24 MAY 12 JUN 12 JUL 30 SEP 21 OCT 27 DEC 09 MAR 1988 29 APR 11 26 MAY 11 23 JUN 14 AUG | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) 30 20 50 40 60 20 60 30 20 30 150 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOVERABLE (UG/L AS HG) <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 | TOTAL RECOV-ERABLE (UG/L AS NI) <1 <1 <1 2 3 <1 9 2 7 6 4 6 6 8 8 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV-ERABLE (UG/L AS ZN) <10 <10 <10 <10 <10 <10 <10 <10 <10 <1 | DIS-
SOLVED
(UG/L
AS ZN) 10 10 17 | FORM TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TETRA-CHLO-RIDE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | DI- BROMO- METHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | ETHANE TOTAL (UG/L) ND | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). # 01334805 HOOSIC RIVER AT EAGLE BRIDGE, NY - continued | DATE | CHLORO-
FORM
TOTAL
(UG/L) | CIS
1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | DI-
CHLORO-
BROMO-
METHANE
TOTAL
(UG/L) | METHYL-
BROMIDE
TOTAL
(UG/L) | METHYL-
CHLO-
RIDE
TOTAL
(UG/L) | METHYL-
ENE
CHLO-
RIDE
TOTAL
(UG/L) | 1,1,1-
TRI-
CHLORO-
ETHANE
TOTAL
(UG/L) | 1,1-DI-
CHLORO-
ETHANE
TOTAL
(UG/L) | 1,1-DI-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 1,1,2-
TRI-
CHLORO-
ETHANE
TOTAL
(UG/L) | 1,1,2,2
TETRA-
CHLORO-
ETHANE
TOTAL
(UG/L) | |---|---|---|--|---|--|--|---|--|---|---|--| | APR 1987
24 | ND | MAY
12 | ND | JUN
12 | ND | JUL
30 | ND | 21 | ND | OCT 27 | ND | DEC
09
MAR 1988 | ND | ND | ИD | ND | 29
APR | ND | ND | ND | ND | ND | 0.5 | ND | ND | ND | ND | ND | | 11 | ND | 26
May | ND | 11 | ND | 23 | ND | ND | ND | ND | ИD | ND | ND | ND | ND | ND | ND | | JUN
14 | ND | AUG
16
OCT | ND | 03 | ND | 01 | 0.1 | ND | ND | ИД | ИD | ND | ND | ND | ИD | ND | ND | | | | | | | | | | | | | | | DATE | 1,2-DI-
CHLORO-
BENZENE
TOTAL
(UG/L) | 1,2-DI-
CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L) | 1,2-DI-
CHLORO-
PROPANE
TOTAL
(UG/L) | 1,2-
TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L) | 1,3-DI-
CHLORO-
BENZENE
TOTAL
(UG/L) | 1,4-DI-
CHLORO-
BENZENE
TOTAL
(UG/L) | TETRA-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | TRANS-
1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | TRI-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 2-
CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L) | VINYL
CHLO-
RIDE
TOTAL
(UG/L) | | APR 1987 | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L) | CHLORO-
PROPANE
TOTAL
(UG/L) | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L) | CHLO-
RIDE
TOTAL
(UG/L) | | APR 1987
24
MAY | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L) | CHLORO-
PROPANE
TOTAL
(UG/L) | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L) | CHLO-
RIDE
TOTAL
(UG/L) | | APR 1987
24
MAY
12
JUN | CHLORO-
BENZENE
TOTAL
(UG/L)
ND | CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L)
ND | CHLORO-
PROPANE
TOTAL
(UG/L)
ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND | CHLORO-
BENZENE
TOTAL
(UG/L)
ND | CHLORO-
BENZENE
TOTAL
(UG/L)
ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND | CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L)
ND | CHLO-
RIDE
TOTAL
(UG/L)
ND | | APR 1987
24
MAY
12 | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L) | CHLORO-
PROPANE
TOTAL
(UG/L) | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L) | CHLO-
RIDE
TOTAL
(UG/L) | | APR 1987 24 MAY 12 JUN 12 JUL 30 SEP | CHLORO-
BENZENE
TOTAL
(UG/L)
ND | CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L)
ND | CHLORO-PROPANE TOTAL (UG/L) ND ND ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND
ND
ND | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
ND
ND
ND | CHLORO-ETHYL-ENE ENE TOTAL (UG/L) ND 1.0 ND ND | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND ND ND ND | CHLO-
RIDE
TOTAL
(UG/L)
ND
ND | | APR 1987 24 MAY 12 JUN 30 SEP 21 OCT | CHLORO-
BENZENE
TOTAL
(UG/L)
ND
ND | CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L)
ND
ND | CHLORO-
PROPANE
TOTAL
(UG/L)
ND
ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND | CHLORO-
BENZENE
TOTAL
(UG/L)
ND
ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND ND ND ND ND ND | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
ND
ND
ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND 1.0 ND ND | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND ND ND ND ND | CHLO- RIDE TOTAL (UG/L) ND ND ND ND ND | | APR 1987 24 MAY 12 JUN 12 JUL 30 SEP 21 OCT 27 DEC | CHLORO-
BENZENE
TOTAL
(UG/L)
ND
ND
ND | CHLORO- ETHANE WATER WHOLE TOTAL (UG/L) ND ND ND | CHLORO-PROPANE TOTAL (UG/L) ND ND ND ND ND ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND | CHLORO-BENZENE TOTAL
(UG/L) ND ND ND ND ND ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND N | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
ND
ND
ND
ND | CHLORO-ETHYL-ENE ENE TOTAL (UG/L) ND 1.0 ND ND ND ND ND ND | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND ND ND ND ND ND ND | CHLO- RIDE TOTAL (UG/L) ND ND ND ND ND | | APR 1987 24 MAY 12 JUN 12 JUL 30 SEP 21 OCT 27 | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND | CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L)
ND
ND
ND | CHLORO-PROPANE TOTAL (UG/L) ND ND ND ND ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND ND ND ND ND ND | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
ND
ND
ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND 1.0 ND N | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND ND ND ND ND | CHLO- RIDE TOTAL (UG/L) ND ND ND ND ND | | APR 1987 24 MAY 12 JUN 12 JUL 30 SEP 21 OCT 27 DEC 09 | CHLORO-
BENZENE
TOTAL
(UG/L)
ND
ND
ND
ND | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND | CHLORO-PROPANE TOTAL (UG/L) ND ND ND ND ND ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND N | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
ND
ND
ND
ND | CHLORO-ETHYL-ENE ENE TOTAL (UG/L) ND 1.0 ND ND ND ND ND ND | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND ND ND ND ND ND ND | CHLO- RIDE TOTAL (UG/L) ND ND ND ND ND | | APR 1987 24 MAY 12 JUN 30 SEP 21 OCT 27 DEC 09 MAR 1988 29 APR 11 | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO- ETHANE WATER WHOLE TOTAL (UG/L) ND | CHLORO-PROPANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TRANSDI
CHLORO-
ETHEME
TOTAL
(UG/L)
ND
ND
ND
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-ETHYL-ENE TOTAL (UG/L) ND N | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND | CHLORO-ETHYL-ENETOTAL (UG/L) ND 1.0 ND N | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND | CHLO- RIDE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | | APR 1987 24 MAY 12 JUN 12 JUL 30 SEP 21 OCT 27 DEC 09 MAR 1988 29 APR 11 26 MAY | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO- ETHANE WATER WHOLE TOTAL (UG/L) ND | CHLORO-PROPANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND
ND
ND | CHLOROBENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLOROBENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-ETHYL-ENE TOTAL (UG/L) ND N | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND | CHLORO-ETHYL-ENE ENE TOTAL (UG/L) ND 1.0 ND N | CHLORO-ETHYL-VINYL-ETHER TOTAL (UG/L) ND | CHLO- RIDE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | | APR 1987 24 MAY 12 JUN 12 JUL 30 SEP 21 OCT 27 DEC 09 MAR 1988 29 APR 11 26 MAY 11 | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND | CHLORO-PROPANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLOROBENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-ETHYL-ENE TOTAL (UG/L) ND N | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND | CHLORO-ETHYL-ENETOTAL (UG/L) ND 1.0 ND N | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND | CHLO- RIDE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | | APR 1987 24 MAY 12 JUN 12 JUL 30 SEP 21 CCT 27 DEC 09 MAR 1988 29 APR 11 26 MAY 11 23 JUN | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO- ETHANE WATER WHOLE TOTAL (UG/L) ND | CHLORO-PROPANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND
ND
ND | CHLOROBENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLOROBENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-ETHYL-ENE TOTAL (UG/L) ND N | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND | CHLORO-ETHYL-ENETOTAL (UG/L) ND 1.0 ND N | CHLORO-ETHYL-VINYL-ETHER TOTAL (UG/L) ND | CHLO- RIDE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | | APR 1987 24 MAY 12 JUN 12 JUL 30 SEP 21 OCT 27 DEC 09 MAR 1988 29 APR 11 26 MAY 11 23 | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO- ETHANE WATER WHOLE TOTAL (UG/L) ND | CHLORO-PROPANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND
ND
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-ETHYL-ENE TOTAL (UG/L) ND N | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND | CHLORO-ETHYL-ENE ENE TOTAL (UG/L) ND 1.0 ND N | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND | CHLO-RIDE TOTAL (UG/L) ND | | APR 1987 24 MAY 12 JUL 30 SEP 21 OCT 27 DEC 09 MAR 1988 29 APR 11 26 MAY 11 23 JUN 14 AUG | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO- ETHANE WATER WHOLE TOTAL (UG/L) ND | CHLORO-PROPANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TRANSDI
CHLORO-
ETHEME
TOTAL
(UG/L)
ND
ND
ND
ND
ND
ND
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLOROBENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-ETHYL-ENE TOTAL (UG/L) ND N | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND 1.0 ND N | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND | CHLO-RIDE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). 01334805 HOOSIC RIVER AT EAGLE BRIDGE, NY - continued # SUSPENDED SEDIMENT DISCHARGE | | | DIS- | | SEDI- | |----------|------|---------|--------|---------| | | | CHARGE, | | MENT, | | | | INST. | SEDI- | DIS- | | | | CUBIC | MENT, | CHARGE, | | | | FEET | SUS- | SUS- | | DATE | TIME | PER | PENDED | PENDED | | | | SECOND | (MG/L) | (T/DAY) | | MAY 1988 | | | | | | 11 | 1230 | 2770 | 4 | 30 | | 23 | 1145 | 1370 | 124 | 459 | | JUN | | | | | | 14 | 1200 | 291 | 4 | 3.1 | | AUG | | | | | | 16 | 1200 | 702 | 27 | 51 | | OCT | | | | | | 03 | 1130 | 222 | 1 | 0.60 | | NOV | | | | | | 01 | 1200 | 345 | 1 | 0.93 | | | | | | | ### BED MATERIAL ANALYSES | DATE OCT 1987 14 AUG 1988 16 | T
B
TIME | | INUM, RECOV. FRECOV. FRECOV. FRECOV. FRECOV. FRECOV. FRECOVER FREC | RECOV. M
M BOT- F
DM MA- FM
FERIAL TO
(UG/G I | IUM, R
RECOV. FM
I BOT- TO
DM MA- T
PERIAL (| ECOV. F
BOT- FM
M MA- TO
ERIAL T
UG/G (| ECOV. R BOT- FM M MA- TO ERIAL T UG/G (| ECOV. NI BOT- RI M MA- FM ERIAL TOI UG/G TI | ESE, RE ECOV. FM BOT- TOM M MA- TE ERIAL (U UG/G) AS | CCOV. REBOT- FM MA- TOM CRIAL TE | | OV.
PT-
IA-
IAL
'G | |----------------------------------|---|-------------------------------------|--|---|--|---|---|---|---|---|---|--------------------------------| | DATE | AROCLO
1221
IN
BOTTOM
MAT.
(UG/KG | PR AROCL 124 1 PCB BOT.M | OR AROCLOI
8 1254
PCB
AT BOT.MAY | R AROCLOF
1260
PCB
F BOT.MAT | IN BOT-
TOM MA-
TERIAL | ALPHA
BHC
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | ATRA-
ZINE,
TOTAL
IN BOT- | BETA
BENZENE
HEXA-
CHLOR-
IDE | CHLOR-
DANE,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | CHLOR-
PYRIFOS
IN
BOT.
MAT.
(UG/KG) | DELTA BENZENE HEXA- CHLOR- IDE BOT.MAT (UG/KG) | | | OCT 1987
14
AUG 1988
16 |
ND | 3. |
0 4.0 |
ND |
ND | nd
nd |
ND |
ND |
ND |
ND | ND | | | DATE | DI-
AZINON
TOTAL
IN BOT
TOM MA
TERIA | TOTA - IN BO - TOM M L TERI | N,
L ENDO-
T- SULFAN
A- ALPHA
AL BOT.MA | | | ENDRIN, TOTAL IN BOT- TOM MA- | HYDE
BOT.MAT | | HEPTA-
CHLOR,
TOTAL
IN BOT-
TOM MA-
TERIAL | HEPTA-
CHLOR
EPOXIDE
TOT. IN
BOTTOM
MATL. | MALA-
THION,
TOTAL
IN BOT-
TOM MA-
TERIAL | | | OCT 1987
14
AUG 1988
16 | (UG/KG | (UG/K | G) (UG/KG

ND | (UG/KG)

ND | (UG/KG)

ND | (UG/KG) | (UG/KG)

ND | (UG/KG) | ND | (UG/KG)

ND | (UG/KG)

ND | | | DATE | METH-
OXY-
CHLOF
TOT. I
BOTTO
MATL
(UG/KG | MIRE R, TOTA IN IN BO DM TOM M TERI | L TOTAL T- IN BOT A- TOM MA AL TERIA | TOM MA- | TOM MA-
TERIAL | PARA-
THION,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | TOM MA-
TERIAL | % FINER | BED
MAT.
SIEVE
DIAM.
% FINER
THAN
.062 MM | BED
MAT.
SIEVE
DIAM.
% FINER
THAN
.125 MM | BED
MAT.
SIEVE
DIAM.
% FINER
THAN
2.00 MM | | | OCT 1987
14
AUG 1988
16 |
ND |
ND | ND |
ND | |
ND |
ND | 0 | 3 | 15
100 | 100 | | #### 01335770 HUDSON RIVER AT WATERFORD, NY LOCATION.--Lat 42 47'19", long 73 40'28", at Saratoga-Rensselaer County line, Hydrologic Unit 02020003, at bridge on U.S. Highway 4 in Waterford, 0.4 mi upstream from first branch of Mohawk River, and 2.8 mi downstream from dam at lock 1 of the Champlain (Barge) Canal. DRAINAGE AREA. -- 4,620 mi 2 PERIOD OF RECORD.--Water years 1952, 1969 to current year. CHEMICAL DATA: 1952 (a), 1969 (d), 1970-71 (e), 1972-76 (d), 1977 (c), 1978-79 (d), 1980-84 (e), 1985 (c), 1986 (e), 1987 (b), 1988 (c), 1989 (a). MINOR ELEMENTS DATA: 1952 (a), 1969 (d), 1970-71 (e), 1972-76 (d), 1977-79 (e), 1980-81 (d), 1982 (a), 1983 (b), 1987 (b), 1988 (c), 1989 (a). PESTICIDE DATA: 1975 (b), 1976 (d), 1977-79 (e), 1980, 1982 (a), 1987 (b), 1988 (c), 1989 (a). ORGANIC DATA: OC--1975-77 (c), 1978 (d), 1979 (c), 1988 (c), 1989 (a). PCB--1975 (b), 1976 (d), 1977-84 (e), 1985 (c), 1986-87 (e), 1988 (d), 1989 (c). PCN--1977-79 (e), 1980, 1982 (a). NOTRIENT DATA: 1952 (a), 1969 (d), 1970-71 (e), 1972-76 (d), 1977-78 (e), 1979-81 (d), 1987 (b), 1988 (c), 1989 (a). BIOLOGICAL DATA: Bacteria--1977 (c), 1978 (d), 1979 (e), 1980-81 (d), 1987 (b), 1988 (c), 1989 (a). SEDIMENT DATA: 1975 (b), 1976-77 (e), 1978 (a), 1979 (b), 1980 (c), 1981-88 (e), 1989 (c). PERIOD OF DAILY RECORD. -- SUSPENDED-SEDIMENT DISCHARGE: October 1976 to current year. REMARKS.--Water-discharge data based on records obtained 01335754 Hudson River above Lock 1 near Waterford, upstream. Streamflow affected by regulation for power generation and diversion for canal operations. EXTREMES FOR PERIOD OF DAILY RECORD .-- SUSPENDED-SEDIMENT CONCENTRATION: Maximum daily mean (water years 1977-89), 810 mg/L March 14, 1977; minimum daily mean, 1 mg/L on many days. SUSPENDED-SEDIMENT DISCHARGE: Maximum daily (water years 1977-89), 119,000 tons March 14, 1977; minimum daily, 3.9 tons Sept. 7, 1981. | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | SPE-
CIFIC
CON-
DUCT-
ANCE
LAB
(US/CM) | PH WATER WHOLE FIELD (STAND- ARD UNITS) | TEMPER-
ATURE
WATER
(DEG C) | TUR-
BID-
ITY
(NTU) | BARO-
METRIC
PRES-
SURE
(MM
OF
HG) | OXYGEN,
DIS-
SOLVED
(MG/L) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION) | COLI-
FORM,
TOTAL,
IMMED.
(COLS.
PER
100 ML) | FECAL
COLI-
FORM
24-HR
MEM.FIL
(COLS./
100 ML) | |-----------|------|--|---|--|---|--------------------------------------|------------------------------|--|-------------------------------------|--|--|--| | APR 1987 | | | | | | | | | | | | | | 22
May | 1000 | 9600 | | | | | 3.8 | | | | 3900 | 190 | | 15 | 1000 | 3500 | | 198 | 7.6 | 16.5 | 1.4 | | 9.2 | | 1200 | 40.0 | | JUN
15 | 0930 | 4140 | | 142 | 7.6 | 22.0 | 1.3 | | 8.4 | | 1000 | 180 | | JUL | | | | | , , , | | | | | | | | | 29
SEP | 1315 | 2090 | | | 7.7 | 25.5 | 1.5 | | 8.4 | | 500 | 160 | | 25 | 1030 | 6650 | | | 7.4 | 14.0 | 4.5 | | 10.2 | | 2000 | 480 | | NOV | | | | | | | | | | | | | | 02 | 0930 | 12700 | | 125 | 7.3 | 7.0 | 4.5 | | | | 7600 | 600 | | DEC
11 | 0930 | 9480 | | 124 | 7.5 | 2.0 | 2.9 | | | | 7000 | 760 | | APR 1988 | 0,50 | 3400 | | 144 | ,., | 2.0 | 2.,, | | | | 1000 | 700 | | 01 | 1000 | 12900 | 191 | 131 | | 5.5 | 6.0 | 771 | 12.0 | 94 | 2800 | 210 | | 12 | 1000 | 8450 | 280 | 116 | 6.6 | 9.0 | 3.0 | | 11.7 | | 6000 | 380 | | 28 | 0900 | 4420 | 280 | 185 | 6.2 | 10.5 | 4.0 | | 10.6 | | 1500 | 40.0 | | MAY | | | | | | | | | | | | | | 09 | 1000 | 5470 | 148 | 157 | 8.0 | 15.0 | 1.4 | 7 6 6 | 8.2 | 81 | 900 | 120 | | 26 | 0930 | 7710 | 157 | 149 | 7.0 | 17.0 | 7.2 | | 9.0 | | 2200 | 180 | | JUN | | | | | | | 2 2 | | | | 000 | | | 16 | 1200 | 2730 | 194 | 192 | 8.5 | 24.5 | 2.2 | | 5.0 | | 800 | ND | | AUG
19 | 0845 | 2630 | 189 | 184 | 7.1 | 25.5 | 0.30 | | 7.7 | | 0 | 120 | | OCT | 0043 | 2030 | 103 | 104 | , | 23.3 | 0.30 | | ,., | | ŭ | 120 | | 06 | 1300 | E3350 | 240 | 192 | 7.2 | 16.0 | 1.3 | | 9.4 | | | | | NOV
09 | 1000 | 12200 | 163 | 99 | 7.2 | 8.0 | 4.4 | | 11.8 | | 5500 | 150 | | | | | | | | | | | | | | | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). # 01335770 HUDSON RIVER AT WATERFORD, NY - continued | DATE | HARD-
NESS
TOTAL
(MG/L
AS
CACO3) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K) | ALKA-
LINITY
LAB
(MG/L
AS
CACO3) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | SOLIDS,
RESIDUE
AT 105
DEG. C,
TOTAL
(MG/L) | |---|---|---|--|---|--|---|--|--|---|---|---|---| | APR 1987 | | | | | | | | | | | | | | 22
MAY | 46 | 14 | 2.8 | | | | | | | 64 | | 94 | | 15
JUN | 65 | 20 | 3.6 | | | | | | | 109 | | 126 | | 15 | 48 | 15 | 2.5 | | | | | | | | | 104 | | JUL
29 | 66 | 22 | 2.7 | | | | | | | 120 | | 127 | | SEP
25 | 54 | 17 | 2.9 | | | | | | | 102 | | 156 | | NOV
02 | 47 | 14 | 2.9 | | | | | | | | | 94 | | DEC
11 | 45 | 13 | 3.0 | | | | | | | 81 | | 86 | | APR 1988 | 50 | 15 | 3.0 | 5.2 | 0.70 | 35 | 1.4 | 0.6 | 0.20 | 95 | 69 | 106 | | 01
12 | 44 | 13 | 2.7 | 4.7 | 0.70
0.70 | 29 | 14
15 | 9.6
9.4 | 0.20
0.10 | 72 | 63 | 90 | | 28 | 66 | 20 | 3.9 | 8.3 | 0.90 | 45 | 18 | 14 | 0.10 | 110 | 92 | 129 | | MAY | | | | | | | | | | | | | | 09
26 | 59
57 | 18
17 | 3.5
3.5 | 6.7 | 0.70 | 39 | 14
15 | 12
9.5 | 0.20 | 110
81 | 78
77 | 116
11 4 | | JUN | | | | 6.1 | 0.70 | 41 | | | 0.20 | | | | | 16
AUG | 65 | 20 | 3.6 | 9.2 | 0.90 | 42 | 17 | 16 | 0.10 | 126 | 92 | 134 | | 19
OCT | 65 | 20 | 3.6 | 9.9 | 1.1 | 40 | 18 | 16 | 0.10 | 124 | 93 | 130 | | 06
NOV | 65 | 20 | 3.6 | 8.8 | 1.4 | 38 | 20 | 17 | 0.10 | 112 | 94 | 116 | | 09 | 37 | 11 | 2.2 | 4.2 | 0.70 | 23 | 15 | 7.2 | 0.10 | 68 | 54 | 84 | | | | | | | | | | | | | | | | DATE | SOLIDS,
VOLA-
TILE ON
IGNI-
TION,
TOTAL
(MG/L) | RESIDUE
TOTAL
FIXED
(MG/L) | NITRO-
GEN,
NITRATE
TOTAL
(MG/L
AS N) | NITRO-
GEN,
NITRITE
TOTAL
(MG/L
AS N) | NITRO-
GEN,
NO2+NO3
TOTAL
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS NH4) |
NITRO-
GEN,
ORGANIC
TOTAL
(MG/L
AS N) | NITRO-
GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | NITRO-
GEN,
TOTAL
(MG/L
AS N) | NITRO-
GEN,
TOTAL
(MG/L
AS NO3) | PHOS-PHORUS TOTAL (MG/L AS P) | | DATE
APR 1987 | VOLA-
TILE ON
IGNI-
TION,
TOTAL | TOTAL
FIXED | GEN,
NITRATE
TOTAL
(MG/L | GEN,
NITRITE
TOTAL
(MG/L | GEN,
NO2+NO3
TOTAL
(MG/L | GEN,
AMMONIA
TOTAL
(MG/L | GEN,
AMMONIA
TOTAL
(MG/L | GEN,
ORGANIC
TOTAL
(MG/L | GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L | GEN,
TOTAL
(MG/L | GEN,
TOTAL
(MG/L | PHORUS
TOTAL
(MG/L | | | VOLA-
TILE ON
IGNI-
TION,
TOTAL | TOTAL
FIXED | GEN,
NITRATE
TOTAL
(MG/L | GEN,
NITRITE
TOTAL
(MG/L | GEN,
NO2+NO3
TOTAL
(MG/L | GEN,
AMMONIA
TOTAL
(MG/L | GEN,
AMMONIA
TOTAL
(MG/L | GEN,
ORGANIC
TOTAL
(MG/L | GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L | GEN,
TOTAL
(MG/L | GEN,
TOTAL
(MG/L | PHORUS
TOTAL
(MG/L | | APR 1987
22
MAY
15 | VOLA-
TILE ON
IGNI-
TION,
TOTAL
(MG/L) | TOTAL
FIXED
(MG/L) | GEN,
NITRATE
TOTAL
(MG/L
AS N) | GEN,
NITRITE
TOTAL
(MG/L
AS N) | GEN,
NO2+NO3
TOTAL
(MG/L
AS N) | GEN,
AMMONIA
TOTAL
(MG/L
AS N) | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4) | GEN,
ORGANIC
TOTAL
(MG/L
AS N) | GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | GEN,
TOTAL
(MG/L
AS N) | GEN,
TOTAL
(MG/L
AS NO3) | PHORUS
TOTAL
(MG/L
AS P) | | APR 1987
22
MAY
15
JUN
15 | VOLA-
TILE ON
IGNI-
TION,
TOTAL
(MG/L) | TOTAL
FIXED
(MG/L) | GEN,
NITRATE
TOTAL
(MG/L
AS N) | GEN, NITRITE TOTAL (MG/L AS N) | GEN,
NO2+NO3
TOTAL
(MG/L
AS N) | GEN,
AMMONIA
TOTAL
(MG/L
AS N) | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4) | GEN,
ORGANIC
TOTAL
(MG/L
AS N) | GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | GEN,
TOTAL
(MG/L
AS N) | GEN,
TOTAL
(MG/L
AS NO3) | PHORUS
TOTAL
(MG/L
AS P) | | APR 1987
22
MAY
15
JUN
15
JUL
29 | VOLA-
TILE ON
IGNI-
TION,
TOTAL
(MG/L)
40 | TOTAL
FIXED
(MG/L)
53 | GEN,
NITRATE
TOTAL
(MG/L
AS N)
0.500 | GEN,
NITRITE
TOTAL
(MG/L
AS N)
0.010 | GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
0.510
0.670 | GEN,
AMMONIA
TOTAL
(MG/L
AS N)
0.020
0.190 | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4)
0.03 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.35 | GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
0.37 | GEN,
TOTAL
(MG/L
AS N)
0.88 | GEN,
TOTAL
(MG/L
AS NO3)
3.9 | PHORUS
TOTAL
(MG/L
AS P)
0.030 | | APR 1987 22 MAY 15 JUN 15 JUL 29 SEP 25 | VOLA-
TILE ON
IGNI-
TION,
TOTAL
(MG/L)
40
33 | TOTAL
FIXED
(MG/L)
53
92
65 | GEN,
NITRATE
TOTAL
(MG/L
AS N)
0.500
0.620 | GEN,
NITRITE
TOTAL
(MG/L
AS N)
0.010
0.050 | GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
0.510
0.670
0.430 | GEN,
AMMONIA
TOTAL
(MG/L
AS N)
0.020
0.190
0.060 | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4)
0.03
0.24 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.35
0.01 | GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
0.37
0.20 | GEN,
TOTAL
(MG/L
AS N)
0.88
0.87 | GEN,
TOTAL
(MG/L
AS NO3)
3.9
3.9 | PHORUS
TOTAL
(MG/L
AS P)
0.030
0.030 | | APR 1987 22 MAY 15 JUN 15 JUL 29 SEP 25 NOV 02 | VOLA-
TILE ON
IGNI-
TION,
TOTAL
(MG/L)
40
33
48
56 | TOTAL
FIXED
(MG/L)
53
92
65
90 | GEN,
NITRATE
TOTAL
(MG/L
AS N)
0.500
0.620
0.420 | GEN, NITRITE TOTAL (MG/L AS N) 0.010 0.050 0.010 0.010 | GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
0.510
0.670
0.430
0.630 | GEN,
AMMONIA
TOTAL
(MG/L
AS N)
0.020
0.190
0.060 | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4)
0.03
0.24
0.08 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.35
0.01
0.32 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.37 0.20 0.38 0.27 | GEN,
TOTAL
(MG/L
AS N)
0.88
0.87
0.81 | GEN,
TOTAL
(MG/L
AS NO3)
3.9
3.9
3.6
4.0 | PHORUS
TOTAL
(MG/L
AS P)
0.030
0.030
0.030 | | APR 1987 22 MAY 15 JUN 15 JUL 29 SEP 25 NOV 02 DEC 11 | VOLA-
TILE ON
IGNI-
TION,
TOTAL
(MG/L)
40
33
48
56 | TOTAL
FIXED
(MG/L)
53
92
65
90
108 | GEN,
NITRATE
TOTAL
(MG/L
AS N)
0.500
0.620
0.420
0.620
0.340 | GEN,
NITRITE
TOTAL
(MG/L
AS N)
0.010
0.050
0.010
0.010 | GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
0.510
0.670
0.430
0.630
0.340 | GEN,
AMMONIA
TOTAL
(MG/L
AS N)
0.020
0.190
0.060
0.020
0.040 | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4)
0.03
0.24
0.08
0.03 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.35
0.01
0.32
0.25 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.37 0.20 0.38 0.27 | GEN,
TOTAL
(MG/L
AS N)
0.88
0.87
0.81
0.90 | GEN,
TOTAL
(MG/L
AS NO3)
3.9
3.9
3.6
4.0
2.9 | PHORUS
TOTAL
(MG/L
AS P)
0.030
0.030
0.030
0.030 | | APR 1987 22 MAY 15 JUN 15 JUL 29 SEP 25 NOV 02 DEC 11 APR 1988 | VOLA- TILE ON IGNI- TION, TOTAL (MG/L) 40 33 48 56 48 | TOTAL
FIXED
(MG/L)
53
92
65
90
108

55 | GEN,
NITRATE
TOTAL
(MG/L
AS N)
0.500
0.620
0.420
0.620
0.340
0.350 | GEN, NITRITE TOTAL (MG/L AS N) 0.010 0.050 0.010 0.010 0.000 0.00 | GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
0.510
0.670
0.430
0.630
0.340
0.350 | GEN,
AMMONIA
TOTAL
(MG/L
AS N)
0.020
0.190
0.060
0.020
0.040
0.020
0.070 | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4)
0.03
0.24
0.08
0.03
0.05
0.03 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.35
0.01
0.32
0.25
0.27
0.16 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.37 0.20 0.38 0.27 0.31 0.18 0.37 | GEN,
TOTAL
(MG/L
AS N)
0.88
0.87
0.81
0.90
0.65
0.53 | GEN,
TOTAL
(MG/L
AS NO3)
3.9
3.6
4.0
2.9
2.3 | PHORUS
TOTAL
(MG/L
AS P)
0.030
0.030
0.030
0.030
0.030 | | APR 1987 22 MAY 15 JUN 15 JUL 29 SEP 25 NOV 02 DEC 11 | VOLA- TILE ON IGNI- TION, TOTAL (MG/L) 40 33 48 56 48 | TOTAL
FIXED
(MG/L)
53
92
65
90
108 | GEN,
NITRATE
TOTAL
(MG/L
AS N)
0.500
0.620
0.420
0.620
0.340
0.350 | GEN,
NITRITE
TOTAL
(MG/L
AS N)
0.010
0.050
0.010
0.010
0.00 | GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
0.510
0.670
0.430
0.630
0.340
0.350 | GEN,
AMMONIA
TOTAL
(MG/L
AS N)
0.020
0.190
0.060
0.020
0.040 | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4)
0.03
0.24
0.08
0.03
0.05 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.35
0.01
0.32
0.25
0.27
0.16
0.30 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.37 0.20 0.38 0.27 0.31 0.18 | GEN,
TOTAL
(MG/L
AS N)
0.88
0.87
0.81
0.90
0.65 | GEN,
TOTAL
(MG/L
AS NO3)
3.9
3.6
4.0
2.9 | PHORUS
TOTAL
(MG/L
AS P)
0.030
0.030
0.030
0.030
0.030 | | APR 1987 22 MAY 15 JUN 15 JUL 29 SEP 25 NOV 02 DEC 11 APR 1988 01 12 28 | VOLA- TILE ON IGNI- TION, TOTAL (MG/L) 40 33 48 56 48 43 | TOTAL
FIXED
(MG/L)
53
92
65
90
108

55 | GEN,
NITRATE
TOTAL
(MG/L
AS N)
0.500
0.620
0.420
0.620
0.340
0.350
0.380 | GEN, NITRITE TOTAL (MG/L AS N) 0.010 0.050 0.010 0.010 0.00 0.00 0.00 | GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
0.510
0.670
0.430
0.630
0.340
0.350
0.380 | GEN,
AMMONIA
TOTAL
(MG/L
AS N)
0.020
0.190
0.060
0.020
0.040
0.020
0.070 | GEN, AMMONIA TOTAL (MG/L AS NH4) 0.03 0.24 0.08 0.03 0.05 0.03 0.09 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.35
0.01
0.32
0.25
0.27
0.16 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.37 0.20 0.38 0.27 0.31 0.18 0.37 | GEN,
TOTAL
(MG/L
AS N)
0.88
0.87
0.81
0.90
0.65
0.53
0.75 | GEN,
TOTAL
(MG/L
AS NO3)
3.9
3.6
4.0
2.9
2.3
3.3 | PHORUS
TOTAL
(MG/L
AS P)
0.030
0.030
0.030
0.030
0.030
0.030 | | APR 1987 22 MAY 15 JUN 15 JUL 29 SEP 25 NOV 02 DEC 11 APR 1988 01 12 28 MAY | VOLA- TILE ON IGNI- TION, TOTAL (MG/L) 40 33 48 56 48 43 24 14 40 | TOTAL
FIXED
(MG/L) 53 92 65 90 108 55 82 76 89 | GEN,
NITRATE
TOTAL
(MG/L
AS N)
0.500
0.620
0.420
0.620
0.340
0.350
0.380 | GEN, NITRITE TOTAL (MG/L AS N) 0.010 0.050 0.010 0.010 0.00 0.00 0.00 | GEN, NO2+NO3 TOTAL (MG/L AS N) 0.510 0.670 0.430 0.340 0.350 0.380 0.560 0.630 0.390 | GEN, AMMONIA TOTAL (MG/L AS N) 0.020 0.190 0.060 0.020 0.040 0.020 0.070 0.040 0.030 0.050 | GEN, AMMONIA TOTAL (MG/L AS NH4) 0.03 0.24 0.08 0.03 0.05 0.03 0.05 0.04 0.06 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.35
0.01
0.32
0.25
0.27
0.16
0.30 | GEN, AM- MONIA + ORGANIC TOTTAL (MG/L AS N) 0.37 0.20 0.38 0.27 0.31 0.18 0.37 0.20 | GEN,
TOTAL
(MG/L
AS N)
0.88
0.87
0.81
0.90
0.65
0.53
0.75
0.88
0.87
0.79 | GEN,
TOTAL
(MG/L
AS NO3)
3.9
3.6
4.0
2.9
2.3
3.3
3.9
3.9
3.5 | PHORUS
TOTAL
(MG/L
AS P)
0.030
0.030
0.030
0.030
0.030
0.030
0.030
0.030 | | APR 1987 22 MAY 15 JUN 15 JUL 29 SEP 25 NOV 02 DEC 11 APR 1988 01 12 28 MAY 09 26 | VOLA- TILE ON IGNI- TION, TOTAL (MG/L) 40 33 48 56 48 43 24 14 |
TOTAL
FIXED
(MG/L)
53
92
65
90
108

55
82
76 | GEN,
NITRATE
TOTAL
(MG/L
AS N)
0.500
0.620
0.420
0.340
0.350
0.380
0.550
0.630 | GEN,
NITRITE
TOTAL
(MG/L
AS N)
0.010
0.050
0.010
0.00
0.00
0.00 | GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
0.510
0.670
0.430
0.630
0.340
0.350
0.380
0.560
0.630 | GEN,
AMMONIA
TOTAL
(MG/L
AS N)
0.020
0.190
0.060
0.020
0.040
0.070 | GEN, AMMONIA TOTAL (MG/L AS NH4) 0.03 0.24 0.08 0.03 0.05 0.03 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.35
0.01
0.32
0.25
0.27
0.16
0.30 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.37 0.20 0.38 0.27 0.31 0.18 0.37 | GEN,
TOTAL
(MG/L
AS N)
0.88
0.87
0.81
0.90
0.65
0.53
0.75 | GEN,
TOTAL
(MG/L
AS NO3)
3.9
3.6
4.0
2.9
2.3
3.3 | PHORUS
TOTAL
(MG/L
AS P)
0.030
0.030
0.030
0.030
0.030
0.030
0.030 | | APR 1987 22 MAY 15 JUN 15 SEP 25 NOV 02 DEC 11 APR 1988 01 12 28 MAY | VOLA- TILE ON IGNI- TION, TOTAL (MG/L) 40 33 48 56 48 43 24 14 40 53 | TOTAL
FIXED
(MG/L) 53 92 65 90 108 55 82 76 89 63 | GEN,
NITRATE
TOTAL
(MG/L
AS N)
0.500
0.620
0.420
0.350
0.380
0.550
0.630
0.380 | GEN, NITRITE TOTAL (MG/L AS N) 0.010 0.050 0.010 0.000 0.000 0.000 0.000 0.010 0.010 0.010 0.010 | GEN, NO2+NO3 TOTAL (MG/L AS N) 0.510 0.670 0.430 0.340 0.350 0.380 0.560 0.630 0.390 0.360 | GEN, AMMONIA TOTAL (MG/L AS N) 0.020 0.190 0.060 0.020 0.040 0.020 0.070 0.040 0.030 0.050 | GEN, AMMONIA TOTAL (MG/L AS NH4) 0.03 0.24 0.08 0.03 0.05 0.03 0.09 0.05 0.04 0.06 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.35
0.01
0.32
0.25
0.27
0.16
0.30
0.28
0.21
0.35 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.37 0.20 0.38 0.27 0.31 0.18 0.37 0.32 0.24 0.40 0.32 | GEN,
TOTAL
(MG/L
AS N)
0.88
0.87
0.90
0.65
0.53
0.75
0.88
0.87
0.79 | GEN,
TOTAL
(MG/L)
AS NO3)
3.9
3.6
4.0
2.9
2.3
3.3
3.9
3.9
3.5 | PHORUS
TOTAL
(MG/L
AS P)
0.030
0.030
0.030
0.030
0.030
0.030
0.030
0.030 | | APR 1987 22 MAY 15 JUN 15 JUL 29 SEP 25 NOV 02 DEC 11 APR 1988 01 12 28 MAY 09 JUN | VOLA- TILE ON IGNI- TION, TOTAL (MG/L) 40 33 48 56 48 43 24 14 40 53 31 | TOTAL
FIXED
(MG/L) 53 92 65 90 108 55 82 76 89 63 83 | GEN,
NITRATE
TOTAL
(MG/L
AS N)
0.500
0.620
0.420
0.350
0.350
0.380
0.350
0.370 | GEN, NITRITE TOTAL (MG/L AS N) 0.010 0.050 0.010 0.000 0.000 0.000 0.000 0.010 0.010 0.010 0.010 0.010 | GEN, NO2+NO3 TOTAL (MG/L AS N) 0.510 0.670 0.430 0.340 0.350 0.380 0.560 0.630 0.390 0.360 0.380 | GEN, AMMONIA TOTAL (MG/L AS N) 0.020 0.190 0.060 0.020 0.040 0.020 0.070 0.040 0.030 0.050 | GEN, AMMONIA TOTAL (MG/L AS NH4) 0.03 0.24 0.08 0.03 0.05 0.03 0.05 0.04 0.06 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.35
0.01
0.32
0.25
0.27
0.16
0.30
0.28
0.21
0.35 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.37 0.20 0.38 0.27 0.31 0.18 0.37 0.32 0.24 0.40 0.32 0.42 | GEN,
TOTAL
(MG/L
AS N)
0.88
0.87
0.81
0.90
0.65
0.53
0.75
0.88
0.87
0.79 | GEN,
TOTAL
(MG/L
AS NO3)
3.9
3.6
4.0
2.9
2.3
3.3
3.9
3.5
3.0
3.5 | PHORUS
TOTAL
(MG/L
AS P)
0.030
0.030
0.030
0.030
0.030
0.030
0.030
0.030
0.030
0.030 | | APR 1987 22 MAY 15 JUN 15 JUL 29 SEP 25 NOV 02 DEC 11 APR 1988 01 12 28 MAY 09 26 JUN 16 AUG 19 OCT | VOLA- TILE ON IGNI- TION, TOTAL (MG/L) 40 33 48 56 48 43 24 14 40 53 31 51 | TOTAL FIXED (MG/L) 53 92 65 90 108 55 82 76 89 63 83 83 46 | GEN,
NITRATE
TOTAL
(MG/L
AS N)
0.500
0.620
0.420
0.350
0.350
0.380
0.350
0.370
0.370 | GEN, NITRITE TOTAL (MG/L AS N) 0.010 0.050 0.010 0.010 0.00 0.00 0.00 | GEN, NO2+NO3 TOTAL (MG/L AS N) 0.510 0.670 0.430 0.340 0.350 0.380 0.560 0.630 0.390 0.360 0.380 0.420 0.450 | GEN, AMMONIA TOTAL (MG/L AS N) 0.020 0.190 0.060 0.020 0.040 0.020 0.070 0.040 0.050 0.030 0.050 0.010 0.030 | GEN, AMMONIA TOTAL (MG/L AS NH4) 0.03 0.24 0.08 0.03 0.05 0.03 0.05 0.04 0.06 0.06 0.04 0.06 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.35
0.01
0.32
0.25
0.27
0.16
0.30
0.28
0.21
0.35
0.29
0.37 | GEN, AM- MONIA + ORGANIC TOTTAL (MG/L AS N) 0.37 0.20 0.38 0.27 0.31 0.18 0.37 0.32 0.24 0.40 0.32 0.42 0.38 0.51 | GEN,
TOTAL
(MG/L
AS N)
0.88
0.87
0.81
0.90
0.65
0.53
0.75
0.88
0.87
0.79
0.68
0.80 | GEN,
TOTAL
(MG/L
AS NO3)
3.9
3.6
4.0
2.9
2.3
3.3
3.9
3.5
3.5
3.5 | PHORUS
TOTAL
(MG/L
AS P)
0.030
0.030
0.030
0.030
0.030
0.030
0.030
0.030
0.030
0.030 | | APR 1987 22 MAY 15 JUN 15 JUL 29 SEP 25 NOV 02 DEC 11 APR 1988 01 12 28 MAY 09 26 JUN 16 AUG 19 | VOLA- TILE ON IGNI- TION, TOTAL (MG/L) 40 33 48 56 48 43 24 14 40 53 31 51 | TOTAL FIXED (MG/L) 53 92 65 90 108 55 82 76 89 63 83 83 | GEN,
NITRATE
TOTAL
(MG/L
AS N)
0.500
0.620
0.420
0.350
0.380
0.550
0.630
0.380
0.350
0.370 | GEN, NITRITE TOTAL (MG/L AS N) 0.010 0.050 0.010 0.000 0.000 0.000 0.010 0.000 0.010 0.010 0.010 0.010 0.010 0.010 | GEN, NO2+NO3 TOTAL (MG/L AS N) 0.510 0.670 0.430 0.340 0.350 0.380 0.560 0.630 0.390 0.360 0.380 0.360 0.380 0.420 | GEN, AMMONIA TOTAL (MG/L AS N) 0.020 0.190 0.060 0.020 0.040 0.020 0.070 0.040 0.030 0.050 0.030 0.050 | GEN, AMMONIA TOTAL (MG/L AS NH4) 0.03 0.24 0.08 0.03 0.05 0.03 0.09 0.05 0.04 0.06 0.04 0.06 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.35
0.01
0.32
0.25
0.27
0.16
0.30
0.28
0.21
0.35 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.37 0.20 0.38 0.27 0.31 0.18 0.37 0.32 0.40 0.32 0.40 0.32 0.42 | GEN,
TOTAL
(MG/L
AS N)
0.88
0.87
0.90
0.65
0.53
0.75
0.88
0.87
0.79 | GEN,
TOTAL
(MG/L
AS NO3)
3.9
3.6
4.0
2.9
2.3
3.3
3.9
3.9
3.5 | PHORUS TOTAL (MG/L AS P) 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.050 0.030 0.030 0.040 0.040 0.040 | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). # 01335770 HUDSON RIVER AT WATERFORD, NY - continued | DATE | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P) | PHOS-
PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4) | ALUM-
INUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS AL) | ALUM-
INUM,
DIS-
SOLVED
(UG/L
AS AL) | CADMIUM
TOTAL
RECOV-
ERABLE
(UG/L
AS CD) | CADMIUM
DIS-
SOLVED
(UG/L
AS CD) | COPPER,
TOTAL
RECOV-
ERABLE
(UG/L
AS CU) | COPPER,
DIS-
SOLVED
(UG/L
AS CU) | IRON, TOTAL RECOV- ERABLE (UG/L AS FE) | IRON,
DIS-
SOLVED
(UG/L
AS FE) | LEAD,
TOTAL
RECOV-
ERABLE
(UG/L
AS PB) | LEAD,
DIS-
SOLVED
(UG/L
AS PB) | |---|---|---|--|---|---|--|---|--|--|--|--|---| | APR 1987 | | | | | | | | | | | | | | 22
MAY | 0.00 | 0.0 | | | <10 | | <10 | | 370 | | <100 | | | 15 | | | | | <10 | | 20 | | 240 | | 41 | | | JUN
15 | 0.010 | 0.03 | | | <10 | | <10 | | 260 | | 13 | | | JUL
29 | 0.00 | 0.0 | | | <10 | <1.0 | 20 | 3 | 220 | | < 5 | < 5 | | SEP
25 | 0.00 | 0.0 | | | <1 | | 6 | | 380 | | < 5 | | | NOV
02 | 0.00 | 0.0 | | | <1 | 1.0 | 5 | 2 | 370 | | < 5 | < 5 | | DEC | 0.00 | 0.0 | | | <1 | | 7 | | 320 | | < 5 | | | APR 1988 | | | | | | | | | | | | | | 01
12 | 0.010
0.00 | 0.03
0.0 | 210
170 | 40 | 1
<1 | <1.0 | 4 | 2 | 420
230 | 60
 | <5
10 | < 5 | | 28 | 0.00 | 0.0 | 190 | 40 | 2 | <1.0 | 16 | 3 | 360 | 68 | < 5 | < 5 | | MAY | | | | | | | | | | | | | | 09
26 | 0.00
0.00 | 0.0
0.0 | 140
280 | 30 | 1
2 |
<1.0 | 5
13 | 1 | 260
530 |
74 | <5
6 |
< 5 | | JUN
16 | ND | | 140 | | <1 | | 7 | | 300 | | < 5 | | | AUG | | | | | | | | | | | < 5 | | | 19
○○T | 0.010 | 0.03 | 80 | | 2 | | 8 | | 130 | | | | | 06
NOV | 0.00 | 0.0 | 150 | | <1 | | 10 | | 280 | | < 5 | | | 0 9 | ND | | 370 | 50 | <1 | 1.0 | 7 | 3 | 580 | 84 | < 5 | < 5 | | | | | | | | | | | | | | | | DATE | MANGA-
NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN) | MERCURY
TOTAL
RECOV-
ERABLE
(UG/L
AS HG) | NICKEL,
TOTAL,
RECOV-
ERABLE
(UG/L
AS NI) | NICKEL,
DIS-
SOLVED
(UG/L
AS NI) | ZINC,
TOTAL
RECOV-
ERABLE
(UG/L
AS ZN) | ZINC,
DIS-
SOLVED
(UG/L
AS ZN) | PHENOL
(C6H-
5OH)
TOTAL
(UG/L) |
BROMO-
FORM
TOTAL
(UG/L) | CARBON-
TETRA-
CHLO-
RIDE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
DI-
BROMO-
METHANE
TOTAL
(UG/L) | | APR 1987 | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL
RECOV-
ERABLE
(UG/L
AS HG) | TOTAL ,
RECOV-
ERABLE
(UG/L
AS NI) | DIS-
SOLVED
(UG/L
AS NI) | TOTAL
RECOV-
ERABLE
(UG/L
AS ZN) | DIS-
SOLVED
(UG/L
AS ZN) | (C6H-
5OH)
TOTAL
(UG/L) | FORM
TOTAL
(UG/L) | TETRA-
CHLO-
RIDE
TOTAL
(UG/L) | BENZENE
TOTAL
(UG/L) | DI-
BROMO-
METHANE
TOTAL
(UG/L) | | | NESE,
TOTAL
RECOV-
ERABLE
(UG/L | NESE,
DIS-
SOLVED
(UG/L | TOTAL
RECOV-
ERABLE
(UG/L | TOTAL ,
RECOV-
ERABLE
(UG/L | DIS-
SOLVED
(UG/L | TOTAL
RECOV-
ERABLE
(UG/L | DIS-
SOLVED
(UG/L | (C6H-
5OH)
TOTAL | FORM
TOTAL | TETRA-
CHLO-
RIDE
TOTAL | BENZENE
TOTAL | DI-
BROMO-
METHANE
TOTAL | | APR 1987
22 | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL
RECOV-
ERABLE
(UG/L
AS HG) | TOTAL ,
RECOV-
ERABLE
(UG/L
AS NI) | DIS-
SOLVED
(UG/L
AS NI) | TOTAL
RECOV-
ERABLE
(UG/L
AS ZN) | DIS-
SOLVED
(UG/L
AS ZN) | (C6H-
5OH)
TOTAL
(UG/L) | FORM
TOTAL
(UG/L) | TETRA-
CHLO-
RIDE
TOTAL
(UG/L) | BENZENE
TOTAL
(UG/L) | DI-
BROMO-
METHANE
TOTAL
(UG/L) | | APR 1987
22
MAY
15 | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL
RECOV-
ERABLE
(UG/L
AS HG) | TOTAL ,
RECOV-
ERABLE
(UG/L
AS NI) | DIS-
SOLVED
(UG/L
AS NI) | TOTAL
RECOV-
ERABLE
(UG/L
AS ZN) | DIS-
SOLVED
(UG/L
AS ZN) | (C6H-
5OH)
TOTAL
(UG/L) | FORM TOTAL (UG/L) | TETRA-
CHLO-
RIDE
TOTAL
(UG/L) | BENZENE
TOTAL
(UG/L)
ND | DI-
BROMO-
METHANE
TOTAL
(UG/L) | | APR 1987
22
MAY
15
JUN
15
JUL
29 | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN)
40 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL
RECOV-
ERABLE
(UG/L
AS HG)
<0.10 | TOTAL RECOV-ERABLE (UG/L AS NI) | DIS-
SOLVED
(UG/L
AS NI) | TOTAL
RECOV-
ERABLE
(UG/L
AS ZN)
20 | DIS-
SOLVED
(UG/L
AS ZN) | (C6H-
5OH)
TOTAL
(UG/L) | FORM TOTAL (UG/L) ND | TETRA-
CHLO-
RIDE
TOTAL
(UG/L)
ND | BENZENE
TOTAL
(UG/L)
ND
ND | DI-
BROMO-
METHANE
TOTAL
(UG/L)
ND | | APR 1987
22
MAY
15
JUN
15
JUL
29
SEP
25 | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN)
40
40 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV- ERABLE (UG/L AS HG) <0.10 <0.10 | TOTAL RECOV-
ERABLE (UG/L AS NI) | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV- ERABLE (UG/L AS ZN) 20 20 | DIS-
SOLVED
(UG/L
AS ZN) | (C6H-
50H)
TOTAL
(UG/L) | FORM TOTAL (UG/L) ND ND ND | TETRA-
CHLO-
RIDE
TOTAL
(UG/L)
ND
ND | BENZENE
TOTAL
(UG/L)
ND
ND | DI-
BROMO-
METHANE
TOTAL
(UG/L)
ND
ND | | APR 1987 22 MAY 15 JUN 15 JUL 29 SEP 25 NOV 02 | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN)
40
40
30 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV- ERABLE (UG/L AS HG) <0.10 <0.10 <0.20 | TOTAL , RECOV-
ERABLE (UG/L AS NI) <100 <1 <1 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV- ERABLE (UG/L AS ZN) 20 20 20 <10 | DIS-
SOLVED
(UG/L
AS ZN) | (C6H-
50H)
TOTAL
(UG/L) | FORM TOTAL (UG/L) ND ND ND | TETRA-CHLO-RIDE TOTAL (UG/L) ND ND ND ND | BENZENE
TOTAL
(UG/L)
ND
ND
ND | DI- BROMO- METHANE TOTAL (UG/L) ND ND ND | | APR 1987 22 MAY 15 JUN 15 JUL 29 SEP 25 NOV 02 DEC 11 | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN)
40
40
30
50
40
30 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV- ERABLE (UG/L AS HG) <0.10 <0.10 <0.10 <0.10 | TOTAL RECOV- RECOV- ERABLE (UG/L AS NI) <100 <1 <1 2 1 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV- ERABLE (UG/L AS ZN) 20 20 20 <10 <10 | DIS-
SOLVED
(UG/L
AS ZN) | (C6H-
50H)
TOTAL
(UG/L) | FORM TOTAL (UG/L) ND ND ND ND ND | TETRA-CHLO-RIDE TOTAL (UG/L) ND ND ND ND ND | BENZENE
TOTAL
(UG/L)
ND
ND
ND
ND | DI- BROMO- METHANE TOTAL (UG/L) ND ND ND ND | | APR 1987 22 MAY 15 JUN 15 JUL 29 SEP 25 NOV 02 DEC 11 APR 1988 | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN)
40
40
30
50
40
30 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOVERABLE (UG/L AS HG) <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 | TOTAL , RECOV-
RECOV-
ERABLE (UG/L
AS NI) <100 <1 <1 <1 <2 <1 <2 <1 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV-ERABLE (UG/L AS ZN) 20 20 20 <10 <10 <10 <10 | DIS-
SOLVED
(UG/L
AS ZN) 10 <10 | (C6H-
50H)
TOTAL
(UG/L) | FORM TOTAL (UG/L) ND ND ND ND ND ND ND ND ND | TETRA-CHLO-RIDE TOTAL (UG/L) ND ND ND ND ND ND | BENZENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND
ND | DI- BROMO- METHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | | APR 1987 22 MAY 15 JUN 15 JUL 29 SEP 25 NOV 02 DEC 11 | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN)
40
40
30
50
40
30 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV-ERABLE (UG/L AS HG) <0.10 <0.10 <0.10 0.20 <0.10 0.10 | TOTAL , RECOV-ERABLE (UG/L AS NI) <100 <1 <1 2 1 <2 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV- ERABLE (UG/L AS ZN) 20 20 20 <10 <10 <10 | DIS-
SOLVED
(UG/L
AS ZN) 10 <10 | (C6H-
50H)
TOTAL
(UG/L) | FORM TOTAL (UG/L) ND ND ND ND ND ND | TETRA-CHLO-RIDE TOTAL (UG/L) ND ND ND ND ND | BENZENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND | DI- BROMO- METHANE TOTAL (UG/L) ND ND ND ND ND ND ND | | APR 1987 22 MAY 15 JUN 15 JUL 29 SEP 25 NOV 02 DEC 11 APR 1988 01 12 28 | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN)
40
40
30
40
30
40 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV-ERABLE (UG/L AS HG) <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 | TOTAL , RECOV-
RECOV-
ERABLE (UG/L AS NI) <100 <1 <1 <1 <2 1 <2 <1 <2 <1 2 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV-ERABLE (UG/L AS ZN) 20 20 20 <10 <10 <10 10 | DIS-
SOLVED
(UG/L
AS ZN) 10 <10 <10 | (C6H-
50H)
TOTAL
(UG/L) | FORM TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TETRA-CHLO-RIDE RIDE TOTAL (UG/L) ND | BENZENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND
ND | DI- BROMO- METHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | | APR 1987 22 MAY 15 JUN 15 JUL 29 SEP 25 NOV 02 DEC 11 APR 1988 01 12 28 MAY | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN)
40
40
30
40
40
40
40
50 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV-ERABLE (UG/L AS HG) <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 | TOTAL , RECOV-
ERABLE (UG/L AS NI) <100 <1 <1 <1 2 1 <2 <1 26 7 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV-ERABLE (UG/L AS ZN) 20 20 20 <10 <10 <10 <10 10 10 10 | DIS-
SOLVED
(UG/L
AS ZN) 10 <10 10 | (C6H-
50H)
TOTAL
(UG/L) | FORM TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TETRA-CHLO-RIDE RIDE TOTAL (UG/L) ND | BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | DI- BROMO- METHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | | APR 1987 22 MAY 15 JUN 15 JUL 29 SEP 25 NOV 02 DEC 11 APR 1988 01 28 MAY 09 26 | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN)
40
40
30
50
40
30
40
40 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV-ERABLE (UG/L AS HG) <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <1.10 <0.10 <0.10 <1.10 <1.10 <1.10 <1.10 <1.10 <1.10 <1.10 <1.10 <1.10 <1.10 <1.10 <1.10 <1.10 <1.10 <1.10 <1.10 <1.10 <1.10 | TOTAL RECOV- RECOV- ERABLE (UG/L AS NI) <100 <1 <1 2 1 <2 <1 2 6 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV-ERABLE (UG/L AS ZN) 20 20 20 <10 <10 <10 <10 <10 <10 <10 | DIS-
SOLVED
(UG/L
AS ZN) 10 <10 <10 | (C6H-
50H)
TOTAL
(UG/L) | FORM TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TETRA-CHLO-RIDE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | BENZENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND
ND | DI- BROMO- METHANE TOTAL (UG/L) ND | | APR 1987 22 MAY 15 JUN 15 JUL 29 SEP 25 NOV 02 DEC 11 APR 1988 01 12 28 MAY 09 | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) 40 40 30 40 40 40 50 50 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV-ERABLE (UG/L AS HG) <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 | TOTAL , RECOV-
ERABLE (UG/L AS NI) <100 <1 <1 <2 1 <2 <1 2 66 7 33 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV-ERABLE (UG/L AS ZN) 20 20 20 <10 <10 <10 10 <10 10 <10 10 <10 10 <10 10 | DIS-
SOLVED
(UG/L
AS ZN) 10 <10 10 10 | (C6H-
50H)
TOTAL
(UG/L) | FORM TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TETRA-CHLO-RIDE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | BENZENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND
ND
ND | DI- BROMO- METHANE TOTAL (UG/L) ND | | APR 1987 22 MAY 15 JUN 15 JUL 29 SEP 25 NOV 02 DEC 11 APR 1988 01 122 28 MAY 09 210 JUN | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN)
40
40
30
40
40
40
50
50
60 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV-ERABLE (UG/L AS HG) <0.10 <0.10 <0.10 0.20 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 | TOTAL RECOV- RECOV- ERABLE (UG/L AS NI) <100 <1 <1 <1 2 1 <2 <1 2 6 7 3 7 | DIS- SOLVED (UG/L AS NI) <1 2 3 1 <1 | TOTAL RECOV-ERABLE (UG/L AS ZN) 20 20 20 <10 <10 <10 <10 <10 <10 10 <10 10 | DIS-
SOLVED
(UG/L
AS ZN) 10 <10 10 6 | (C6H-
50H)
TOTAL
(UG/L) | FORM TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TETRA-CHLO-RIDE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N |
BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | DI- BROMO- METHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | | APR 1987 22 MAY 15 JUN 15 JUL 29 SEP 25 NOV 02 DEC 11 APR 1988 01 12 28 MAY 09 26 JUN 16 AUG 19 OCT | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN)
40
40
30
40
40
50
50
60
60 | NESE,
DIS-
SOLVED
(UG/L
AS MN) 20 33 21 | TOTAL RECOV-ERABLE (UG/L AS HG) <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 | TOTAL , RECOV-
RECOV-
ERABLE (UG/L AS NI) <100 <1 <1 <1 <2 1 <2 <1 <2 66 7 37 37 33 33 33 | DIS- SOLVED (UG/L AS NI) <1 2 1 <1 <1 <1 <1 <1 | TOTAL RECOVERABLE (UG/L AS ZN) 20 20 20 <10 <10 <10 <10 <10 <10 <10 <10 <10 <1 | DIS-
SOLVED
(UG/L
AS ZN) 10 <10 10 6 | (C6H-
50H)
TOTAL
(UG/L) | FORM TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TETRA-CHLO-RIDE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | DI- BROMO- METHANE TOTAL (UG/L) ND | | APR 1987 22 MAY 15 JUN 15 JUL 29 SEP 25 NOV 02 DEC 11 APR 1988 01 28 MAY 09 26 JUN 16 AUG 19 | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) 40 40 30 40 40 30 50 60 60 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV-ERABLE (UG/L AS HG) <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 | TOTAL , RECOV- REABLE (UG/L AS NI) <100 <1 <1 <2 <1 <2 <1 26 7 37 3 | DIS-
SOLVED (UG/L
AS NI) | TOTAL RECOV-ERABLE (UG/L AS ZN) 20 20 20 <10 <10 <10 10 <10 10 <10 10 <10 10 <10 10 | DIS-
SOLVED
(UG/L
AS ZN) 10 <10 10 6 | (C6H-
50H)
TOTAL
(UG/L) | FORM TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TETRA-CHLO-RIDE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | DI- BROMO- METHANE TOTAL (UG/L) ND | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). # 01335770 HUDSON RIVER AT WATERFORD, NY - continued | DATE | CHLORO-
ETHANE
TOTAL
(UG/L) | CHLORO-
FORM
TOTAL
(UG/L) | CIS
1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | DI-
CHLORO-
BROMO-
METHANE
TOTAL
(UG/L) | METHYL-
BROMIDE
TOTAL
(UG/L) | METHYL-
CHLO-
RIDE
TOTAL
(UG/L) | METHYL-
ENE
CHLO-
RIDE
TOTAL
(UG/L) | 1,1,1-
TRI-
CHLORO-
ETHANE
TOTAL
(UG/L) | 1,1-DI-
CHLORO-
ETHANE
TOTAL
(UG/L) | 1,1-DI-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 1,1,2-
TRI-
CHLORO-
ETHANE
TOTAL
(UG/L) | 1,1,2,2
TETRA-
CHLORO-
ETHANE
TOTAL
(UG/L) | |-----------|--------------------------------------|------------------------------------|---|--|---------------------------------------|---|--|--|---|--|--|---| | APR 1987 | | | | | | | | | | | | | | 22 | ND | MAY | 110 | | | | | | | | | | | | | 15
JUN | ND | 15 | ND | JUL | | | | | | | | | | | | | | 29 | ND | ИD | ND | SEP | *** | | | | | | | | | | | | | 25
NOV | ND | 02 | ND | DEC | | | | | | | | | | | | | | 11 | ND | APR 1988 | | | | | | | | | | | _ | | | 01 | ND | 12 | ND | 28
MAY | ND | 09 | | | ND | | | | | | | | | | | 26 | ND | JUN | | | | | | | | | | | | | | 16 | ND | AUG | | | | | | | | | | | | | | 19
∝T | ~ - | | | | | | | | | | | | | 06 | ~ = | | | | | | | | | | | | | NOV | | | | | | | | | | | | | | 09 | ND | DATE | 1,2-DI-
CHLORO-
BENZENE
TOTAL
(UG/L) | 1,2-DI-
CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L) | 1,2-DI-
CHLORO-
PROPANE
TOTAL
(UG/L) | 1,2-
TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L) | 1,3-DI-
CHLORO-
BENZENE
TOTAL
(UG/L) | 1,4-DI-
CHLORO-
BENZENE
TOTAL
(UG/L) | TETRA-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | TRANS-
1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | TRI-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 2-
CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L) | VINYL
CHLO-
RIDE
TOTAL
(UG/L) | |----------------|--|---|--|---|--|--|---|--|---|---|---| | APR 1987 | | | | | | | | | | | | | 22 | ND | MAY | | | | | | | | | | | | | 15 | ND | JUN | | | | | | | 2.0 | | | *** | | | 15
JUL | ND | ND | ND | ND | ND | ND | 3.0 | ND | ND | ND | ND | | 29 | ND | SEP | | 2 | 112 | 112 | 110 | 112 | 112 | 110 | ND | 142 | 110 | | 25 | ND | NOV | | | | | | | | | | | | | 02 | ND | DEC | | | | | | | | | | | | | 11 | ND | ND | ND | ИD | ИD | ND | ND | ND | ND | ND | ND | | APR 1988
01 | ND | ND | ND | ND | ND | MD | MD | 370 | ND | ND. | ND | | 12 | ND | ND | ND | ND
ND ND | | 28 | ND | MAY | | | | | | | 1.2 | | | 110 | | | 09 | | | | | | | | ND | ND | | ND | | 26 | ND | JUN | | | | | | | | | | | | | 16 | ND | AUG
19 | | | | | | | | | | | | | 19
⊙CT | | | | | | | | | | | | | 06 | | | | | | | | | | | | | NOV | | | | | | | | | | | | | 09 | ND Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). 01335770 HUDSON RIVER AT WATERFORD, NY - continued ### SUSPENDED SEDIMENT DISCHARGE | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND | SEDI-
MENT,
SUS-
PENDED
(MG/L) | SEDI-
MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY) | |-------------|------|--|--|--| | APR 1987 | | | | | | 22 | 1000 | 9600 | 24 | 622 | | MAY 1988 | | | | | | 09 | 1000 | 5470 | 3 | 44 | | 26 <i>.</i> | 0930 | 7710 | 8 | 167 | | JUN | | | | | | 16 | 1200 | 2730 | 6 | 44 | | AUG | | | | | | 19 | 0845 | 2630 | 6 | 43 | | OCT | | | | | | 06 | 1300 | E3350 | 3 | | | NOV | | | | | | 09 | 1000 | 12200 | 14 | 461 | | | | | | | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). #### 01342602 MOHAWK RIVER NEAR UTICA, NY LOCATION.--Lat 43 05'26", long 75 09'27", Herkimer County, Hydrologic Unit 02020004, at bridge on Upper Dyke Road, 2.0 mi east of city line of Utica. DRAINAGE AREA. -- 553 mi 2 . PERIOD OF RECORD.--Water years 1972-73, 1988 to current year. CHEMICAL DATA: 1988 (b), 1989 (a). MINOR ELEMENTS DATA: 1972-73, 1988 (b), 1989 (a). PESTICIDE DATA: 1988 (b), 1989 (a). ORGANIC DATA: 0C--1988 (b), 1989 (a). NUTRIENT DATA: 1988 (b), 1989 (a). BIOLOGICAL DATA: Bacteria--1988 (b), 1989 (a). REMARKS.--Water-discharge data obtained from a discharge rating developed for this site. During canal navigation season, water is received from Black River basin through Black River Canal flowing south. Water is diverted into (or may occasionally be received from) Oswego River basin through summit level of Erie (Barge) Canal between New London and Utica. Diurnal fluctuation caused by powerplants and locks and dams on Erie (Barge) Canal. Regulation by Delta Reservoir. | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND | SPE-
CIFIC
CON-
DUCT-
ANCE
LAB
(US/CM) | PH WATER WHOLE FIELD (STAND- ARD UNITS) | TEMPER-
ATURE
WATER
(DEG C) | TUR-
BID-
ITY
(NTU) | OXYGEN,
DIS-
SOLVED
(MG/L) | COLI-
FORM,
TOTAL,
IMMED.
(COLS.
PER
100 ML) | FECAL
COLI-
FORM
24-HR
MEM.FIL
(COLS./
100 ML) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG) | |-----------------------|--|--|--|--|--|---|--|---|--|--|---|--| | APR 1988
11
MAY | 1115 | 1200 | 343 | 7.9 | 6.0 | 12 | 10.8 | | | 140 | 41 | 8.5 | | 03
JUN | 1000 | 1140 | 327 | 7.6 | 7.5 | 7.0 | 10.8 | 9600 | 900 | 140 | 40 | 8.7 | | 01
AUG | 0920 | 275 | 472 | 7.4 | 18.0 | 12 | 8.0 | 4800 | 500 | 190 | 53 | 13 | | 04
OCT | 0900 | 210 | 401 | 7.3 | 25.5 | 27 | 4.8 | 3400 | 500 | 150 | 44 | 10 | | 06 | 0900 | 254 | 391 | 7.6 | 14.0 | 8.8 | 11.0 | 43000 | 5100 | 140 | 43 | 9.1 | | DATE | SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K) | ALKA-
LINITY
LAB
(MG/L
AS
CACO3) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F) |
SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | SOLIDS,
RESIDUE
AT 105
DEG. C,
TOTAL
(MG/L) | SOLIDS,
VOLA-
TILE ON
IGNI-
TION,
TOTAL
(MG/L) | RESIDUE
TOTAL
FIXED
(MG/L) | NITRO-
GEN,
NITRATE
TOTAL
(MG/L
AS N) | | APR 1988
11 | 12 | 1.5 | 105 | 29 | 19 | 0.10 | 212 | 174 | 244 | 108 | 136 | 1.05 | | MAY | | | | | | | | | | | | | | 03
JUN | 12 | 1.4 | 99 | 30 | 19 | 0.30 | 180 | 171 | 188 | 72 | 116 | 0.940 | | 01
AU G | 21 | 2.2 | 131 | 49 | 32 | 0.40 | 284 | 249 | 500 | 92 | 408 | 1.36 | | 04
OCT | 21 | 2.2 | 104 | 41 | 28 | 0.50 | 256 | 209 | 384 | 124 | 260 | 1.57 | | 06 | 18 | 1.9 | 107 | 31 | 23 | 0.10 | 224 | 191 | 252 | 68 | 184 | 1.54 | | DATE | NITRO-
GEN,
NITRITE
TOTAL
(MG/L
AS N) | NITRO-
GEN,
NO2+NO3
TOTAL
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS NH4) | NITRO-
GEN,
ORGANIC
TOTAL
(MG/L
AS N) | NITRO-
GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | NITRO-
GEN,
TOTAL
(MG/L
AS N) | NITRO-
GEN,
TOTAL
(MG/L
AS NO3) | PHOS-
PHORUS
TOTAL
(MG/L
AS P) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P) | PHOS-
PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4) | ALUM-
INUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS AL) | | APR 1988 | | | | | | | | _ | | | | | | 11
MAY | 0.010 | 1.06 | 0.220 | 0.28 | 0.32 | 0.54 | 1.6 | 7.1 | 0.070 | 0.020 | 0.06 | 360 | | 03
JUN | 0.020 | 0.960 | 0.140 | 0.18 | 0.23 | 0.37 | 1.3 | 5.9 | 0.100 | 0.020 | 0.06 | 350 | | 01
AUG | 0.110 | 1.47 | 0.660 | 0.85 | 0.34 | 1.0 | 2.5 | 11 | 0.250 | 0.070 | 0.21 | 350 | | 04
OCT | 0.030 | 1.60 | 0.200 | 0.26 | 0.45 | 0.65 | 2.3 | 10 | 0.190 | 0.030 | 0.09 | 1200 | | 06 | 0.00 | 1.54 | 0.100 | 0.13 | 0.39 | 0.49 | 2.0 | 9.0 | 0.240 | 0.110 | 0.34 | 290 | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). ### 01342602 MOHAWK RIVER NEAR UTICA, NY - continued | DATE | CADMIUM
TOTAL
RECOV-
ERABLE
(UG/L
AS CD) | COPPER,
TOTAL
RECOV-
ERABLE
(UG/L
AS CU) | IRON, TOTAL RECOV- ERABLE (UG/L AS FE) | LEAD,
TOTAL
RECOV-
ERABLE
(UG/L
AS PB) | MANGA-
NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | MERCURY
TOTAL
RECOV-
ERABLE
(UG/L
AS HG) | NICKEL,
TOTAL
RECOV-
ERABLE
(UG/L
AS NI) | ZINC,
TOTAL
RECOV-
ERABLE
(UG/L
AS ZN) | PHENOL
(C6H-
5OH)
TOTAL
(UG/L) | BROMO-
FORM
TOTAL
(UG/L) | CARBON-
TETRA-
CHLO-
RIDE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | |---|--|---|---|---|---|---|---|--|--|--|--|--| | APR 1988 | | | | _ | | | _ | | | | | | | 11
MAY | 2 | 13 | 880 | < 5 | 70 | <0.10 | 3 | 20 | ND | ND | ND | ND | | 03 | 6 | 14 | 860 | < 5 | 80 | 0.10 | 5 | 30 | ND | 0 | 0 | 0.0 | | 01
AUG | 2 | 20 | 930 | 7 | 160 | 0.50 | 6 | 70 | | | | | | 04
OCT | 1 | 21 | 2500 | 13 | 150 | 0.30 | 18 | 30 | ND | ND | ND | ND | | 06 | 1 | 46 | 800 | <5 | 110 | <0.10 | 3 | 90 | 0.0 | ND | ND | ND | | DATE | CHLORO-
DI -
BROMO-
METHANE
TOTAL
(UG/L) | CHLORO-
ETHANE
TOTAL
(UG/L) | CHLORO-
FORM
TOTAL
(UG/L) | CIS
1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | DI-
CHLORO-
BROMO-
METHANE
TOTAL
(UG/L) | METHYL-
BROMIDE
TOTAL
(UG/L) | METHYL-
CHLO-
RIDE
TOTAL
(UG/L) | METHYL-
ENE
CHLO-
RIDE
TOTAL
(UG/L) | 1,1,1-
TRI-
CHLORO-
ETHANE
TOTAL
(UG/L) | 1,1-DI-
CHLORO-
ETHANE
TOTAL
(UG/L) | 1,1-DI-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 1,1,2-
TRI-
CHLORO-
ETHANE
TOTAL
(UG/L) | | APR 1988 | | | | | | ND | ND | | | | | ND | | 11 | ND | ND | NID. | NII | ND | | | NI) | ND | NI) | NIII | | | 11
MAY | ND | ND | ND | ND | ND | ND | | DИ | ND | ND | ND | | | YAM
03
NUL | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | MAY
03
JUN
01
AUG | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | MAY
03
JUN
01 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0

ND | 0 | 0 | 0 | 0

ND | | MAY
03
JUN
01
AUG
04 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | MAY
03
JUN
01
AUG
04 | 0

ND | 0

ND | 0 3.4 | 0

ND | 0 0 . 4 | 0
 | 0

ND | 0

ND | 0

ND | 0

ND | 0

ND | 0

ND | | MAY
03
JUN
01
AUG
04
OCT
06 | 0 ND ND ND 1,1,2,2 TETRA-CHLORO-ETHANE TOTAL (UG/L) | 0 ND ND 1,2-DI-CHLORO-BENZENE TOTAL (UG/L) | 0 3.4 0.8 1,2-DI-CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) | 0 ND ND ND 1,2-DI-CHLORO-PROPANE TOTAL (UG/L) | 0 .4 ND 1,2-TRANSDI CHLORO-ETHENE TOTAL (UG/L) | 0 ND ND 1,3-DI- CHLORO- BENZENE TOTAL (UG/L) | 0 ND ND 1,4-DI- CHLORO- BENZENE TOTAL (UG/L) | 0 ND 0.5 TETRA-CHLORO-ETHYL-ENE TOTAL (UG/L) | 0 ND ND TRANS- 1,3-DI- CHLORO- PROPENE TOTAL (UG/L) | 0 ND ND TRI- CHLORO- ETHYL- ENE TOTAL (UG/L) | 0 ND ND 2- CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L) | O ND ND VINYL CHLO-RIDE TOTAL (UG/L) | | MAY 03 JUN 01 AUG 04 CCT 06 DATE APR 1988 | 0 ND ND 1,1,2,2 TETRA-CHLORO-ETHANE TOTAL (UG/L) ND | 0 ND ND 1,2-DI- CHLORO- BENZENE TOTAL (UG/L) ND | 0 3.4 0.8 1,2-DI- CHLORO- ETHANE WATER WHOLE TOTAL (UG/L) | 0 ND ND 1,2-DI- CHLORO- PROPANE TOTAL (UG/L) ND | 0 .4 ND 1,2-TRANSDI CHLORO-ETHENE TOTAL (UG/L) ND | 0 ND ND 1,3-DI- CHLORO- BENZENE TOTAL (UG/L) ND | 0 ND ND 1,4-DI- CHLORO- BENZENE TOTAL (UG/L) ND | 0 ND 0.5 TETRA-CHLORO-ETHYL-ENE TOTAL (UG/L) | O TRANS-1,3-DI-CHLORO-PROPENE TOTAL (UG/L) | 0 ND ND TRI- CHLORO- ETHYL- ENE TOTAL (UG/L) 1.0 | 0 ND ND 2- CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L) ND | O ND ND VINYL CHLO-RIDE TOTAL (UG/L) | | MAY 03 JUN 01 AUG 04 OCT 06 DATE APR 1988 11 MAY 03 JUN | 0 ND ND ND 1,1,2,2 TETRA-CHLORO-ETHANE TOTAL (UG/L) | 0 ND ND 1,2-DI-CHLORO-BENZENE TOTAL (UG/L) | 0 3.4 0.8 1,2-DI-CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) | 0 ND ND ND 1,2-DI-CHLORO-PROPANE TOTAL (UG/L) | 0 0.4 ND 1,2-TRANSDI CHLORO-ETHENE TOTAL (UG/L) | 0 ND ND ND 1,3-DICHLORO-BENZENE TOTAL (UG/L) | 0 ND ND 1,4-DI- CHLORO- BENZENE TOTAL (UG/L) | 0 ND 0.5 TETRA-CHLORO-ETHYL-ENE TOTAL (UG/L) | 0 ND ND ND TRANS-1,3-DICHLORO-PROPENE TOTAL (UG/L) | 0 ND ND TRI- CHLORO- ETHYL- ENE TOTAL (UG/L) | 0 ND ND 2- CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L) | O ND ND VINYL CHLO-RIDE TOTAL (UG/L) | | MAY 03 JUN 01 AUG 04 OCT 06 DATE APR 1988 11 MAY 03 | 0 ND ND 1,1,2,2 TETRA-CHLORO-ETHANE TOTAL (UG/L) ND | 0 ND ND 1,2-DI- CHLORO- BENZENE TOTAL (UG/L) ND | 0 3.4 0.8 1,2-DI- CHLORO- ETHANE WATER WHOLE TOTAL (UG/L) | 0 ND ND 1,2-DI- CHLORO- PROPANE TOTAL (UG/L) ND | 0 .4 ND 1,2-TRANSDI CHLORO-ETHENE TOTAL (UG/L) ND | 0 ND ND 1,3-DI- CHLORO- BENZENE TOTAL (UG/L) ND | 0 ND ND 1,4-DI- CHLORO- BENZENE TOTAL (UG/L) ND | 0 ND 0.5 TETRA-CHLORO-ETHYL-ENE TOTAL (UG/L) | O TRANS-1,3-DI-CHLORO-PROPENE TOTAL (UG/L) | 0 ND ND TRI- CHLORO- ETHYL- ENE TOTAL (UG/L) 1.0 | 0 ND ND 2- CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L) ND | O ND ND VINYL CHLO-RIDE TOTAL (UG/L) | | DATE DATE APR 1988 11 MAY 03 JUN 01 DATE | 0 ND ND ND 1,1,2,2 TETRA-CHLORO-ETHANE TOTAL (UG/L) ND 0 | 0 ND ND 1,2-DI CHLORO- BENZENE TOTAL (UG/L) ND 0 | 0 3.4 0.8 1,2-DI- CHLORO- ETHANE WATER WHOLE TOTAL (UG/L) ND 0.00 | 0 ND ND 1,2-DI- CHLORO- PROPANE TOTAL (UG/L) ND 0 | 0 0.4 ND 1,2-TRANSDI CHLORO-ETHENE TOTAL (UG/L) ND 0 | 0 ND ND 1,3-DI- CHLORO- BENZENE TOTAL (UG/L) ND 0 | 0 ND ND 1,4-DI- CHLORO- BENZENE TOTAL (UG/L) ND 0 | 0 ND 0.5 TETRA- CHLORO- ETHYL- ENE TOTAL (UG/L) ND 0.0 | 0 ND ND TRANS- 1,3-DI- CHLORO- PROPENE TOTAL (UG/L) ND 0 | 0 ND ND TRI- CHLORO- ETHYL- ENE TOTAL (UG/L) 1.0 | 0 ND ND 2- CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L) ND 0 | O ND ND VINYL CHLO-RIDE TOTAL (UG/L) ND O | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). #### HUDSON RIVER BASIN #### 01349530 MOHAWK RIVER AT FONDA, NY LOCATION.--Lat 42 57'01", long 74 22'10", Montgomery County, Hydrologic Unit 02020004, at highway 30A bridge, at Fonda. DRAINAGE AREA. -- 2,118 mi 2 . PERIOD OF RECORD.--1988 to current year. CHEMICAL DATA: 1988 (a). MINOR ELEMENTS DATA: 1988 (a). REMARKS.--Water-discharge data based on records obtained from 01347000 Mohawk River at Little Falls, 1348000 East Canada Creek at East Creek, and 01349000 Otsquaga Creek at Fort Plain. During canal navigation season, water is received from Black River basin through Black River Canal flowing south, and from Chenango River basin through Oriskany Creek feeder. Water is diverted into (or may occasionally be received from) Oswego River basin through summit level of Erie (Barge) Canal between New London and Utica. Diurnal fluctuation caused by powerplants and locks and dams on Erie (Barge) Canal. Regulation by Delta and Hinckley Reservoirs. | DATE | TIME | DIS-
CHARGE,
IN
CUBIC
FEET
PER
SECOND | SPE-
CIFIC
CON-
DUCT-
ANCE
LAB
(US/CM) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG) |
SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K) | ALKA-
LINITY
LAB
(MG/L
AS
CACO3) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | |----------------|--|---|--|---|---|---|---|---|---|---|---| | MAY 1988 | | | | | | | | | | | | | 02 | 1145 | 4600 | 327 | 140 | 40 | 8.7 | 12 | 1.4 | 99 | 30 | 19 | | DATE | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | ALUM-
INUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS AL) | CADMIUM
TOTAL
RECOV-
ERABLE
(UG/L
AS CD) | COPPER,
TOTAL
RECOV-
ERABLE
(UG/L
AS CU) | IRON,
TOTAL
RECOV-
ERABLE
(UG/L
AS FE) | LEAD,
TOTAL
RECOV-
ERABLE
(UG/L
AS PB) | MANGA-
NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | MERCURY
TOTAL
RECOV-
ERABLE
(UG/L
AS HG) | NICKEL,
TOTAL
RECOV-
ERABLE
(UG/L
AS NI) | ZINC,
TOTAL
RECOV-
ERABLE
(UG/L
AS ZN) | | MAY 1988
02 | 0.30 | 171 | 350 | 6 | 14 | 860 | <5 | 80 | 0.10 | 5 | 30 | #### 01351500 SCHOHARIE CREEK AT BURTONSVILLE, NY LOCATION.--Lat 42 48'00", long 74 15'48", Schenectady County, Hydrologic Unit 02020005, on right bank 0.4 mi south of Burtonsville, 2.7 mi north of Esperance, and 13.5 mi upstream from mouth. DRAINAGE AREA. -- 883 mi 2 . PERIOD OF RECORD.--Water years 1960, 1963-64, 1972, 1988 to current year. CHEMICAL DATA: 1960 (e), 1963-64, 1972 (a), 1988 (b), 1989 (a). MINOR ELEMENTS DATA: 1960 (e), 1963 (b), 1964, 1972 (a), 1988 (b), 1989 (a). PESTICIDE DATA: 1988 (b), 1989 (a). NUTRIENT DATA: 1960, 1963-64, 1972 (a), 1988 (b), 1989 (a). SEDIMENT DATA: 1988-89 (a). REMARKS.--Water-discharge data obtained form gage at this location. Regulation of flow by Blenheim-Gilboa Pumped Storage Project. Entire flow, runoff from 314 mi 2, except for periods of spill, diverted from Schoharie Reservoir through Shandaken Tunnel into Esopus Creek upstream from Ashokan Reservoir for water supply of City of New York. | DATE
MAY 1988
02 | TIME
1045 | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | SPE-
CIFIC
CON-
DUCT-
ANCE
LAB
(US/CM) | PH WATER WHOLE FIELD (STAND- ARD UNITS) | TEMPER-
ATURE
WATER
(DEG C) | TUR-
BID-
ITY
(NTU) | BARO-
METRIC
PRES-
SURE
(MM
OF
HG) | OXYGEN,
DIS-
SOLVED
(MG/L) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION) | COLI-
FORM,
TOTAL,
IMMED.
(COLS.
PER
100 ML) | |--|---|---|---|--|---|--|---|---|---|--|---| | 17 | 1100 | 312 | 229 | 230 | 7.8 | 17.5 | 2.4 | | 9.8 | | 340 | | 31 | 1030 | 1710 | 140 | 146 | 8.1 | 20.5 | 11 | 759 | 9.2 | 102 | 880 | | AUG | | | | | | | | | | | | | 08
∝T | 1100 | 28 | 269 | 260 | 8.3 | 26.0 | 2.5 | 762 | 8.3 | 102 | >120 | | 12 | 1000 | 29 | 306 | 317 | 8.2 | 10.0 | 1.1 | | 11.0 | | | | DATE | FECAL
COLI-
FORM
24-HR
MEM.FIL
(COLS./
100 ML) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K) | ALKA-
LINITY
LAB
(MG/L
AS
CACO3) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | | MAY 1988 | 100 1111) | CACOS | AB CA) | AD MG) | מאי מא | AS II) | CACOS | NO 504) | AS CB) | AD I' | (110) 11) | | | 16.0 | 86 | 29 | 2 2 | 6.0 | 1 1 | 72 | 15 | 9.5 | 2 1 | 101 | | 02 | 16.0 | | | 3.3 | | 1.1 | 73 | | | 3.1 | 121 | | 17 | 40.0 | 96 | 32 | 3.8 | 6.4 | 1.2 | 80 | 16 | 9.1 | 0.20 | 160 | | 31 | 92.0 | 60 | 20 | 2.4 | 4.4 | 0.90 | 51 | 12 | 6.1 | 0.30 | 91 | | AUG
08
OCT | 8.00 | 100 | 33 | 4.9 | 11 | 2.2 | 82 | 24 | 15 | <0.10 | 157 | | 12 | | 120 | 39 | 5.4 | 12 | 2.3 | 100 | 30 | 19 | 0.10 | 195 | | | | | | | | | | | | | | | | | 120 | 3,5 | J.4 | | 2.3 | | • • | | 0.10 | | | DATE MAY 1988 02 17 31 AUG 08 OCT 12 | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
111
117
77
139 | SOLIDS,
RESIDUE
AT 105
DEG. C,
TOTAL
(MG/L)
132
165
101
171 | SOLIDS,
VOLA-
TILE ON
IGNI-
TION,
TOTAL
(MG/L)
47
84
51
40 | RESIDUE
TOTAL
FIXED
(MG/L)
85
81
50
131 | NITRO-
GEN,
NITRATE
TOTAL
(MG/L
AS N) | NITROGEN, NITRITE TOTAL (MG/L AS N) ND 0.00 ND ND | NITRO-
GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
0.290
0.280
0.350
0.090 | NTTROGEN,
AMMONIA
TOTAL
(MG/L
AS N)
0.010
0.010
0.010
0.010 | NITROGEN,
AMMONIA
TOTAL
(MG/L
AS NH4)
0.01
0.01
0.01
0.15 | NITROGEN, ORGANIC TOTAL (MG/L AS N) 0.19 0.23 0.23 0.31 | NITRO-
GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
0.20
0.24
0.24
0.43 | | DATE MAY 1988 02 17 31 AUG 08 OCT 12 DATE MAY 1988 02 17 31 AUG | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
111
117
77 | SOLIDS,
RESIDUE
AT 105
DEG. C,
TOTAL
(MG/L)
132
165
101 | SOLIDS,
VOLA-
TILE ON
IGNI-
TION,
TOTAL
(MG/L)
47
84
51 | RESIDUE
TOTAL
FIXED
(MG/L)
85
81
50 | NITRO-
GEN,
NITRATE
TOTAL
(MG/L
AS N) | NITROGEN, NITRITE TOTAL (MG/L AS N) ND 0.00 ND ND ND ALUM-INUM, TOTAL RECOV-ERABLE (UG/L AS AL) 130 130 400 | NITRO-
GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
0.290
0.280
0.350 | NTTROGEN, AMMONIA TOTAL (MG/L AS N) 0.010 0.010 0.120 0.030 COPPER, TOTAL RECOVERABLE (UG/L AS CU) 5 7 | NITROGEN, AMMONIA TOTAL (MG/L AS NH4) 0.01 0.01 0.15 0.04 IRON, TOTAL RECOVERABLE (UG/L AS FE) 240 270 670 | NITROGEN, ORGANIC TOTAL (MG/L AS N) 0.19 0.23 0.31 0.18 LEAD, TOTAL RECOVERABLE (UG/L AS PB) <55 <55 | NITROGEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.20 0.24 0.43 0.21 MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN) 20 40 40 | | DATE MAY 1988 02 17 31 AUG 08 OCT 12 DATE MAY 1988 02 17 31 AUG | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
111
117
77
139
168
NITRO-
GEN,
TOTAL
(MG/L
AS N)
0.49
0.52 | SOLIDS,
RESIDUE
AT 105
DEG. C,
TOTAL
(MG/L)
132
165
101
171
197
NITRO-
GEN,
TOTAL
(MG/L)
AS NO3) | SOLIDS,
VOLA-
TILE ON
IGNI-
TION,
TOTAL
(MG/L)
47
84
51
40
64
PHOS-
PHORUS
TOTAL
(MG/L)
AS P)
0.010
0.020 | RESIDUE
TOTAL
FIXED
(MG/L)
85
81
50
131
133
PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
0.00
0.00 | NITROGEN, NITRATE TOTAL (MG/L AS N) 0.280 PHOS- PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4) 0.0 | NITROGEN, NITRITE TOTAL (MG/L AS N) ND 0.00 ND ND ND ALUM- INUM, TOTAL RECOV- ERABLE (UG/L AS AL) 130 | NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N) 0.290 0.350 0.090 0.100 CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD) | NITROGEN, AMMONIA TOTAL (MG/L AS N) 0.010 0.010 0.010 0.030 COPPER, TOTAL RECOV- ERABLE (UG/L AS CU) | NITROGEN, AMMONIA TOTAL (MG/L AS NH4) 0.01 0.01 0.01 0.04 IRON, TOTAL RECOV- ERABLE (UG/L AS FE) 240 270 | NITROGEN, ORGANIC TOTAL (MG/L AS N) 0.19 0.23 0.23 0.31 0.18 LEAD, TOTAL RECOV- ERABLE (UG/L AS PB) <55 | NITROGEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.20 0.24 0.24 0.43 0.21 MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN) 20 40 | | DATE MAY 1988 02 17 31 AUG 08 OCT 12 DATE MAY 1988 02 17 31 | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
111
117
77
139
168
NITRO-
GEN,
TOTAL
(MG/L
AS N)
0.49
0.52
0.59 | SOLIDS,
RESIDUE
AT 105
DEG.
C,
TOTAL
(MG/L)
132
165
101
171
197
NITRO-
GEN,
TOTAL
(MG/L
AS NO3)
2.2
2.3
2.6 | SOLIDS,
VOLA-
TILE ON
IGNI-
TION,
TOTAL
(MG/L)
47
84
51
40
64
PHOS-
PHORUS
TOTAL
(MG/L
AS P)
0.010
0.020
0.030 | RESIDUE
TOTAL
FIXED
(MG/L)
85
81
50
131
133
PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
0.00
0.00 | NITROGEN, NITRATE TOTAL (MG/L AS N) 0.280 PHOS- PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4) 0.0 | NITROGEN, NITRITE TOTAL (MG/L AS N) ND 0.00 ND ND ND ALUM-INUM, TOTAL RECOV-ERABLE (UG/L AS AL) 130 130 400 | NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N) 0.290 0.350 0.090 0.100 CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD) | NTTROGEN, AMMONIA TOTAL (MG/L AS N) 0.010 0.010 0.120 0.030 COPPER, TOTAL RECOVERABLE (UG/L AS CU) 5 7 | NITROGEN, AMMONIA TOTAL (MG/L AS NH4) 0.01 0.01 0.15 0.04 IRON, TOTAL RECOVERABLE (UG/L AS FE) 240 270 670 | NITROGEN, ORGANIC TOTAL (MG/L AS N) 0.19 0.23 0.31 0.18 LEAD, TOTAL RECOVERABLE (UG/L AS PB) <55 <55 | NITROGEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.20 0.24 0.43 0.21 MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN) 20 40 40 | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). # 01351500 SCHOHARIE CREEK AT BURTONSVILLE, NY - continued # WATER-QUALITY DATA (continued) | DATE | MERCURY
TOTAL
RECOV-
ERABLE
(UG/L
AS HG) | NICKEL,
TOTAL
RECOV-
ERABLE
(UG/L
AS NI) | ZINC,
TOTAL
RECOV-
ERABLE
(UG/L
AS ZN) | BROMO-
FORM
TOTAL
(UG/L) | CARBON-
TETRA-
CHLO-
RIDE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
DI-
BROMO-
METHANE
TOTAL
(UG/L) | CHLORO-
ETHANE
TOTAL
(UG/L) | CHLORO-
FORM
TOTAL
(UG/L) | CIS
1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | |-----------|---|---|---|--|--|---|--|--|---|---| | MAY 1988 | | | | | | | | | | | | 02 | <0.10 | 6 | <10 | ND | 17 | <0.10 | 4 | <10 | ND | 31
AUG | <0.10 | 4 | <10 | ND | 08 | <0.10 | 3 | 10 | ND | ND | ND | ND | ND | 0.1 | ND | | 12 | <0.10 | 2 | <10 | ND | DATE | DI-
CHLORO-
BROMO-
METHANE
TOTAL
(UG/L) | METHYL-
BROMIDE
TOTAL
(UG/L) | METHYL-
CHLO-
RIDE
TOTAL
(UG/L) | METHYL-
ENE
CHLO-
RIDE
TOTAL
(UG/L) | 1,1,1-
TRI-
CHLORO-
ETHANE
TOTAL
(UG/L) | 1,1-DI-
CHLORO-
ETHANE
TOTAL
(UG/L) | 1,1-DI-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 1,1,2-
TRI-
CHLORO-
ETHANE
TOTAL
(UG/L) | 1,1,2,2
TETRA-
CHLORO-
ETHANE
TOTAL
(UG/L) | 1,2-DI-
CHLORO-
BENZENE
TOTAL
(UG/L) | | MAY 1988 | | | | | | | | | | | | 02 | ND | 17 | ND | 31
AUG | ИD | ND | 08 | ND | OCT
12 | ND | | | | | | | | | | _ | | | | 1,2-DI-
CHLORO- | | 1,2- | | | TETRA- | TRANS- | TRI- | 2-
CHLORO- | | | | ETHANE | 1,2-DI- | TRANSDI | 1,3-DI- | 1,4-DI- | CHLORO- | 1,3-DI- | CHLORO- | ETHYL- | VINYL | | | WATER | CHLORO- | CHLORO- | CHLORO- | CHLORO- | ETHYL- | CHLORO- | ETHYL- | VINYL- | CHLO- | | | WHOLE | PROPANE | ETHENE | BENZENE | BENZENE | ENE | PROPENE | ENE | ETHER | RIDE | | DATE | TOTAL
(UG/L) | TOTAL
(UG/L) | TOTAL | | (00/14) | (06/1) | (UG/L) | MAY 1988 | | | | | | | | | | | | 02 | ND | 17 | ND | 31
AUG | ND | 08 | ND | ОСТ
12 | ND | | | | | | | | | | | | # SUSPENDED SEDIMENT DISCHARGE | | | DIS- | | SEDI- | |----------|------|---------|--------|---------| | | | CHARGE, | | MENT, | | | | INST. | SEDI- | DIS- | | | | CUBIC | MENT, | CHARGE, | | | | FEET | SUS- | SUS- | | DATE | TIME | PER | PENDED | PENDED | | | | SECOND | (MG/L) | (T/DAY) | | MAY 1988 | | | | | | 31 | 1030 | 1710 | 16 | 74 | | OCT | | | | | | 12 | 1000 | 29 | 3 | 0.23 | | | | | | | #### 01357500 MOHAWK RIVER AT COHOES, NY LOCATION.--Lat 42 47'07", long 73 42'29", Albany County, Hydrologic Unit 02020004, on right bank at Niagara Mohawk Power Corp. School Street powerplant in Cohoes, and 2.0 mi upstream from mouth. DRAINAGE AREA. -- 3,456 mi 2 . PERIOD OF RECORD.--Water years 1951-52, 1955, 1955-59, 1963-64, 1970, 1976-79, June 1988 to current year. CHEMICAL DATA: 1951-52 (a), 1958-59 (b), 1963-64, 1970, 1976 (a), 1977 (c), 1979 (d), 1988-89 (a). MINOR ELEMENTS DATA: 1952, 1955 (a), 1958-59 (b), 1963-64, 1970, 1976 (a), 1977 (c), 1979 (d), 1988-89 (a). PESTICIDE DATA: 1988-89 (a). ORGANIC DATA: 1976 (a), 1977 (c), 1979 (d). OC-1988-89 (a). NUTRIENT DATA: 1951-52, 1955 (a), 1958-59 (b), 1963-64, 1970, 1976 (a), 1977 (c), 1979 (d), 1988-89 (a). NUTRIENT DATA: 1951-52, 1955 (a), 1958-59 (b), 1963-64, 1970, 1976 (a), 1977 (c), 1979 (d), 1988-89 (a). BIOLOGICAL DATA: Bacteria-- 1979 (d), 1988-89 (a). SEDIMENT DATA: 1976-77 (e), 1978 (a), 1979 (e), 1988-89 (a). REMARKS.--Water-discharge data obtained form gage at this location. During canal navigation season, water is received from Black River basin through Black River Canal flowing south, and from Chenango River basin through Oriskany Creek feeder. Water is diverted into (or may occasionally be received from) Oswego River basin through summit level of Erie (Barge) Canal between New London and Utica. Fluctuation caused by powerplants and locks and dams on Erie (Barge) Canal. Regulation and divertions for public water supply by Delta, Hinckley, and Schoharie Reservoirs. #### WATER-QUALITY DATA SPE-DIS-ÞН RARO-OXYGEN. COLI-CHARGE. SPE-CIFIC METRIC WATER DIS-FORM. CIFIC INST. CON-WHOTE SOLVED TOTAL PRES-CUBIC CON-DUCT-FIELD TEMPER-TUR-SURE OXYGEN, (PER-IMMED. FEET DUCT-ANCE (STAND-ATURE BID-DIS-CENT (COLS. (MM) DATE OF TIME PER ANCE LAB ARD WATER TTY SOLVED SATUR-PER SECOND (US/CM) (US/CM) UNITS) (DEG C) (MG/L) ATION) 100 ML) (NTU) HG) THIN 1988 200 10 9.0 ND 01... 0930 2940 212 6.5 19.5 AUG 09... 0930 2110 317 318 7.6 27.0 4.0 7.4 ٥ OCT 11... 1100 1780 274 282 8.3 14.0 8.0 741 9.8 98 >60 FECAL SOLIDS. COLT-HARD-MAGNE-POTAS-ALKA-CHLO-FLUO-RESTRUE CALCIUM SODIUM, SULFATE FORM NESS SIUM, SIUM, LINITY RIDE. AT 180 RIDE. 24-HR TOTAL DIS-DIS-DIS-DIS-LAB DIS-DIS-DIS-DEG. C SOLVED SOLVED SOLVED SOLVED SOLVED SOLVED DIS-MEM.FIL (MG/L (MG/L SOLVED DATE (COLs./ (MG/L (MG/L (MG/L (MG/L AS (MG/L SOLVED AS (MG/L (MG/L 100 ML) CACO3) AS CA) AS MG) AS NA) AS K) CACO31 AS SO4) AS CL) AS F) (MG/L) JUN 1988 7.4 20.0 88 28 4.3 73 15 01... 1.2 10 0.30 114 AUG 09... ND 130 40 7.2 13 1.8 96 29 19 0.10 OCT 60.0 110 34 12 84 28 17 0.10 161 11... 6.1 1.4 SOLIDS. NITRO-SOLIDS. SUM OF SOLIDS. NITRO-NTTRO-NITRO-NITRO-NITRO-GEN.AM-VOLA-NITRO-CONSTT-RESTDUE TILE ON GEN. GEN. GEN. GEN. GEN. MONIA + GEN. TUENTS, IGNI-RESIDUE NITRATE NITRITE NO2+NO3 AMMONIA AMMONIA ORGANIC ORGANIC AT 105 DIS-DEG. C TION, TOTAL TOTAL TOTAL TOTAL. TOTAL TOTAL TOTAL TOTAL SOLVED TOTAL (MG/L DATE TOTAL FIXED (MG/L (MG/L (MG/L (MG/L (MG/L (MG/L (MG/L) (MG/L) (MG/L) (MG/L) AS N) AS N) AS N) AS N) AS NH4 AS N) AS N) JUN 1988 0.04 0.40 0.43 110 129 71 58 0.410 0.010 0.420 0.030 01... AUG 09... 194 48 0.370 0.020 0.390 0.040 0.05 0.62 0.66 168 146 OCT 0.390 0.010 0.400 0.070 0.09 0.76 0.83 149 192 72 120 MANGA--MILTA PHOS-PHOS-LEAD, NESE, INUM, CADMIUM COPPER, IRON, **PHORUS** PHATE, NITRO-NITRO-PHOS-ORTHO, ORTHO, TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL RECOV-GEN, GEN, PHORUS DIS-DIS-RECOV-RECOV-RECOV-RECOV-RECOV-SOLVED SOLVED ERABLE ERABLE ERABLE ERABLE TOTAL TOTAL TOTAL ERABLE ERABLE (UG/L (UG/L (UG/L (UG/L (UG/L DATE (MG/L (MG/L (MG/L (MG/L (MG/L (UG/L AS NO3) AS P) AS P) AS PO4) AS AL) AS CD) AS CU) AS FE) AS PB) AS MN) AS N) JUN 1988 60 8 760 <5 01... 0.060 0.00 0.0 440 0.85 3.8 1 AHG 110 390 <1 9 680 <5 09... 0.060 ND --1.0 4.6 OCT 0.010 0.03 510 <1 7 910 <5 90 11... 1.2 5.4 0.140 Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). # 01357500 MOHAWK RIVER AT COHOES, NY - continued # WATER-QUALITY DATA (continued) | DATE | MERCURY
TOTAL
RECOV-
ERABLE
(UG/L
AS HG) | NICKEL,
TOTAL
RECOV-
ERABLE
(UG/L
AS NI) | ZINC,
TOTAL
RECOV-
ERABLE
(UG/L
AS ZN) | PHENOL
(C6H-
5OH)
TOTAL
(UG/L) | BROMO
FORM
TOTA
(UG/ | RID
L TOT | RA-
O- CH
E BE
AL TO | LORO-
NZENE
TAL
G/L) | CHLOR
DI-
BROM
METHA
TOTA
(UG/ | O- CHLO
NE ETHA
L TOI | ANE FO | ORO-
ORM
OTAL
S/L) | CIS
1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | |----------------|---|---|---|--|-------------------------------|--|--|-------------------------------|---|---|---|-----------------------------|---| | JUN 1988
01 | <0.10 | 4 | 10 | 1.0 | ND | ND | ; | ND | ND | NI | N C | ID | ND | | AUG
09 | <0.10 | 3 | <10 | 2.0 | ND | ND | ! | ND | ND | NI |) | 0.1 | ND | | ост
11 | <0.10 | 1 | <10 | 2.0 | ND | ND | : | ND | ND | NI | | 0.1 | ND | | | | 01- | | | | 1,1,1- | | | | 1,1,2- | 1,1,2,2 | | | | D. | BF
MET
ATE TO | THANE BRO | METHYL- CHI DMIDE RII DTAL TOT | DE RI | DE | TRI-
CHLORO-
ETHANE
TOTAL
(UG/L) |
1,1-DI
CHLORO
ETHANE
TOTAL
(UG/L) | - ETH'
El | /L-
NE
FAL | TRI-
CHLORO-
ETHANE
TOTAL
(UG/L) | TETRA-
CHLORO-
ETHANE
TOTAL
(UG/L) | CHL
BEN
TO | -DI-
ORO-
ZENE
TAL
/L) | | JUN 1 | | | | _ | _ | | | | | | | | _ | | 01.
AUG | | ID 1 | ND NI | O N | ID | ND | ND | NI |) | ND | ND | N | D | | 09.
∝T | N | ID I | ID NI |) N | ID | ND | ND | NI |) | ND | ND | N | D | | 11. | N | ID 1 | ID NI | и с | D | ND | ND | NI |) | ND | ND | N | D | | | CHL
ETH
WA
WH
ATE TO | TER CHI | 1,
2-DI- TRAN
LORO- CHLC
DEANE ETHE
DTAL TOT
G/L) (UG, | ORO- CHL
ENE BEN
TAL TO | ORO-
ZENE
TAL | 1,4-DI-
CHLORO-
BENZENE
TOTAL
(UG/L) | TETRA-
CHLORO
ETHYL-
ENE
TOTAL
(UG/L) | - 1,3-
CHLO
PROI | ORO-
PENE
FAL | TRI-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 2-
CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L) | VI
CH
RI
TO | NYL
LO-
DE
TAL
G/L) | | JUN 1. | | ID I | ID NI |) N | D | ND | ND | NI |) | ND | ND | N | D | | AUG
09. | N | ID N | ID NI |) N | D | ND | ND | NI | | ND | ND | N | D | | ОСТ
11. | N | ID N | ID NI | и с | D | ND | ND | NI |) | ND | ND | N | D | ## SUSPENDED SEDIMENT DISCHARGE | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND | SEDI-
MENT,
SUS-
PENDED
(MG/L) | SEDI-
MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY) | |----------------|------|--|--|--| | JUN 1988
01 | 0930 | 2940 | 17 | 135 | | AUG
09 | 0930 | 2110 | 14 | 80 | | 11 | 1100 | 1780 | 23 | 111 | #### 01359560 HUDSON RIVER AT GLENMONT, NY LOCATION.--Lat 42 35'43", long 73 45'43", Albany County, Hydrologic Unit 02020006, at Niagara Mohawk Glenmont Power Station (intake), 0.2 mi downstream from lower mouth of Normans Kill, and 0.8 mi southeast of Glenmont. DRAINAGE AREA. -- 8,476 mi 2 , revised. PERIOD OF RECORD.--Water years 1969-79, 1988 to current year. CHEMICAL DATA: 1969 (d), 1970-74 (e), 1975 (d), 1976-77 (c), 1978-79 (d), 1988 (b), 1989 (a). MINOR ELEMENTS DATA: 1969 (d), 1970-74 (e), 1975 (d), 1976-77 (c), 1978-79 (d), 1988 (b), 1989 (a). PESTICIDE DATA: 1988 (b), 1989 (a). NUTRIENT DATA: 1969 (d), 1970-74 (e), 1975 (d), 1976-77 (c), 1978-79 (d), 1988 (b), 1989 (a). BIOLOGICAL DATA: Bacteria--1977 (c), 1978-79 (d), 1988 (b). Phytoplankton--1974 (a), 1975 (b), 1976-77 (c), 1978-79 (d). SEDIMENT DATA: 1988 (b), 1989 (a). | | | | | WA | TER-QUALI | TY DATA | | | | | | |------------------|--|--|--|---|--|---|---|---|--|--|---| | DATE | TIME | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | SPE-
CIFIC
CON-
DUCT-
ANCE
LAB
(US/CM) | PH WATER WHOLE FIELD (STAND- ARD UNITS) | TEMPER-
ATURE
WATER
(DEG C) | TUR-
BID-
ITY
(NTU) | BARO-
METRIC
PRES-
SURE
(MM
OF
HG) | OXYGEN,
DIS-
SOLVED
(MG/L) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION) | COLI-
FORM,
TOTAL,
IMMED.
(COLS.
PER
100 ML) | FECAL
COLI-
FORM
24-HR
MEM.FIL
(COLS./
100 ML) | | MAY 1988 | | | | | | | | | | | | | 02 | 1245 | 171 | 183 | 6.5 | 10.5 | 4.3 | 766 | 11.6 | 104 | 4000 | 700 | | 16 | 1300 | 229 | 229 | 7.1 | 17.0 | 5.4 | 758 | 8.0 | 83 | 7000 | 1300 | | 31
AUG | 1230 | 223 | 233 | 6.9 | 21.0 | 8.0 | 759 | 7.5 | 84 | 9000 | 1700 | | 09 | 1100 | 251 | 244 | 6.7 | 29.5 | 1.4 | | 5.4 | | >20000 | 9000 | | OCT | | | | • | | | | | | | | | 11 | 1300 | 240 | 243 | 6.9 | 14.5 | 4.7 | 741 | 9.2 | 92 | | | | DATE
MAY 1988 | HARD-
NESS
TOTAL
(MG/L
AS
CACO3) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K) | ALKA-
LINITY
LAB
(MG/L
AS
CACO3) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | | 02 | 66 | 20 | 4.0 | 8.3 | 0.90 | 49 | 21 | 13 | 0.10 | 114 | 97 | | 16 | 80 | 24 | 4.8 | 11 | 1.0 | 60 | 18 | 16 | 0.20 | 172 | 111 | | 31
AUG | 88 | 27 | 4.9 | 11 | 1.2 | 65 | 32 | 17 | 0.30 | 143 | 132 | | 09 | 88 | 27 | 4.9 | 12 | 1.2 | 56 | 25 | 21 | 0.10 | | 125 | | OCT | 00 | -, | 4., | 12 | 1.2 | 30 | | | 0.10 | | 100 | | 11 | 83 | 26 | 4.5 | 12 | 1.3 | 53 | 28 | 20 | 0.10 | 144 | 124 | | DATE | SOLIDS,
RESIDUE
AT 105
DEG. C,
TOTAL | SOLIDS,
VOLA-
TILE ON
IGNI-
TION,
TOTAL | RESIDUE
TOTAL
FIXED | NITRO-
GEN,
NITRATE
TOTAL
(MG/L | NITRO-
GEN,
NITRITE
TOTAL
(MG/L | NITRO-
GEN,
NO2+NO3
TOTAL
(MG/L | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L | NITRO-
GEN,
ORGANIC
TOTAL
(MG/L | NITRO-
GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L | NITRO-
GEN,
TOTAL
(MG/L | | MAY 1988 | (MG/L) | (MG/L) | (MG/L) | AS N) | AS N) | AS N) | As N) | AS NH4) | as N) | AS N) | AS N) | | 02 | 130 | 44 | 86 | 0.450 | 0.010 | 0.460 | 0.040 | 0.05 | 0.22 | 0.26 | 0.72 | | 16 | 180 | 88 | 92 | 0.550 | 0.020 | 0.570 | 0.110 | 0.14 | 0.22 | 0.33 | 0.90 | | 31 | 156 | 66 | 90 | 0.410 | 0.010 | 0.420 | 0.130 | 0.17 | 0.33 | 0.46 | 0.88 | | AUG | | | | | | | | | | | | | 09 | 167 | 50 | 117 | 0.520 | 0.030 | 0.550 | 0.070 | 0.09 | 0.46 | 0.53 | 1.1 | | OCT
11 | 169 | 57 | 112 | 0.610 | 0.030 | 0.640 | 0.120 | 0.15 | 0.43 | 0.55 | 1.2 | | DATE
MAY 1988 | NITRO-
GEN,
TOTAL
(MG/L
AS NO3) | PHOS-
PHORUS
TOTAL
(MG/L
AS P) | PHOS-PHORUS ORTHO, DIS-SOLVED (MG/L AS P) | PHOS-
PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4) | ALUM-
INUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS AL) | CADMIUM
TOTAL
RECOV-
ERABLE
(UG/L
AS CD) | COPPER,
TOTAL
RECOV-
ERABLE
(UG/L
AS CU) | IRON,
TOTAL
RECOV-
ERABLE
(UG/L
AS FE) | LEAD,
TOTAL
RECOV-
ERABLE
(UG/L
AS PB) | MANGA-
NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | MERCURY
TOTAL
RECOV-
ERABLE
(UG/L
AS HG) | | 02 | 3.2 | 0.050 | 0.00 | 0.0 | 330 | 1 | 9 | 740 | <5 | 50 | <0.10 | | 16 | 4.0 | 0.080 | 0.020 | 0.06 | 200 | 1 | 4 | 420 | <5 | 70 | <0.10 | | 31 | 3.9 | 0.070 | 0.020 | 0.06 | 210 | 1 | 8 | 4700 | <5 | 70 | <0.10 | | AUG
09 | 4.8 | 0.120 | 0.080 | 0.25 | 160 | <1 | 7 | 290 | < 5 | 90 | <0.10 | | OCT | 5.3 | D 140 | 0.040 | 0.10 | 400 | .1 | 17 | 1400 | < 5 | 70 | <0.10 | | 11 | 3.3 | 0.140 | 0.040 | 0.12 | 490 | <1 | 17 | 1400 | <5 | /0 | <0.10 | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). ### 01359560 HUDSON RIVER AT GLENMONT, NY - continued # WATER-QUALITY DATA (continued) | DATE | NICKEL,
TOTAL
RECOV-
ERABLE
(UG/L
AS NI) | ZINC,
TOTAL
RECOV-
ERABLE
(UG/L
AS ZN) | PHENOL
(C6H-
5OH)
TOTAL
(UG/L) | BROMO-
FORM
TOTAL
(UG/L) | CARBON-
TETRA-
CHLO-
RIDE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
DI-
BROMO-
METHANE
TOTAL
(UG/L) | CHLORO-
ETHANE
TOTAL
(UG/L) | CHLORO-
FORM
TOTAL
(UG/L) | CIS
1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | |-----------|---|---|---|--|--|---|--|--|---|---| | MAY 1988 | | | | | | | | | | | | 02 | 4 | 10 | | ND | ND | ND | ND | ND | 2.0 | ND | | 16 | 4 | <10 | | ND | 31
AUG | 3 | <10 | 2.0 | ND | 09
OCT | 3 | 40 | ND | ND | ND | ND | ND | ND | 0.3 | ND | | 11 | 2 | 20 | 2.0 | ND | ND | ND | ND | ND | 0.2 | ND | | | - | | 2.0 | | | | | | | | | DATE | DI-
CHLORO-
BROMO-
METHANE
TOTAL
(UG/L) | METHYL-
BROMIDE
TOTAL
(UG/L) | METHYL-
CHLO-
RIDE
TOTAL
(UG/L) | METHYL-
ENE
CHLO-
RIDE
TOTAL
(UG/L) | 1,1,1-
TRI-
CHLORO-
ETHANE
TOTAL
(UG/L) | 1,1-DI-
CHLORO-
ETHANE
TOTAL
(UG/L) | 1,1-DI-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 1,1,2-
TRI-
CHLORO-
ETHANE
TOTAL
(UG/L) | 1,1,2,2
TETRA-
CHLORO-
ETHANE
TOTAL
(UG/L) | 1,2-DI-
CHLORO-
BENZENE
TOTAL
(UG/L) | | MAY 1988 | | | | | | | | | | | | 02 | ND ИD | ND | ND | | 16 | ND | 31
AUG | ND | 09 | ND | OCT | | | | | | | | | | | | 11 | ND | | 1 2 57 | | | | | | | | • | | | | 1,2-DI-
CHLORO- | | 1,2- | | | TETRA- | TRANS- | TRI- | 2-
CHLORO- | | | | ETHANE | 1,2-DI- | TRANSDI | 1,3-DI- | 1,4-DI- | CHLORO- | 1,3-DI- | CHLORO- |
ETHYL- | VINYL | | | WATER | CHLORO- | CHLORO- | CHLORO- | CHLORO- | ETHYL- | CHLORO- | ETHYL- | VINYL- | CHLO- | | | WHOLE | PROPANE | ETHENE | BENZENE | BENZENE | ENE | PROPENE | ENE | ETHER | RIDE | | DATE | TOTAL
(UG/L) | TOTAL
(UG/L) | TOTAL | | (OG/L) | (06/1) | (UG/L) | MAY 1988 | | | | | | | | | | | | 02 | ND | 16 | ND | 31 | ND | 09 | ND | OCT | | | | | | | *** | | *** | 110 | | 11 | ND | N D | ND ### SUSPENDED SEDIMENT DISCHARGE | DATE | TIME | SEDI-
MENT,
SUS-
PENDED
(MG/L) | |----------|------|--| | MAY 1988 | | | | 16 | 1300 | 10 | | 31 | 1230 | 8 | | AUG | | | | 09 | 1100 | 4 | | OCT | | | | 11 | 1300 | 6 | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). #### 01367500 RONDOUT CREEK AT ROSENDALE, NY LOCATION.--Lat 41 50'35", long 74 05'11", Ulster County, Hydrologic Unit 02020007, on left bank 30 ft upstream from bridge on James Street in Rosendale, and 3 mi upstream from Wallkill River. DRAINAGE AREA. -- 383 mi 2 (see REMARKS below). PERIOD OF RECORD.--Water years 1963-64, 1971-72, June 1988 to current year. CHEMICAL DATA: 1963 (c), 1964, 1971-72, 1988-89 (a). MINOR ELEMENTS DATA: 1963 (c), 1964, 1988-89 (a). PESTICIDE DATA: 1988-89 (a). NUTRIENT DATA: 1963 (c), 1964, 1971-72 (a), 1988-89 (a). SEDIMENT DATA: 1988-89 (a). REMARKS.--Water-quality data represents natural flow from 288 mi2, together with spillage during high flow from Roundout Water-discharge data obtained from gage at this location. | WATER-OUALITY D | ATA | | |-----------------|-----|--| |-----------------|-----|--| | DATE | TIME | DIS-
CHARGE
INST.
CUBIC
FEET
PER
SECON | CI:
CI:
DU:
AN: | FIC WA
ON- WH
CT- FI
CE (ST
AB A | 'AND-
ARD | TUR-
BID-
ITY
NTU) | COLI-
FORM,
TOTAL,
IMMED.
(COLS.
PER
100 ML) | FECAL
COLI-
FORM
24-HR
MEM.FI
(COLS.
100 ML | HAR
NES
TOT
L (MG
/ AS | S CAL
AL DI
/L SO | CIUM :
S- :
LVED SO
IG/L (1 | AGNE-
SIUM,
DIS-
DLVED
MG/L
S MG) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K) | |--|---|--|---|---|---|--|---|---|--|---|---|--|--|--| | JUN 1988
13 | 1000 | 169 | | 132 | 7.7 | 1.0 | 1700 | 10.0 | ı | 46 1 | 4 | 2.8 | 5.8 | 0.80 | | AUG 22 | 1030 | 56 | | 149 | 8.1 | 2.0 | 200 | 20.0 | ı | 56 1 | .7 | 3.4 | 7.0 | 1.0 | | OCT
18 | 0915 | 56 | | 150 | | 1.0 | 380 | 50.0 | ı | 57 1 | .7 | 3.5 | 6.6 | 1.1 | | DATE | ALKA-
LINITY
LAB
(MG/L
AS
CACO3) | SULFAT
DIS-
SOLVE
(MG/I
AS SO4 | E RI
DI
ED SO | DE, RI
S- I
DLVED SO
IG/L (N | JUO- REIDE, AT
DIS- D
DLVED
MG/L S | DLIDS,
CSIDUE
180
DEG. C
DIS-
COLVED
MG/L) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | SOLIDS
RESIDU
AT 105
DEG. C
TOTAL
(MG/I | E TILE IGN TOT | A- NI ON G II- NIT ON, TO | SEN, CRATE NITAL TOTAL TOTAL (| ITRO-
GEN,
FRITE
OTAL
MG/L
S N) | NITRO-
GEN,
NO2+NO3
TOTAL
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS N) | | JUN 1988
13 | 33 | 14 | | 9.0 | 0.10 | | 66 | c | 10 | 46 C | .310 | 0.00 | 0.310 | 0.00 | | AUG 22 | 43 | 15 | | | <0.10 | 88 | 79 | - | 18 | 56 | | ND | ND | ND | | OCT
18 | 42 | 15 | | 9.8 | <0.10 | 82 | 78 | 10 | 00 | 50 | | ND | 0.240 | 0.00 | | JUN 1988
13
AUG
22
OCT
18 | GI
AMMC
TO'
(MC
AS 1 | EN,
ONIA OF
FAL T
G/L | NITRO-
GEN,
RGANIC
YOTAL
(MG/L
AS N)
0.24 | NITRO-
GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
0.24
0.23 | NITROGEN, TOTAL (MG/L AS N) 0.55 | GE
TOT
(MG
AS N | N, PHOI
PAL TO:
I/L (MOO3) AS | PH
DS- C
RUS I
TAL SC
G/L (N | PHOS- HORUS RTHO, DIS- DLVED HG/L S P) 0.00 0.00 | PHOS-PHATE, ORTHO, DIS-SOLVED (MG/L AS PO4) | ALUM-
INUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS AL)
70
120 | (UG
AS | AL TOTO
OV- REC
BLE ERA
/L (UC | | | DATE | TO
REG
ER. | TAL TOON- HABLE H | LEAD,
POTAL
RECOV-
ERABLE
(UG/L
AS PB) | MANGA-
NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | MERCURY
TOTAL
RECOV-
ERABLE
(UG/L
AS HG) | TOI
REC
ERA
(UG | VAL TO
COV- REGISE ER. | ABLE E | ROMO-
FORM
FOTAL
(UG/L) | CARBON-
TETRA-
CHLO-
RIDE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | TOT | -
MO- CHLO
ANE ETHA | ANE
FAL | | JUN 1988
13 | 3 | 150 | 14 | 30 | <0.10 |) | 8 | 10 | | | | - | | | | AUG
22 | | 260 | <5 | 80 | 0.20 |) | 6 | <10 | ND | ND | ND | ND | , NI |) | | OCT
18 | | 140 | <5 | 20 | <0.10 |) | 4 | <10 | ND | ND | ND | ND | NI | O | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). # 01367500 RONDOUT CREEK AT ROSENDALE, NY - continued # WATER-QUALITY DATA (continued) | DATE | CHLORO-
FORM
TOTAL
(UG/L) | CIS
1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | DI-
CHLORO-
BROMO-
METHANE
TOTAL
(UG/L) | METHYL-
BROMIDE
TOTAL
(UG/L) | METHYL-
CHLO-
RIDE
TOTAL
(UG/L) | METHYL-
ENE
CHLO-
RIDE
TOTAL
(UG/L) | 1,1,1-
TRI-
CHLORO-
ETHANE
TOTAL
(UG/L) | 1,1-DI-
CHLORO-
ETHANE
TOTAL
(UG/L) | 1,1-DI-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 1,1,2-
TRI-
CHLORO-
ETHANE
TOTAL
(UG/L) | 1,1,2,2
TETRA-
CHLORO-
ETHANE
TOTAL
(UG/L) | |-----------|--|---|--|---|--|--|--|--|--|---|---| | JUN 1988 | | | | | | | | | | | | | 13
AUG | | | | | | | | | | | | | 22 | ND | ОСТ
18 | ND | | | | | | | | | | | | | | DATE | 1,2-DI-
CHLORO-
BENZENE
TOTAL
(UG/L) | 1,2-DI-
CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L) | 1,2-DI-
CHLORO-
PROPANE
TOTAL
(UG/L) | 1,2-
TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L) | 1,3-DI-
CHLORO-
BENZENE
TOTAL
(UG/L) | 1,4-DI-
CHLORO-
BENZENE
TOTAL
(UG/L) | TETRA-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | TRANS-
1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | TRI-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 2-
CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L) | VINYL
CHLO-
RIDE
TOTAL
(UG/L) | | JUN 1988 | CHLORO-
BENZENE
TOTAL | CHLORO-
ETHANE
WATER
WHOLE
TOTAL | CHLORO-
PROPANE
TOTAL | TRANSDI
CHLORO-
ETHENE
TOTAL | CHLORO-
BENZENE
TOTAL | CHLORO-
BENZENE
TOTAL | CHLORO-
ETHYL-
ENE
TOTAL | 1,3-DI-
CHLORO-
PROPENE
TOTAL | CHLORO-
ETHYL-
ENE
TOTAL | CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL | CHLO-
RIDE
TOTAL | | JUN 1988 | CHLORO-
BENZENE
TOTAL | CHLORO-
ETHANE
WATER
WHOLE
TOTAL | CHLORO-
PROPANE
TOTAL | TRANSDI
CHLORO-
ETHENE
TOTAL | CHLORO-
BENZENE
TOTAL | CHLORO-
BENZENE
TOTAL | CHLORO-
ETHYL-
ENE
TOTAL | 1,3-DI-
CHLORO-
PROPENE
TOTAL | CHLORO-
ETHYL-
ENE
TOTAL | CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL | CHLO-
RIDE
TOTAL | ### SUSPENDED SEDIMENT DISCHARGE | | | DIS- | |------------------|------|---------| | | | CHARGE, | | | | INST. | | | | CUBIC | | | | FEET | | DATE | TIME | PER | | | | SECOND | | ์
วับที่ 1988 | | | | 13 | 1000 | 169 | | AUG | | | | 22 | 1030 | 56 | | OCT | | | | 18 | 0915 | 56 | #### 01372043 HUDSON RIVER NEAR POUGHKEEPSIE, NY LOCATION.--Lat 41 43'18", long 73 56'28", Dutchess County, Hydrologic Unit 02020008, at city pumping station on east bank, adjacent (north) to Marist College, 0.5 mi north of Poughkeepsie, and 1.3 mi upstream from Mid-Hudson Bridge. COLI- DRAINAGE AREA. -- 11,700 mi 2 . PERIOD OF RECORD.--Water years 1969-75, 1981, 1988 to current year. CHEMICAL DATA: 1969 (c), 1970-71 (d), 1972 (b), 1973-75 (e), 1988-89 (a). MINOR ELEMENTS DATA: 1969 (c), 1970-71 (d), 1972 (b), 1973-75 (d), 1988-89 (a). RADIOCHEMICAL DATA: 1974 (a), 1975 (d). ORGANIC DATA: 1975 (a), 1981 (b). OC--1988-89 (a). NUTRIENT DATA: 1969 (c), 1970-71 (d), 1972 (b), 1973-75 (d), 1988-89 (a). BIOLOGICAL DATA: 1973-75 (d). Bacteria--1988-89 (a). SEDIMENT DATA: 1973 (a), 1974 (b), 1975 (a). PH SPE- #### WATER-QUALITY DATA FECAL | DATE | TIME | SPE-
CIFIC
CON-
DUCT-
ANCE
LAB
(US/CM) | PH WATER WHOLE FIELD (STAND- ARD UNITS) | TUR-
BID-
ITY
(NTU) | COLI-
FORM,
TOTAL,
IMMED.
(COLS.
PER
100 ML) |
FECAL
COLI-
FORM
24-HR
MEM.FIL
(COLS./
100 ML) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K) | ALKA-
LINITY
LAB
(MG/L
AS
CACO3) | |----------------|---|--|--|--|--|--|--|---|--|--|--|--| | JUN 1988 | | | | | | | | | | | | | | 13
AUG | 1200 | 223 | 7.6 | 28 | 250 | 100 | 79 | 24 | 4.7 | 9.7 | 0.80 | 64 | | 22
OCT | 1245 | 259 | 7.5 | 15 | 200 | ND | 95 | 29 | 5.6 | 14 | 1.5 | 65 | | 18 | 1250 | 260 | | 17 | 50 | ND | 94 | 28 | 5.8 | 14 | 1.8 | 66 | | DATE | SULFATE
DIS-
SOLVED
(MG/L
AS SO4) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F) | SOLIDS,
RESIDUE
AT 180
DEG. (
DIS-
SOLVEE
(MG/L) | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED | SOLIDS,
RESIDUE
AT 105
DEG. C,
TOTAL
(MG/L) | SOLIDS,
VOLA-
TILE ON
IGNI-
TION,
TOTAL
(MG/L) | NITRO-
GEN,
NITRATE
TOTAL
(MG/L
AS N) | NITRO-
GEN,
NITRITE
TOTAL
(MG/L
AS N) | NITRO-
GEN,
NO2+NO3
TOTAL
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS NH4) | | JUN 1988
13 | 19 | 15 | 0.10 | 110 | 112 | 220 | 78 | 0.450 | 0.010 | 0.460 | 0.060 | 0.08 | | AUG
22 | 25 | 22 | 0.10 | 160 | 136 | 200 | 70 | | ND | 0.510 | 0.030 | 0.04 | | ОСТ
18 | 25 | 20 | 0.10 | 140 | 134 | 200 | 52 | 0.630 | 0.00 | 0.630 | 0.040 | 0.05 | | DATE | NIT
GE
ORGA
TOT
(MG
AS | RO- GEN
N, MON
NIC ORGA
AL TO
/L (MO | ANIC G
TAL TO
G/L (M | EN, C
TAL TO
G/L (N | SEN, PHO
TTAL TO
IG/L (M | | RUS PHA
THO, ORT
S- DI
VED SOI
/L (MC | ATE, INUTED TO TO TO THE TOTAL | M, CADM
PAL TOT
COV- REC
BLE ERA | AL TOT
OV- REC
BLE ERA
L (UG | AL TOT
OV- REC
BLE ERA
/L (UG | 'AL
COV-
BLE
S/L | | JUN 1988
13 | | .38 | 0.44 | 0.90 | 4.0 0 | .170 0 | .010 | 0.03 1 | 300 | <1 | 11 2 | 100 | | AUG
22 | 0 | .27 | 0.30 | 0.81 | 3.6 0 | .090 0 | .030 | 0.09 1 | 600 | 1 | 33 2 | 400 | | ОСТ
18 | 0 | .32 | 0.36 | 0.99 | 4.4 0 | .120 0 | .020 | 0.06 | 720 | <1 | 12 1 | 100 | | DATE | AS | D, NE: AL TO: OV- REG BLE ER: /L (UG | TAL TO
COV- RE
ABLE ER
G/L (U | TAL TO
COV- RE
ABLE EF
G/L (U | DTAL TO
ECOV- RE
RABLE ER
JG/L (U | COV- (CO | | MO- CHI
RM RIC
FAL TOI | 'RA-
O- CHLO
DE BENZ | ene meth
L tot | -
MO- CHLC
ANE ETHA
AL TOI | NE
'AL | | JUN 1988 | • | 5 | 160 < | 0.10 | 7 | 20 | 2.0 | | | | | | | AUG
22 | | < 5 | 220 < | 0.10 | 5 | 20 ทา | וא ס | o NE |) ND | ND. | ND |) | | OCT
18 | | <5 | 100 < | 0.10 | 4 | 10 N | וא ס | D NE |) NE |) ND | ND |) | | | | | | | | | | | | | | | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). ### 01372043 HUDSON RIVER NEAR POUGHKEEPSIE, NY - continued | DATE | CHLORO-
FORM
TOTAL
(UG/L) | CIS
1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | DI-
CHLORO-
BROMO-
METHANE
TOTAL
(UG/L) | METHYL-
BROMIDE
TOTAL
(UG/L) | METHYL-
CHLO-
RIDE
TOTAL
(UG/L) | METHYL-
ENE
CHLO-
RIDE
TOTAL
(UG/L) | 1,1,1-
TRI-
CHLORO-
ETHANE
TOTAL
(UG/L) | 1,1-DI-
CHLORO-
ETHANE
TOTAL
(UG/L) | 1,1-DI-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 1,1,2-
TRI-
CHLORO-
ETHANE
TOTAL
(UG/L) | 1,1,2,2
TETRA-
CHLORO-
ETHANE
TOTAL
(UG/L) | |----------------|--|---|--|---|--|--|--|--|--|---|---| | JUN 1988 | | | | | | | | | | | | | 13
AUG | | | | | | | | | | | | | 22
OCT | ND | 18 | ND | ND | ND | ND | ND | ND | ИD | ND | ND | ND | ND | | DATE | 1,2-DI-
CHLORO-
BENZENE
TOTAL
(UG/L) | 1,2-DI-
CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L) | 1,2-DI-
CHLORO-
PROPANE
TOTAL
(UG/L) | 1,2-
TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L) | 1,3-DI-
CHLORO-
BENZENE
TOTAL
(UG/L) | 1,4-DI-
CHLORO-
BENZENE
TOTAL
(UG/L) | TETRA-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | TRANS-
1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | TRI-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 2-
CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L) | VINYL
CHLO-
RIDE
TOTAL
(UG/L) | | JUN 1988
13 | | | | | | | | | | | | | AUG | | | | | | | | | | | | | 22
OCT | ND | ИД | ND #### 01420500 BEAVER KILL AT COOKS FALLS, NY - continued LOCATION.--Lat 41 56'47", long 74 58'48", Delaware County, Hydrologic Unit 02040102, on left bank 66 ft downstream from road bridge in Cooks Falls, and 5.5 mi downstream from Willowemoc Creek. DRAINAGE AREA. -- 241 mi 2 . PERIOD OF RECORD. -- RIOD OF RECORD.-CHEMICAL DATA: 1987 (b), 1988 (c), 1989 (a). MINOR ELEMENT DATA: 1987 (b), 1988 (c), 1989 (a). PESITCIDE DATA: 1987 (b), 1988 (c), 1989 (a). NUTRIENT DATA: 1987 (b), 1988 (c), 1989 (a). SEDIMENT DATA: 1988 (b), 1989 (a). PERIOD OF DAILY RECORD . -- WATER TEMPERATURES: October 1987 to current year. INSTRUMENTATION. -- Water-temperature satellite and telephone telemeter since June 1986, provides 15-minute-interval readings. REMARKS .-- Water-discharge data obtained from stream-flow gage at this site. EXTREMES FOR PERIOD OF DAILY RECORD .-- WATER TEMPERATURES: Minimum, 0.0 C on many days during winter period. EXTREMES FOR CURRENT YEAR . -- WATER TEMPERATURES: Maximum recorded, 27.5 C, Aug. 6, but may have been higher during period of instrument malfunction; minimum, 0.0 C on many days during winter period. | D ATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | SPE-
CIFIC
CON-
DUCT-
ANCE
LAB
(US/CM) | PH WATER WHOLE FIELD (STAND- ARD UNITS) | TEMPER-
ATURE
WATER
(DEG C) | TUR-
BID-
ITY
(NTU) | BARO-
METRIC
PRES-
SURE
(MM
OF
HG) | OXYGEN,
DIS-
SOLVED
(MG/L) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | |--------------|------|--|---|--|---|--------------------------------------|------------------------------|--|-------------------------------------
--|---|--| | MAY 1987 | | | | | | | | | | | | | | 29 | 0930 | 185 | | 108 | 7.4 | 19.5 | 0.60 | | 9.5 | | 22 | 7.1 | | JUN | | | | | | | | | | | | | | 29 | 1525 | 132 | | 101 | 8.6 | 28.5 | 0.50 | | 9.8 | | 22 | 6.8 | | AUG | 1530 | 197 | | | 7.5 | 10.0 | 0.60 | | 10.3 | | 21 | | | 31
OCT | 1530 | 197 | | | 7.5 | 18.0 | 0.60 | | 10.3 | | 21 | 6.8 | | 19 | 1515 | 354 | | 64 | 7.2 | 11.5 | 0.50 | | 12.4 | ~- | 18 | 5.9 | | NOV | 1010 | | | • | , | 12.5 | •••• | | -2 | | 10 | 0.0 | | 09 | 1430 | 417 | | | 7.4 | 7.0 | 0.30 | | 12.7 | | 17 | 5.3 | | 30 | 1630 | 1770 | | | 7.0 | 6.0 | 5.0 | | 16.8 | | 14 | 4.4 | | APR 1988 | | | | | | | | | | | | | | 04 | 1630 | 1320 | 58 | 58 | 6.5 | 10.0 | 1.5 | 757 | 11.4 | 101 | 15 | 4.8 | | 20
JUN | 1750 | 340 | 73 | 73 | 6.2 | 8.5 | 0.40 | 755 | 11.3 | 98 | 18 | 5.7 | | 06 | 1600 | 290 | 73 | 71 | 7.2 | 19.5 | 0.50 | 748 | 9.1 | 101 | 19 | 6.0 | | 22 | 1650 | 109 | 121 | 117 | 9.0 | 24.0 | 0.60 | 759 | 8.5 | 101 | 23 | 7.2 | | JUL | | | | | 3.0 | 2110 | 0.00 | , 33 | 0.5 | 141 | 23 | , | | 18 | 1730 | 136 | 94 | 87 | 8.0 | 27.5 | 1.0 | 762 | 7.6 | 96 | 21 | 6.5 | | AUG | | | | | | | | | | | | | | 31 | 1630 | 239 | 94 | 89 | 8.0 | 19.5 | 0.81 | 766 | 9.2 | 100 | 21 | 6.4 | | OCT | 1500 | 60 | 124 | 120 | ۰. | 15.5 | 0.60 | 7.00 | 10. | 106 | 25 | 7.0 | | 17
NOV | 1500 | 60 | 134 | 128 | 8.5 | 15.5 | 0.60 | 768 | 10.6 | 106 | 25 | 7.8 | | 14 | 1500 | 843 | 58 | 55 | 6.8 | 6.5 | 1.2 | 764 | 12.7 | 104 | 16 | 4.8 | | - * | | | | | * | • • • | | | | | | | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). # 01420500 BEAVER KILL AT COOKS FALLS, NY - continued | DATE | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K) | ALKA-
LINITY
LAB
(MG/L
AS
CACO3) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | SOLIDS,
RESIDUE
AT 105
DEG. C,
TOTAL
(MG/L) | SOLIDS,
VOLA-
TILE ON
IGNI-
TION,
TOTAL
(MG/L) | RESIDUE
TOTAL
FIXED
(MG/L) | |--|--|--|--|--|--|--|---|---|--|---|--|---| | MAY 1987
29 | 1.1 | | | | | | | 49 | | 78 | 26 | 52 | | JUN
29 | 1.1 | | | | | | | 28 | | 74 | 20 | 51 | | AUG
31 | 1.0 | | | | | | | 4 6 | | 47 | 20 | 30 | | ⊙т
19 | 0.90 | | | | | | | 45 | | 58 | 18 | 40 | | 09 | 0.90 | | | | | | | 35 | | 45 | 30 | 8 | | 30
APR 1988 | 0.80 | | | | | | | 28 | | 48 | 22 | 28 | | 04
20
JUN | 0.8 4
1.0 | 3.2
5.3 | 0.50
0.50 | 6.0
9.0 | 8 .3
8.6 | 6.2
9.5 | 0.10
0.10 | 35
41 | 28
36 | 60
5 4 | 19
1 4 | 41
40 | | 06
22 | 1.0 | 4.8
12 | 0.60
0.70 | 11
13 | 8.3
9.0 | 8.2
19 | 0.30
0.20 | 43
81 | 36
57 | 96
86 | 38
44 | 58
4 2 | | JUL
18 | 1.1 | 7.8 | 0.70 | 12 | 9.5 | 11 | 0.10 | 51 | 44 | 72 | 29 | 43 | | AUG
31
OCT | 1.1 | 8.1 | 0.60 | 12 | 9.0 | 11 | 0.10 | 63 | 43 | 68 | 36 | 32 | | 17 | 1.4 | 14 | 0.80 | 16 | 8.8 | 21 | <0.10 | 63 | 63 | 64 | 8 | 56 | | 14 | 0.87 | 2.8 | 0.50 | 7.0 | 9.5 | 5.1 | <0.10 | 39 | 28 | 49 | 30 | 19 | | | | | | | | | | | | | | | | DATE | NITRO-
GEN,
NITRATE
TOTAL
(MG/L
AS N) | NITRO-
GEN,
NITRITE
TOTAL
(MG/L
AS N) | NITRO-
GEN,
NO2+NO3
TOTAL
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS NH4) | NITRO-
GEN,
ORGANIC
TOTAL
(MG/L
AS N) | NITRO-
GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | NITRO-
GEN,
TOTAL
(MG/L
AS N) | NITRO-
GEN,
TOTAL
(MG/L
AS NO3) | PHOS-
PHORUS
TOTAL
(MG/L
AS P) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P) | PHOS-
PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4) | | MAY 1987 | GEN,
NITRATE
TOTAL
(MG/L
AS N) | GEN,
NITRITE
TOTAL
(MG/L
AS N) | GEN,
NO2+NO3
TOTAL
(MG/L
AS N) | GEN,
AMMONIA
TOTAL
(MG/L
AS N) | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4) | GEN,
ORGANIC
TOTAL
(MG/L
AS N) | GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | GEN,
TOTAL
(MG/L
AS N) | GEN,
TOTAL
(MG/L
AS NO3) | PHORUS
TOTAL
(MG/L
AS P) | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P) | PHATE,
ORTHO,
DIS-
SOLVED
(MG/L | | | GEN,
NITRATE
TOTAL
(MG/L
AS N) | GEN,
NITRITE
TOTAL
(MG/L | GEN,
NO2+NO3
TOTAL
(MG/L | GEN,
AMMONIA
TOTAL
(MG/L | GEN,
AMMONIA
TOTAL
(MG/L | GEN,
ORGANIC
TOTAL
(MG/L | GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L | GEN,
TOTAL
(MG/L | GEN,
TOTAL
(MG/L | PHORUS
TOTAL
(MG/L | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L | PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4) | | MAY 1987
29
JUN
29
AUG
31 | GEN,
NITRATE
TOTAL
(MG/L
AS N) | GEN, NITRITE TOTAL (MG/L AS N) ND | GEN,
NO2+NO3
TOTAL
(MG/L
AS N) | GEN,
AMMONIA
TOTAL
(MG/L
AS N) | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4) | GEN,
ORGANIC
TOTAL
(MG/L
AS N) | GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | GEN,
TOTAL
(MG/L
AS N) | GEN,
TOTAL
(MG/L
AS NO3) | PHORUS
TOTAL
(MG/L
AS P) | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P) | PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4) | | MAY 1987
29
JUN
29
AUG
31
OCT
19 | GEN, NITRATE TOTAL (MG/L AS N) | GEN, NITRITE TOTAL (MG/L AS N) ND | GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
0.220 | GEN,
AMMONIA
TOTAL
(MG/L
AS N)
0.010 | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4)
0.01 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.09 | GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
0.10 | GEN,
TOTAL
(MG/L
AS N)
0.32 | GEN,
TOTAL
(MG/L
AS NO3)
1.4 | PHORUS
TOTAL
(MG/L
AS P)
0.010 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
ND | PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4) | | MAY 1987
29
JUN
29
AUG
31
⊙T | GEN, NITRATE TOTAL (MG/L AS N) | GEN, NITRITE TOTAL (MG/L AS N) ND ND | GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
0.220
0.160 | GEN,
AMMONIA
TOTAL
(MG/L
AS N)
0.010
0.010 | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4)
0.01 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.09 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.10 0.12 | GEN,
TOTAL
(MG/L
AS N)
0.32
0.28 | GEN,
TOTAL
(MG/L
AS NO3)
1.4
1.2 | PHORUS
TOTAL
(MG/L
AS P)
0.010
0.010 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
ND
0.00 | PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4) | | MAY 1987 29 JUN 29 AUG 31 OCT 19 NOV 09 APR 1988 04 | GEN, NITRATE TOTAL (MG/L AS N) | GEN, NITRITE TOTAL (MG/L AS N) ND | GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
0.220
0.160
0.230
0.160
0.310
0.280
0.520 | GEN, AMMONIA TOTAL (MG/L AS N) 0.010 0.010 ND 0.010 ND 0.010 0.010 | GEN, AMMONIA TOTAL (MG/L AS NH4) 0.01 0.01 0.01 0.01 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.09
0.11

0.20

0.16
0.06 | GEN, AM- MONIA + ORGANIC TOTTAL (MG/L AS N) 0.10 0.12 0.11 0.21 0.07 0.17 | GEN,
TOTTAL
(MG/L
AS N)
0.32
0.28
0.34
0.37
0.38
0.45 | GEN,
TOTAL
(MG/L
AS NO3)
1.4
1.2
1.5
1.6
1.7
2.0 | PHORUS
TOTAL
(MG/L
AS P)
0.010
0.010
0.010
0.00
0.00
0.020
0.010 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
ND
0.00
ND
ND
0.00 | PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4) | | MAY 1987 29 JUN 29 AUG 31 OCT 19 NOV 09 APR 1988 04 20 JUN | GEN, NITRATE TOTAL (MG/L AS N) | GEN, NITRITE TOTAL (MG/L AS N) ND | GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
0.220
0.160
0.230
0.160
0.310
0.280
0.520
0.300 | GEN,
AMMONIA
TOTAL
(MG/L
AS N)
0.010
0.010
ND
0.010
ND
0.010 | GEN, AMMONIA TOTAL (MG/L AS NH4) 0.01 0.01 0.01 0.01 0.01 0.01 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.09
0.11

0.20

0.16
0.06
0.09 | GEN, AM- MONIA + ORGANIC TYOTAL (MG/L AS N) 0.10 0.12 0.11 0.21 0.07 0.17 0.07
 GEN,
TOTAL
(MG/L
AS N)
0.32
0.28
0.34
0.37
0.38
0.45 | GEN,
TOTAL
(MG/L)
AS NO3)
1.4
1.2
1.5
1.6
1.7
2.0 | PHORUS
TOTAL
(MG/L
AS P)
0.010
0.010
0.010
0.00
0.020
0.010
0.010 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
ND
0.00
0.00
ND
ND
0.00 | PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4) | | MAY 1987 29 JUN 29 AUG 31 OCT 19 NOV 09 APR 1988 04 20 JUN 06 22 | GEN, NITRATE TOTAL (MG/L AS N) | GEN, NITRITE TOTAL (MG/L AS N) ND | GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
0.220
0.160
0.230
0.160
0.310
0.280
0.520 | GEN, AMMONIA TOTAL (MG/L AS N) 0.010 0.010 ND 0.010 ND 0.010 0.010 | GEN, AMMONIA TOTAL (MG/L AS NH4) 0.01 0.01 0.01 0.01 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.09
0.11

0.20

0.16
0.06 | GEN, AM- MONIA + ORGANIC TOTTAL (MG/L AS N) 0.10 0.12 0.11 0.21 0.07 0.17 | GEN,
TOTTAL
(MG/L
AS N)
0.32
0.28
0.34
0.37
0.38
0.45 | GEN,
TOTAL
(MG/L
AS NO3)
1.4
1.2
1.5
1.6
1.7
2.0 | PHORUS
TOTAL
(MG/L
AS P)
0.010
0.010
0.010
0.00
0.00
0.020
0.010 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
ND
0.00
ND
ND
0.00 | PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4) | | MAY 1987 29 JUN 29 AUG 31 OCT 19 NOV 09 30 APR 1988 04 20 JUN 06 | GEN, NITRATE TOTAL (MG/L AS N) | GEN, NITRITE TOTAL (MG/L AS N) ND | GEN, NO2+NO3 TOTAL (MG/L AS N) 0.220 0.160 0.230 0.160 0.310 0.280 0.520 0.300 0.170 | GEN, AMMONIA TOTAL (MG/L AS N) 0.010 0.010 ND 0.010 ND 0.010 0.010 0.010 0.010 0.010 | GEN, AMMONIA TOTAL (MG/L AS NH4) 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.0 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.09
0.11

0.20

0.16
0.06
0.09 | GEN, AM- MONIA + ORGANIC TYOTAL (MG/L AS N) 0.10 0.12 0.11 0.21 0.07 0.17 0.07 0.09 0.14 | GEN,
TOTAL
(MG/L
AS N)
0.32
0.28
0.34
0.37
0.38
0.45
0.59
0.39 | GEN,
TOTAL
(MG/L
AS NO3)
1.4
1.2
1.5
1.6
1.7
2.0
2.6
1.7 | PHORUS
TOTAL
(MG/L
AS P)
0.010
0.010
0.010
0.00
0.020
0.010
0.010 | PHORUS ORTHO, DIS-SOLVED (MG/L AS P) ND 0.00 ND ND ND 0.00 ND ND 0.00 ND 0.00 0.00 ND | PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4) | | MAY 1987 29 JUN 29 AUG 31 OCT 19 NOV 09 APR 1988 04 20 JUN 06 JUL 18 | GEN, NITRATE TOTAL (MG/L AS N) | GEN, NITRITE TOTAL (MG/L AS N) ND | GEN, NO2+NO3 TOTAL (MG/L AS N) 0.220 0.160 0.230 0.160 0.310 0.280 0.520 0.300 0.170 0.170 | GEN, AMMONIA TOTAL (MG/L AS N) 0.010 0.010 ND 0.010 ND 0.010 0.010 0.010 0.010 0.010 | GEN, AMMONIA TOTAL (MG/L AS NH4) 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.09
0.11

0.20

0.16
0.06
0.09
0.13
0.11 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.10 0.12 0.11 0.21 0.07 0.17 0.07 0.07 0.10 | GEN,
TOTAL
(MG/L
AS N)
0.32
0.28
0.34
0.37
0.38
0.45
0.59
0.39 | GEN,
TOTAL
(MG/L)
AS NO3)
1.4
1.2
1.5
1.6
1.7
2.0
2.6
1.7 | PHORUS
TOTAL
(MG/L
AS P)
0.010
0.010
0.010
0.00
0.020
0.010
0.010
0.010
0.010 | PHORUS ORTHO, DIS- SOLVED (MG/L AS P) ND 0.00 ND ND ND 0.00 ND 0.00 ND 0.00 ND | PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4)

0.0
0.0

0.0 | | MAY 1987 29 JUN 29 AUG 31 OCT 19 NOV 09 APR 1988 04 20 JUN 06 22 JUL 18 AUG 31 | GEN, NITRATE TOTAL (MG/L AS N) | GEN, NITRITE TOTAL (MG/L AS N) ND | GEN, NO2+NO3 TOTAL (MG/L AS N) 0.220 0.160 0.230 0.160 0.310 0.280 0.520 0.300 0.170 0.170 0.380 | GEN, AMMONIA TOTAL (MG/L AS N) 0.010 0.010 ND 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 | GEN, AMMONIA TOTAL (MG/L AS NH4) 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.09
0.11

0.20

0.16
0.06
0.09
0.13
0.11 | GEN, AM- MONIA + ORGANIC TOTTAL (MG/L AS N) 0.10 0.12 0.11 0.21 0.07 0.17 0.07 0.09 0.14 0.12 0.13 | GEN,
TOTAL
(MG/L
AS N)
0.32
0.28
0.34
0.37
0.38
0.45
0.59
0.39 | GEN,
TOTAL
(MG/L
AS NO3)
1.4
1.2
1.5
1.6
1.7
2.0
2.6
1.7 | PHORUS
TOTAL
(MG/L
AS P)
0.010
0.010
0.010
0.00
0.020
0.010
0.010
0.370
0.040 | PHORUS ORTHO, DIS-SOLVED (MG/L AS P) ND 0.00 ND ND 0.00 | PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4) 0.0 0.0 0.0 0.0 0.0 0.0 | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). # 01420500 BEAVER KILL AT COOKS FALLS, NY - continued | DATE | ALUM-
INUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS AL) | ALUM-
INUM,
DIS-
SOLVED
(UG/L
AS AL) | CADMIUM
TOTAL
RECOV-
ERABLE
(UG/L
AS CD) | CADMIUM
DIS-
SOLVED
(UG/L
AS CD) | COPPER,
TOTAL
RECOV-
ERABLE
(UG/L
AS CU) | COPPER,
DIS-
SOLVED
(UG/L
AS CU) | IRON,
TOTAL
RECOV-
ERABLE
(UG/L
AS FE) | IRON,
DIS-
SOLVED
(UG/L
AS FE) | LEAD,
TOTAL
RECOV-
ERABLE
(UG/L
AS PB) | LEAD,
DIS-
SOLVED
(UG/L
AS PB) | MANGA-
NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | |---|--|--|---|--|--|--|--|--|--|---|---| | MAY 1987 | | | | | | | | | | | | | 29
JUN | | | <10 | | <10 | | 60 | | < 5 | | 20 | | 29
AUG | | | <10 | | <10 | | 20 | | <5 | | <10 | | 31
OCT | | | <10 | | 20 | | 60 | | <5 | | 20 | | 19 | | | <1 | | 7 | | 20 | | <5 | | <10 | | 09 | | | <1 | | 5 | | 50 | | < 5 | | 10 | | 30
APR 1988 | | | <1 | 1.0 | 6 | 2 | 240 | | 7 | 5 | 40 | | 04 |
10 | 20 | <1
2 | <1.0 | 4 2 | 2 | 80
30 | 12 | <5
<5 | <5
 | 20
<10 | | JUN | | | _ | | _ | | | | | | | | 06
22 | 50
50 | 20
 | 2
<1 | <1.0
 | 7
4 | 2 | 50
50 | | <5
<5 | <5
 | 20
20 | | JUL
18 | 80 | | <1 | | 5 | | 180 | | <5 | | 50 | | AUG
31 | 70 | | <1 | | 3 | | 120 | | < 5 | | 20 | | OCT
17 | 40 | 10 | <1 | <1.0 | 3 | 2 | 80 | 9 | <5 | <5 | <10 | | NOV
14 | 70 | | <1 | | 4 | | 100 | | <5 | | 20 | | | | | | | | | | | | | | | DATE | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN) | MERCURY
TOTAL
RECOV-
ERABLE
(UG/L
AS HG) | NICKEL,
TOTAL
RECOV-
ERABLE
(UG/L
AS NI) | NICKEL,
DIS-
SOLVED
(UG/L
AS NI) | ZINC,
TOTAL
RECOV-
ERABLE
(UG/L
AS ZN) | ZINC,
DIS-
SOLVED
(UG/L
AS ZN) | BROMO-
FORM
TOTAL
(UG/L) | CARBON-
TETRA-
CHLO-
RIDE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
DI-
BROMO-
METHANE
TOTAL
(UG/L) | CHLORO-
ETHANE
TOTAL
(UG/L) | | MAY 1987 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL
RECOV-
ERABLE
(UG/L
AS HG) | TOTAL
RECOV-
ERABLE
(UG/L
AS NI) | DIS-
SOLVED
(UG/L
AS NI) | TOTAL
RECOV-
ERABLE
(UG/L
AS ZN) | DIS-
SOLVED
(UG/L
AS ZN) | FORM
TOTAL
(UG/L) | TETRA-
CHLO-
RIDE
TOTAL
(UG/L) | BENZENE
TOTAL
(UG/L) | DI-
BROMO-
METHANE
TOTAL
(UG/L) | ETHANE
TOTAL
(UG/L) | | | NESE,
DIS-
SOLVED
(UG/L | TOTAL
RECOV-
ERABLE
(UG/L | TOTAL
RECOV-
ERABLE
(UG/L | DIS-
SOLVED
(UG/L | TOTAL
RECOV-
ERABLE
(UG/L | DIS-
SOLVED
(UG/L | FORM
TOTAL | TETRA-
CHLO-
RIDE
TOTAL | BENZENE
TOTAL | DI-
BROMO-
METHANE
TOTAL | ETHANE
TOTAL | | MAY 1987
29
JUN
29 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL
RECOV-
ERABLE
(UG/L
AS HG) | TOTAL
RECOV-
ERABLE
(UG/L
AS NI) | DIS-
SOLVED
(UG/L
AS NI) | TOTAL
RECOV-
ERABLE
(UG/L
AS ZN) | DIS-
SOLVED
(UG/L
AS ZN) | FORM
TOTAL
(UG/L) | TETRA-
CHLO-
RIDE
TOTAL
(UG/L) | BENZENE
TOTAL
(UG/L) | DI-
BROMO-
METHANE
TOTAL
(UG/L) | ETHANE
TOTAL
(UG/L) | | MAY 1987
29
JUN
29
AUG
31 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL
RECOV-
ERABLE
(UG/L
AS HG) | TOTAL
RECOV-
ERABLE
(UG/L
AS NI) | DIS-
SOLVED
(UG/L
AS NI) | TOTAL
RECOV-
ERABLE
(UG/L
AS ZN) | DIS-
SOLVED
(UG/L
AS ZN) | FORM TOTAL (UG/L) | TETRA-
CHLO-
RIDE
TOTAL
(UG/L) | BENZENE
TOTAL
(UG/L) | DI-
BROMO-
METHANE
TOTAL
(UG/L) | ETHANE
TOTAL
(UG/L)
ND | | MAY 1987
29
JUN
29
AUG
31
OCT
19 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV- ERABLE (UG/L AS HG) <0.10 | TOTAL RECOV- ERABLE (UG/L AS NI) <1 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV- ERABLE (UG/L AS ZN) <10 <10 | DIS-
SOLVED
(UG/L
AS ZN) | FORM TOTAL (UG/L) ND | TETRA-
CHLO-
RIDE
TOTAL
(UG/L)
ND | BENZENE
TOTAL
(UG/L)
ND | DI -
BROMO-
METHANE
TOTAL
(UG/L)
ND | ETHANE
TOTAL
(UG/L)
ND | | MAY 1987
29
JUN
29
AUG
31
OCT
19 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV- ERABLE (UG/L AS HG) <0.10 <0.10 <0.10 <0.10 | TOTAL RECOV- ERABLE (UG/L AS NI) <1 4 5 |
DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV- ERABLE (UG/L AS ZN) <10 <10 <10 <10 | DIS-
SOLVED
(UG/L
AS ZN) | FORM TOTAL (UG/L) ND ND ND | TETRA- CHLO- RIDE TOTAL (UG/L) ND ND ND ND | BENZENE
TOTAL
(UG/L)
ND
ND
ND | DI-
BROMO-
METHANE
TOTAL
(UG/L)
ND
ND
ND | ETHANE TOTAL (UG/L) ND ND ND | | MAY 1987
29
JUN
29
AUG
31
OCT
19
NOV
09 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV- ERABLE (UG/L AS HG) <0.10 <0.10 | TOTAL RECOV- ERABLE (UG/L AS NI) <1 4 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV- ERABLE (UG/L AS ZN) <10 <10 <10 | DIS-
SOLVED
(UG/L
AS ZN) | FORM TOTAL (UG/L) ND ND | TETRA-
CHLO-
RIDE
TOTAL
(UG/L)
ND
ND | BENZENE
TOTAL
(UG/L)
ND
ND | DI-
BROMO-
METHANE
TOTAL
(UG/L)
ND
ND | TOTAL (UG/L) ND ND ND | | MAY 1987 29 JUN 29 AUG 31 OCT 19 NOV 09 30 APR 1988 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV-ERABLE (UG/L AS HG) <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 | TOTAL RECOV- ERABLE (UG/L AS NI) <1 4 5 4 <1 <1 <1 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV- ERABLE (UG/L AS ZN) <10 <10 <10 <10 <10 <10 <10 | DIS-
SOLVED
(UG/L
AS ZN) | FORM TOTAL (UG/L) ND ND ND ND ND | TETRA-CHLO-RIDE RIDE TOTAL (UG/L) ND ND ND ND ND ND | BENZENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND | DI-
BROMO-
METHANE
TOTAL
(UG/L)
ND
ND
ND
ND | ETHANE TOTAL (UG/L) ND ND ND ND ND ND | | MAY 1987 29 JUN 29 AUG 31 OCT 19 NOV 09 APR 1988 04 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV- ERABLE (UG/L AS HG) <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 | TOTAL RECOV- ERABLE (UG/L AS NI) <1 4 5 4 <1 <1 <1 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV- ERABLE (UG/L AS ZN) <10 <10 <10 <10 <10 <10 <10 <10 <10 <1 | DIS-
SOLVED
(UG/L
AS ZN) | FORM TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TETRA-CHLO-RIDE RIDE TOTAL (UG/L) ND | BENZENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND | DI- BROMO- METHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | ETHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | | MAY 1987 29 JUN 29 AUG 31 OCT 19 NOV 09 30 APR 1988 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV-ERABLE (UG/L AS HG) <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 | TOTAL RECOV- ERABLE (UG/L AS NI) <1 4 5 4 <1 <1 <1 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV- ERABLE (UG/L AS ZN) <10 <10 <10 <10 <10 <10 <10 | DIS-
SOLVED
(UG/L
AS ZN) | FORM TOTAL (UG/L) ND ND ND ND ND | TETRA-CHLO-RIDE RIDE TOTAL (UG/L) ND ND ND ND ND ND | BENZENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND | DI-
BROMO-
METHANE
TOTAL
(UG/L)
ND
ND
ND
ND | ETHANE TOTAL (UG/L) ND ND ND ND ND ND | | MAY 1987 29 JUN 29 AUG 31 OCT 19 NOV 09 30 APR 1988 04 20 JUN 06 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV-ERABLE (UG/L AS HG) <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 | TOTAL RECOV-ERABLE (UG/L AS NI) <1 4 5 4 <1 <1 <1 6 3 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV- ERABLE (UG/L AS ZN) <10 <10 <10 <10 <10 <10 <10 <10 <10 <1 | DIS-
SOLVED
(UG/L
AS ZN) | FORM TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TETRA-CHLO-RIDE RIDE TOTAL (UG/L) ND | BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | DI- BROMO- METHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | ETHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | | MAY 1987 29 JUN 29 AUG 31 OCT 19 NOV 09 30 APR 1988 04 20 JUN 06 22 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV- ERABLE (UG/L AS HG) <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 | TOTAL RECOV- ERABLE (UG/L AS NI) <1 4 5 4 <1 <1 <1 6 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV- ERABLE (UG/L AS ZN) <10 <10 <10 <10 <10 <10 <10 <10 <10 | DIS-
SOLVED
(UG/L
AS ZN) | FORM TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TETRA- CHLO- RIDE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | BENZENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND
ND
ND | DI-
BROMO-
METHANE
TOTAL
(UG/L)
ND
ND
ND
ND
ND | ETHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | | MAY 1987 29 JUN 29 AUG 31 OCT 19 NOV 09 30 APR 1988 04 20 JUN 06 22 JUL 18 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV-ERABLE (UG/L AS HG) <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 | TOTAL RECOV-ERABLE (UG/L AS NI) <1 4 5 4 <1 <1 <1 6 3 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV- ERABLE (UG/L AS ZN) <10 <10 <10 <10 <10 <10 <10 <10 <10 <1 | DIS-
SOLVED
(UG/L
AS ZN) | FORM TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TETRA-CHLO-RIDE RIDE TOTAL (UG/L) ND | BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | DI- BROMO- METHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | ETHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | | MAY 1987 29 JUN 29 AUG 31 OCT 19 NOV 09 30 APR 1988 04 20 JUN 06 22 JUL 18 AUG 31 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV- ERABLE (UG/L AS HG) <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 | TOTAL RECOV- ERABLE (UG/L AS NI) <1 4 5 4 <1 <1 6 3 <1 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV- ERABLE (UG/L AS ZN) <10 <10 <10 <10 <10 <10 <10 <10 <10 <1 | DIS-
SOLVED
(UG/L
AS ZN) | FORM TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TETRA- CHLO- RIDE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | DI- BROMO- METHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | ETHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | | MAY 1987 29 JUN 29 AUG 31 OCT 19 NOV 09 APR 1988 04 20 JUN 06 22 JUL 18 AUG | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV-ERABLE (UG/L AS HG) <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 | TOTAL RECOV-ERABLE (UG/L AS NI) <1 4 5 4 <1 <1 <1 6 3 <1 1 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV- ERABLE (UG/L AS ZN) <10 <10 <10 <10 <10 <10 <10 <10 <10 <1 | DIS-
SOLVED
(UG/L
AS ZN) | FORM TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TETRA-CHLO-RIDE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | DI- BROMO- METHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | ETHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). # 01420500 BEAVER KILL AT COOKS FALLS, NY - continued | DATE | CHLORO-
FORM
TOTAL
(UG/L) | CIS
1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | DI-
CHLORO-
BROMO-
METHANE
TOTAL
(UG/L) | METHYL-
BROMIDE
TOTAL
(UG/L) | METHYL-
CHLO-
RIDE
TOTAL
(UG/L) | METHYL-
ENE
CHLO-
RIDE
TOTAL
(UG/L) | 1,1,1-
TRI-
CHLORO-
ETHANE
TOTAL
(UG/L) | 1,1-DI-
CHLORO-
ETHANE
TOTAL
(UG/L) | 1,1-DI-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 1,1,2-
TRI-
CHLORO-
ETHANE
TOTAL
(UG/L) | 1,1,2,2
TETRA-
CHLORO-
ETHANE
TOTAL
(UG/L) | |--|---|---|--|---|--|--|--|---|--|--|---| | MAY 1987
29
JUN | ND | 29
AUG | ND | 31
OCT | ND | 19
NoV | ND | ND | ND | ИD | ND | ND | ND | ИD | ND | ND | ND | | 09
30
APR 1988 | ND
ND | ND
ND | ND
ND | N D | ND
ND | и D | ND
ND | ND
ND | ND
ND | ND
ND | ND
ND | | 04 | ND
ND | ND
ND | ND
ND | ND
ND | N D | ND
ND | ND
ND | ND
ND | ND
ND | ND
ND | ND
ND | | JUN
06 | ND | 22
JUL | ND | 18
AUG | ND | ND | ND | ИD | ND | ИД | ИД | ИД | ИD | ND | ND | | 31
OCT | ND | 17
NOV | ND | 14 | ND | ND | ND | ND | ND | ИD | ND | ND | ND | ND | ND | | | | | | | | | | | | | | | DATE | 1,2-DI-
CHLORO-
BENZENE
TOTAL
(UG/L) | 1,2-DI-
CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L) | 1,2-DI-
CHLORO-
PROPANE
TOTAL
(UG/L) | 1,2-
TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L) | 1,3-DI-
CHLORO-
BENZENE
TOTAL
(UG/L) | 1,4-DI-
CHLORO-
BENZENE
TOTAL
(UG/L) | TETRA-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | TRANS-
1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | TRI-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 2-
CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L) | VINYL
CHLO-
RIDE
TOTAL
(UG/L) | | MAY 1987
29 | CHLORO-
BENZENE
TOTAL | CHLORO-
ETHANE
WATER
WHOLE
TOTAL | CHLORO-
PROPANE
TOTAL | TRANSDI
CHLORO-
ETHENE
TOTAL | CHLORO-
BENZENE
TOTAL | CHLORO-
BENZENE
TOTAL | CHLORO-
ETHYL -
ENE
TOTAL | 1,3-DI-
CHLORO-
PROPENE
TOTAL | CHLORO-
ETHYL-
ENE
TOTAL | CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL | CHLO-
RIDE
TOTAL | | MAY 1987
29
JUN
29 | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L) | CHLORO-
PROPANE
TOTAL
(UG/L) | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) |
CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L) | CHLO-
RIDE
TOTAL
(UG/L) | | MAY 1987
29
JUN
29
AUG
31 | CHLORO-
BENZENE
TOTAL
(UG/L)
ND | CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L) | CHLORO-
PROPANE
TOTAL
(UG/L) | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L) | CHLO-
RIDE
TOTAL
(UG/L) | | MAY 1987
29
JUN
29
AUG | CHLORO-
BENZENE
TOTAL
(UG/L)
ND | CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L)
ND | CHLORO-
PROPANE
TOTAL
(UG/L)
ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND | CHLORO-
BENZENE
TOTAL
(UG/L)
ND | CHLORO-
BENZENE
TOTAL
(UG/L)
ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND | CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L)
ND | CHLO-
RIDE
TOTAL
(UG/L)
ND | | MAY 1987
29
JUN
29
AUG
31
OCT
19 | CHLORO-
BENZENE
TOTAL
(UG/L)
ND
ND | CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L)
ND
ND | CHLORO-
PROPANE
TOTAL
(UG/L)
ND
ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND | CHLORO-
BENZENE
TOTAL
(UG/L)
ND
ND | CHLORO-
BENZENE
TOTAL
(UG/L)
ND
ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND
ND | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
ND
ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND
ND | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND ND | CHLO-
RIDE
TOTAL
(UG/L)
ND
ND | | MAY 1987 29 JUN 29 AUG 31 OCT 19 NOV 09 30 APR 1988 04 20 | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND | CHLORO- ETHANE WATER WHOLE TOTAL (UG/L) ND ND ND ND | CHLORO-PROPANE TOTAL (UG/L) ND ND ND ND ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND ND ND ND ND ND ND | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
ND
ND
ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND ND ND ND | CHLO-
RIDE
TOTAL
(UG/L)
ND
ND
ND | | MAY 1987
29
JUN
29
AUG
31
OCT
19
NOV
09
30
APR 1988
04 | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND ND ND ND ND ND | CHLORO- PROPANE TOTAL (UG/L) ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND ND ND ND ND ND | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND N | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND ND ND ND ND ND | CHLO-RIDE TOTAL (UG/L) ND | | MAY 1987 29 JUN 29 AUG 31 OCT 19 NOV 09 30 APR 1988 04 20 JUN 066 22 | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND | CHLORO-PROPANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-ETHYL-ENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLO-RIDE TOTAL (UG/L) ND | | MAY 1987 29 JUN 29 AUG 31 OCT 19 NOV 09 30 APR 1988 04 20 JUN 06 22 JUL 18 | CHLORO- BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND | CHLORO-PROPANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-ETHYL-ENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-ETHYL-ENE TOTAL (UG/L) ND N | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLO-RIDE TOTAL (UG/L) ND | | MAY 1987 29 JUN 29 AUG 31 OCT 19 NOV 09 30 APR 1988 04 20 JUN 06 22 JUL 18 AUG 31 | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND | CHLORO-PROPANE TOTAL (UG/L) ND | TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND N | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLO-RIDE TOTAL (UG/L) ND | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). 01420500 BEAVER KILL AT COOKS FALLS, NY - continued # SUSPENDED SEDIMENT DISCHARGE | | | DIS-
CHARGE, | | SEDI-
MENT, | |----------|------|-----------------|------------------|-------------------| | | | INST. | SEDI- | DIS- | | | | CUBIC
FEET | MENT,
SUS- | CHARGE,
SUS- | | DATE | TIME | PER
SECOND | PENDED
(MG/L) | PENDED
(T/DAY) | | JUN 1988 | | SECOND | (MG/L) | (I)DAI) | | 06 | 1600 | 290 | 2 | 1.6 | | 22 | 1650 | 109 | 3 | 0.88 | | JUL | | | | | | 18 | 1730 | 136 | 5 | 1.8 | | AUG | | | | | | 31 | 1630 | 239 | 4 | 2.6 | | OCT | | | | | | 17 | 1500 | 60 | <1 | | | NOV | | | | | | 14 | 1500 | 843 | 2 | 4.6 | | | | | | | ### BED MATERIAL ANALYSES | DATE | TIME T | VOLA- F
LE IN FM
OTTOM TO
MA- T
TERIAL (| RECOV. M
BOT- R
M MA- FM
PERIAL TO
UG/G I | IUM,
ECOV. F
BOT- T
M MA-
ERIAL | | | | MANGA-
NESE,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G) | |----------------|--|--|---|---|----------------------------------|---|---------------------------------------|---| | OCT 1987 | 1515 | 0200 | | .10 | 5 | 4800 | 5.0 | 100 | | 19 | 1515 | 9200 | <1 | <10 | 5 | 4800 | 50 | 190 | | DATE | MERCURY
RECOV.
FM BOT-
TOM MA-
TERIAI
(UG/G
AS HG) | RECOV FM BOT TOM MA TERIAL (UG/G | RECOV FM BOT TOM MA TERIAL (UG/G | FALL
DIAM.
% FINE
THAN | SIEV
DIAM
R % FIN
I THA | . MAT. E SIEVI . DIAM. ER % FINI N THAN | E SIEV
. DIAM
ER % FIN
N THA | re
!.
!er
wn | | ОСТ 1987
19 | <0.10 |) 10 |) 30 | | 0 | 0 | 1 | 97 | | 19 | ₹0.10 | , 10 | , 30 | , | U | v | 1 | 21 | #### 01421000 EAST BRANCH DELAWARE RIVER AT FISHS EDDY, NY LOCATION.--Lat 41 58'23", long 75 10'28", Delaware County, Hydrologic Unit 02040102, on left bank 3,000 ft upstream from bridge on County Highway 28 at Fishs Eddy, 0.6 mi upstream from Fish Creek, 4.2 mi downstream from Beaver Kill, and 11 mi upstream from the confluence of East and West Branches near Hancock. Water-quality sampling site at discharge station. DRAINAGE AREA. -- 784 mi 2 . PERIOD OF RECORD.--Water years 1958-59, 1968 to current year. CHEMICAL DATA: 1958-59 (d), 1970 (b), 1971-74 (d), 1975 (c), 1988 (b). MINOR ELEMENTS DATA: 1971-74 (a), 1988 (b). PESTICIDE DATA: 1988 (b). ORGANIC DATA: CC--1974 (a), 1975 (c). NUTRIENT DATA: 1971-75 (d), 1988 (b). BIOLOGICAL DATA: Bacteria--1971 (c), 1973-75 (c). SEDIMENT DATA: 1988 (b). PERIOD OF DAILY RECORD. -- WATER TEMPERATURES: November 1967 to current year. INSTRUMENTATION.--Water-temperature digital recorder since October 1975, provides one-hour-interval punches. Prior to October 1975, water-temperature recorder provided continuous recordings. REMARKS.--Water-discharge data obtained from stream-flow gage at this site. EXTREMES FOR PERIOD OF DAILY RECORD .-- WATER TEMPERATURES: Maximum (water years 1968-75, 1978, 1980-82, 1984, 1986-89), 31.5 C, Aug. 2, 1975; minimum (water years 1968-76, 1978-79, 1981-89), 0.0 C on many days during winter periods, except 1978. | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | SPE-
CIFIC
CON-
DUCT-
ANCE
LAB
(US/CM) | PH WATER WHOLE FIELD (STAND- ARD UNITS) | TEMPER-
ATURE
WATER
(DEG C) | TUR-
BID-
ITY
(NTU) | BARO-
METRIC
PRES-
SURE
(MM
OF
HG) | OXYGEN,
DIS-
SOLVED
(MG/L) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | |-----------------------|--|--|--|--|--|--|--|--|---|--|--|---| | APR 1988
04
JUN | 1500 | 2270 | 61 | 60 | 6.6 | 10.0 | 6.0 | 757 | 11.4 | 102 | 17 | 5.1 | | 06
22
JUL | 1450
1530 | 509
25 4 | 72
92 | 88
68 | 8.3
8.7 | 20.5
27.5 | 0.70
1.0 | 748
759 | 10.0
9.5 | 113
120 | 20
24 | 6.2
7.3 | | 18 | 1600 | 537 | 118
| 114 | 8.8 | 28.0 | 0.70 | 762 | 9.3 | 119 | 24 | 7.2 | | DATE | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K) | ALKA-
LINITY
LAB
(MG/L
AS
CACO3) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | SOLIDS,
RESIDUE
AT 105
DEG. C,
TOTAL
(MG/L) | SOLIDS,
VOLA-
TILE ON
IGNI-
TION,
TOTAL
(MG/L) | RESIDUE
TOTAL
FIXED
(MG/L) | | APR 1988
04 | 1.0 | 3.0 | 0.50 | 7.0 | 8.9 | 5.8 | 0.10 | 44 | 29 | 52 | 22 | 30 | | JUN
06 | 1.2 | 3.8 | 0.50 | 12 | 9.1 | 6.7 | 0.20 | 44 | 35 | 47 | 29 | 18 | | 22 | 1.4 | 6.6 | 1.0 | 14 | 9.4 | 10 | 0.20 | | 44 | 43 | 35 | 8 | | JUL
18 | 1.5 | 11 | 0.80 | 14 | 9.7 | 17 | 0.10 | 77 | 56 | 80 | 32 | 48 | | DATE | NITRO-
GEN,
NITRATE
TOTAL
(MG/L
AS N) | NITRO-
GEN,
NITRITE
TOTAL
(MG/L
AS N) | NITRO-
GEN,
NO2+NO3
TOTAL
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS NH4) | NITRO-
GEN,
ORGANIC
TOTAL
(MG/L
AS N) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | NITRO-
GEN,
TOTAL
(MG/L
AS N) | NITRO-
GEN,
TOTAL
(MG/L
AS NO3) | PHOS-
PHORUS
TOTAL
(MG/L
AS P) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P) | PHOS-
PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4) | | APR 1988
04 | | ND | 0.290 | 0.010 | 0.01 | 0.09 | 0.10 | 0.39 | 1.7 | 0.010 | 0.00 | 0.0 | | JUN
06 | | | | | | | | | | | | | | 22 | | ND
ND | 0.140 | ND
0 010 | 0.01 | 0 21 | 0.17 | 0.31
0.39 | 1.4
1.7 | 0.010
0.320 | ND | | | JUL | | ND | 0.170 | 0.010 | 0.01 | 0.21 | 0.22 | 0.39 | 1./ | 0.320 | ND | | ### 01421000 EAST BRANCH DELAWARE RIVER AT FISHS EDDY, NY - continued ### WATER-QUALITY DATA (continued) | DATE | ALUM-
INUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS AL) | ALUM-
INUM,
DIS-
SOLVED
(UG/L
AS AL) | CADMIUM
TOTAL
RECOV-
ERABLE
(UG/L
AS CD) | CADMIUM
DIS-
SOLVED
(UG/L
AS CD) | COPPER,
TOTAL
RECOV-
ERABLE
(UG/L
AS CU) | COPPER,
DIS-
SOLVED
(UG/L
AS CU) | IRON,
TOTAL
RECOV-
ERABLE
(UG/L
AS FE) | IRON,
DIS-
SOLVED
(UG/L
AS FE) | LEAD,
TOTAL
RECOV-
ERABLE
(UG/L
AS PB) | LEAD,
DIS-
SOLVED
(UG/L
AS PB) | MANGA-
NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | |---|---|---|---|---|--|---|---|--|--|--|---| | 04
JUN | | 10 | <1 | <1.0 | 3 | 1 | 380 | 14 | <5 | <5 | 30 | | 06
22
JUL | 30
40 | 30 | 1
<1 | 1.0 | 8
4 |
5 | 70
80 | 17
 | <5
<5 | <5
 | 20
30 | | 18 | 30 | | <1 | | 4 | | 80 | | <5 | | 40 | | DATE | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN) | MERCURY
TOTAL
RECOV-
ERABLE
(UG/L
AS HG) | NICKEL,
TOTAL
RECOV-
ERABLE
(UG/L
AS NI) | NICKEL,
DIS-
SOLVED
(UG/L
AS NI) | ZINC,
TOTAL
RECOV-
ERABLE
(UG/L
AS ZN) | ZINC,
DIS-
SOLVED
(UG/L
AS ZN) | BROMO-
FORM
TOTAL
(UG/L) | CARBON-
TETRA-
CHLO-
RIDE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
DI-
BROMO-
METHANE
TOTAL
(UG/L) | CHLORO-
ETHANE
TOTAL
(UG/L) | | APR 1988
04 | 10 | <0.10 | 9 | 3 | <10 | 4 | ND | ND | ND | ND | ND | | JUN
06
22 | 14 | <0.10
<0.10 | 4
<1 | 4 | <10
<10 | 16
 | ND
ND | ND
ND | ND
ND | ND
ND | ND
ND | | JUL
18 | | <0.10 | 2 | | <10 | | ND | ND | ND | ND | ND | | | | | | | | | | | | | | | DATE | CHLORO-
FORM
TOTAL
(UG/L) | CIS
1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | DI-
CHLORO-
BROMO-
METHANE
TOTAL
(UG/L) | METHYL-
BROMIDE
TOTAL
(UG/L) | METHYL-
CHLO-
RIDE
TOTAL
(UG/L) | METHYL-
ENE
CHLO-
RIDE
TOTAL
(UG/L) | 1,1,1-
TRI-
CHLORO-
ETHANE
TOTAL
(UG/L) | 1,1-DI-
CHLORO-
ETHANE
TOTAL
(UG/L) | 1,1-DI-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 1,1,2-
TRI-
CHLORO-
ETHANE
TOTAL
(UG/L) | 1,1,2,2
TETRA-
CHLORO-
ETHANE
TOTAL
(UG/L) | | APR 1988
04 | FORM
TOTAL | 1,3-DI-
CHLORO-
PROPENE
TOTAL | CHLORO-
BROMO-
METHANE
TOTAL | BROMIDE
TOTAL | CHLO-
RIDE
TOTA L | ENE
CHLO-
RIDE
TOTAL | TRI-
CHLORO-
ETHANE
TOTAL | CHLORO-
ETHANE
TOTAL | CHLORO-
ETHYL-
ENE
TOTAL | TRI-
CHLORO-
ETHANE
TOTAL | TETRA-
CHLORO-
ETHANE
TOTAL | | APR 1988
04
JUN
06
22 | FORM
TOTAL
(UG/L) | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | CHLORO-
BROMO-
METHANE
TOTAL
(UG/L) | BROMIDE
TOTAL
(UG/L) | CHLO-
RIDE
TOTAL
(UG/L) | ENE
CHLO-
RIDE
TOTAL
(UG/L) | TRI -
CHLORO-
ETHANE
TOTAL
(UG/L) | CHLORO-
ETHANE
TOTAL
(UG/L) | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | TRI -
CHLORO-
ETHANE
TOTAL
(UG/L) | TETRA-
CHLORO-
ETHANE
TOTAL
(UG/L) | | APR 1988
04
JUN
06 | FORM TOTAL (UG/L) ND | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
ND | CHLORO-
BROMO-
METHANE
TOTAL
(UG/L)
ND | BROMIDE
TOTAL
(UG/L)
ND | CHLO-
RIDE
TOTAL
(UG/L)
ND | ENE
CHLO-
RIDE
TOTAL
(UG/L) | TRI-CHLORO-ETHANE TOTAL (UG/L) | CHLORO-
ETHANE
TOTAL
(UG/L)
ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND | TRI- CHLORO- ETHANE TOTAL (UG/L) ND | TETRA-
CHLORO-
ETHANE
TOTAL
(UG/L) | | APR 1988
04
JUN
06
22
JUL
18 | FORM TOTAL (UG/L) ND ND ND ND ND TOTAL (UG/L) | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND ND ND ND 1,2-DI-CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) | CHLORO-BROMO-METHANE TOTAL (UG/L) ND ND ND ND CHLORO-PROPANE TOTAL (UG/L) | ND ND ND ND TRANSDI CHLORO- ETHENE TOTAL (UG/L) | CHLO-RIDE TOTAL (UG/L) ND ND ND ND CHLORO-BENZENE TOTAL (UG/L) | ENE CHLO- RIDE TOTAL (UG/L) 0.5 ND ND ND 1,4-DI- CHLORO- BENZENE TOTAL (UG/L) | TRI- CHLORO- ETHANE TOTAL (UG/L) ND 1.0 ND ND TETRA- CHLORO- ETHYL- ENE TOTAL (UG/L) | CHLORO-ETHANE TOTAL (UG/L) ND ND ND ND TRANS- 1,3-DI- CHLORO-PROPENE TOTAL (UG/L) | CHLORO-ETHYL-ENE TOTAL (UG/L) ND ND ND ND TRI-CHLORO-ETHYL-ENE TOTAL (UG/L) | TRI- CHLORO- ETHANE TOTAL (UG/L) ND ND ND ND CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L) | TETRA- CHLORO- ETHANE TOTAL (UG/L) ND ND ND ND VINYL CHLO- RIDE TOTAL (UG/L) | | APR 1988
04
JUN
06
22
JUL
18
DATE
APR 1988
04
JUN | FORM TOTAL (UG/L) ND ND ND ND L1,2-DI- CHLORO- BENZENE TOTAL | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND ND ND ND 1,2-DI-CHLORO-ETHANE WATER WHOLE TOTAL | CHLORO-BROMO-METHANE TOTAL (UG/L) ND ND ND ND CHLORO-PROPANE TOTAL | ND ND ND ND T-TRANSDI CHLORO-ETHENE TOTAL | CHLO-RIDE TOTAL (UG/L) ND ND ND ND ND END ND ND ND TOTAL TOTAL TOTAL | ENE CHLO- RIDE TOTAL (UG/L) 0.5 ND ND ND 1,4-DI- CHLORO- BENZENE TOTAL | TRI- CHLORO- ETHANE TOTAL (UG/L) ND 1.0 ND TETRA- CHLORO- ETHYL- ENE TOTAL | CHLORO-ETHANE TOTAL (UG/L) ND ND ND ND TRANS-1,3-DI-CHLORO-PROPENE TOTAL | CHLORO-ETHYL-ENE TOTAL (UG/L) ND ND ND ND TRI-CHLORO-ETHYL-ENE ENE TOTAL | TRI- CHLORO- ETHANE TOTAL (UG/L) ND ND ND ND ND CHLORO- ETHYL- VINYL- ETHER TOTAL | TETRA- CHLORO- ETHANE TOTAL (UG/L) ND ND ND ND VINYL CHLO- RIDE TOTAL | | APR 1988
04
JUN
06
22
JUL
18
DATE
APR 1988
04 | FORM TOTAL (UG/L) ND ND ND ND 1,2-DI- CHLORO- BENZENE TOTAL (UG/L) ND | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND ND ND ND 1,2-DI-CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND | CHLORO-BROMO-METHANE TOTAL (UG/L) ND ND ND ND 1,2-DI-CHLORO-PROPANE TOTAL (UG/L) ND | ND | CHLO-RIDE TOTAL (UG/L) ND ND ND ND TOTAL (UG/L) ND | ENE CHLO- RIDE TOTAL (UG/L) 0.5 ND ND ND 1,4-DI- CHLORO- BENZENE TOTAL (UG/L) ND | TRI-CHLORO-ETHANE TOTAL (UG/L) ND 1.0 ND TETRA-CHLORO-ETHYL-ENE ENE TOTAL (UG/L) ND | CHLORO-ETHANE TOTAL (UG/L) ND ND ND TRANS- 1,3-DI- CHLORO-PROPENE TOTAL (UG/L) ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND ND ND ND TRI-CHLORO-ETHYL-ENE TOTAL (UG/L) ND | TRI- CHLORO- ETHANE TOTAL (UG/L) ND ND ND ND CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L) ND | TETRA- CHLORO- ETHANE TOTAL (UG/L) ND ND ND ND VINYL CHLO- RIDE TOTAL (UG/L) ND | ### SUSPENDED SEDIMENT DISCHARGE | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND | SEDI-
MENT,
SUS-
PENDED
(MG/L) | SEDI-
MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY) | |----------|------|--|--|--| | JUN 1988 | | | | | | 06 | 1450 | 509 | 2 | 2.7 | | 22 | 1530 | 254 | 2 | 1.4 | |
JUL | | | | | | 18 | 1600 | 537 | 2 | 2.9 | #### 01421500 EAST BRANCH DELAWARE RIVER AT HANCOCK, NY LOCATION.--Lat 41 57'08", long 75 16'37", Delaware Coutny, Hydrologic Unit 02040102, at bridge on State Highway 97 in Hancock and 1.2 mi (1.9 km) upstream from confluence with West Branch. Gaging Station 1906-1912. DRAINAGE AREA. -- 839 mi2. PERIOD OF RECORD.--May to November 1987 (discontinued). CHEMICAL DATA: 1987-88 (b). MINOR ELEMENT DATA: 1987-88 (b). PESTICIDE DATA: 1987-88 (b). NUTRIENT DATA: 1987-88 (b). REMARKS.--Water-discharge data based on records from stream-flow gage 01421000 East Branch Delaware River at Fish Eddy. Sampling site moved to 01421000 East Branch Delaware River at Fish Eddy in 1988. | DATE | TIME | DIS-
CHARGE,
IN
CUBIC
FEET
PER
SECOND | SPE-
CIFIC
CON-
DUCT-
ANCE
LAB
(US/CM) | PH WATER WHOLE FIELD (STAND- ARD UNITS) | TEMPER-
ATURE
WATER
(DEG C) | TUR-
BID-
ITY
(NTU) | OXYGEN,
DIS-
SOLVED
(MG/L) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | |-----------|--|--|---|---|--|---|--|---|---|--|--| | MAY 1987 | | | | | | | | | | | | | 08
29 | 0930
1100 | 563
361 | 81
86 | 7.2
7.7 | 9.5
22.5 | 0.60
0.50 | 10.7
9.8 | 22
23 | 6.9
7.2 | 1.2
1.3 | 52
36 | | JUN | | | 2.5 | | | | 40.0 | | | | | | 29
AUG | 1420 | 393 | 85 | 8.6 | 25.0 | 0.90 | 10.2 | 23 | 7.0 | 1.3 | 53 | | 31
OCT | 1345 | 444 | | 7.4 | 19.0 | 0.70 | 10.1 | 22 | 6.8 | 1.2 | 40 | | 19 | 1415 | 650 | 66 | 7.4 | 12.0 | 1.1 | 12.3 | 22 | 6.7 | 1.2 | 49 | | NOV
09 | 1245 | 723 | | 7.4 | 6.5 | 0.50 | 13.3 | 18 | 5.4 | 1.2 | 47 | | 30 | 1500 | 1830 | | 7.2 | 6.0 | 4.0 | M16.4 | 19 | 5.8 | 1.2 | 40 | | DATE | SOLIDS,
RESIDUE
AT 105
DEG. C,
TOTAL
(MG/L) | SOLIDS,
VOLA-
TILE ON
IGNI-
TION,
TOTAL
(MG/L) | RESIDUE
TOTAL
FIXED
(MG/L) | NITRO-
GEN,
NITRITE
TOTAL
(MG/L
AS N) | NITRO-
GEN,
NO2+NO3
TOTAL
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS NH4) | NITRO-
GEN,
ORGANIC
TOTAL
(MG/L
AS N) | NITRO-
GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | NITRO-
GEN,
TOTAL
(MG/L
AS N) | NITRO-
GEN,
TOTAL
(MG/L
AS NO3) | | MAY 1987 | | 1.0 | 40 | | 0 170 | | | 0.00 | 0.07 | 0.04 | | | 08
29 | 5 8
65 | 16
2 4 | 42
41 | ND
ND | 0.170
0.270 | 0.010
0.020 | 0.01 | 0.06
0.07 | 0.07
0.09 | 0.24
0.36 | 1.1
1.6 | | JUN
29 | 53 | 20 | 28 | ND | 0.190 | 0.010 | 0.01 | 0.12 | 0.13 | 0.32 | 1.4 | | AUG | | | | | | | 0.01 | | | | | | 31
OCT | -54 | 20 | 34 | ND | 0.260 | ND | | | 0.13 | 0.39 | 1.7 | | 19
NOV | 52 | 18 | 34 | ND | 0.150 | 0.010 | 0.01 | 0.16 | 0.17 | 0.32 | 1.4 | | 09 | 50 | 28 | 28 | ND | 0.300 | ND | | | 0.16 | 0.46 | 2.0 | | 30 | 54 | 23 | 34 | ND | 0.360 | ND | | | 0.17 | 0.53 | 2.3 | | DATE | PHOS-
PHORUS
TOTAL
(MG/L
AS P) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P) | PHOS-
PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4) | CADMIUM
TOTAL
RECOV-
ERABLE
(UG/L
AS CD) | CADMIUM
DIS-
SOLVED
(UG/L
AS CD) | COPPER,
TOTAL
RECOV-
ERABLE
(UG/L
AS CU) | COPPER,
DIS-
SOLVED
(UG/L
AS CU) | IRON,
TOTAL
RECOV-
ERABLE
(UG/L
AS FE) | LEAD,
TOTAL
RECOV-
ERABLE
(UG/L
AS PB) | LEAD,
DIS-
SOLVED
(UG/L
AS PB) | MANGA-
NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | | MAY 1987 | | | | | | 4.5 | | • | - | | | | 08
29 | 0.00
0.010 | 0.00
ИD | 0.0 | <10
<10 | 1.0 | <10
<10 | <1 | 20
60 | <5
<5 | - <i>-</i>
<5 | 20
20 | | JUN
29 | 0.010 | ND | | <10 | | <10 | | 60 | <5 | | <10 | | AUG 31 | 0.00 | ND | | <10 | | 30 | | 70 | <5 | | 10 | | OCT | | | | | | | | | | | | | 19
NOV | ND | ИD | | <1 | | 5 | | 20 | <5 | | <10 | | 09
30 | 0.00
0.010 | 0.00
ND | 0.0 | <1
<1 | 1.0 | 4
6 | 4 | 40
290 | <5
<5 |
<5 | 10
50 | | | | | | | | | | | | | | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). # 01421500 EAST BRANCH DELAWARE RIVER AT HANCOCK, NY - continued | | | | | | | | | | ,- | | , | | | | | |------------|------------|-----------------------------------|--------------------|---------------|-----------------|----------------------------|------------------------|------------------|------------|----------------------------------|------------------|--------------|----------------------------|-------------------|--------------------| | | | MERCUR
TOTAL
RECOV
ERABL | TOTA | L NICK | - REC | IC,
PAL
COV-
ABLE | ZINC,
DIS-
SOLVE | - BROM | 0- | CARBON
TETRA
CHLO-
RIDE | \- | D
O- BR | ORO-
I-
OMO-
HANE | CHLORO-
ETHANE | - CHLORC | | I | DATE | (UG/L
AS HO | . (UG/ | | | 3/L
ZN) | (UG/I
AS ZN | | | TOTAL
(UG/L | | TO | TAL
G/L) | TOTAL
(UG/L) | TOTAL
(UG/L) | | MAY 1 | 1987 | | | | | | | | | | | | | | | | | • • • | <0.1 | | <1 - | | <10 | | ND
ND | | ND | ND | N | - | ND | ND
ND | | 29.
JUN | • • • | <0.1 | .0 | <1 | <1 | 10 | <1 | lo ND | | ND | ND | N | υ | ND | NU | | 29 | • • • | <0.1 | .0 | 1 - | - | <10 | | ND |) | ND | ND | N | D | ND | ND | | AUG
31 | | <0.1 | 10 | 2 - | _ | <10 | | ND |) | ND | ND | N | D | ND | ND | | OCT | | | | | | | | | | | | | _ | | | | NOV | | <0.1 | | <1 - | - | 20 | | ND | | ND | ND | N | | ND | ND | | | • • • | <0.1
<0.1 | | <1 - | -
<1 | <10
10 | | ND
10 ND | | ND
ND | ND
ND | N
N | | ND
ND | ND
ND | | 30 | • • • | <∪. | 10 | < 1 | < 1 | 10 | | IU NL | , | ND | ND | N | D | ND | NU | CIS | DI- | | Mem | HYL- | METHYI
ENE | L- 1,1,
TRI | | 1 1 n1 | 1,1-i
- CHLOI | | | 1,1,2, | | | | | 1,3-D1
CHLORG | | | | LO- | CHLO- | | | 1,1-D1
CHLORG | | | ORO- | TETRA-
CHLORO | 1,2-DI
- CHLORC | | | | PROPE | | ANE BROM | IDE RI | DΕ | RIDE | ETHA | NE | ETHANE | E EN | E ETH | ANE | ETHANE | BENZEN | | 1 | DATE | TOTAL | | | | ral. | TOTAL | TOTA | | TOTAL | | | TAL | TOTAL | TOTAL | | MAY | 1987 | (UG/L) |) (UG, | /L) (UG/ | L) (UG | /L) | (UG/L |) (UG/ | ъ) | (UG/L) | (UG/I | 7) (ng | /L) | (UG/L) | (UG/L) | | 08 | | ND | ND | NE | | | ND | NE | | ND | ND | N | | ND | ND | | | • • • | ND | ND | ND | N | D | ND | NE |) | ND | ND | N | D | ND | ND | | | • • • | ND | ND | NE | , N | D | ND | NE |) | ND | ND | N | D | ND | ND | | | | ND | ND | NE |) N | D | ИD | NI |) | ND | ND | N | D | ND | ND | | OCT
19 | | ND | ND | NE |) N | D | ND | NE |) | ND | ND | N | D | ND | ND | | NOV | | | | | | | _ | | | | | | | | | | | | ND
ND | ND
ND | NC
NC | | | ND
ND | NI
NI | | ND
ND | ND
ND | - | D
D | ND
ND | ND
ND | | 30 | ••• | | | | •• | | | | | | | • | - | 1,2-D1-
CHLORO- | | 1,2- | | | | TETR | RA- | TRANS- | TRI- | | :-
Loro- | | | | | | ETHANE | 1,2-DI- | TRANSDI | | | 1,4-DI- | CHLC | DRO- | 1,3-DI- | CHLORO- | ET | IYL- | VINYL | | | | | WATER | CHLORO- | CHLORO- | | | CHLORO- | ETHY | | CHLORO- | ETHYL- | | | CHLO- | | | n: | ATE | WHOLE
TOTAL | PROPANE | ETHENE
TOTAL | | ZENE : | BENZENE
TOTAL | ENE
TOI | | PROPENE
TOTAL | ENE
TOTAL | | | RIDE
TOTAL | | | ν. | | (UG/L) | (UG/L) | (UG/L) | | | (UG/L) | (UG/ | | (UG/L) | (UG/L) | | | (UG/L) | | | MAY 1 | | | | | | | | | _ | | | | | | | | 08.
29. | | ND
ND | ND
ND | ND
ND | | ID
ID | ND
ND | NE
NE | | ND
ND | ND
ND | | 1D
1D | ND
ND | | | JUN | | | | | | | | | | | | | | | | | 29.
AUG | • • | ND | ND | ND | N | ID. | ND | N |) | ND | ND | 1 | ND | ND | | | 31.
OCT | •• | ND | ND | ND | N | 1D | ND | N |) | ND | ND | ı | 4D | ND | | | 19. | • • | ND | ND | ND | N | 1D | ND | И |) | ND | ND | t | 1D | ND | | | NOV
09. | | ND | ND | ND | N | 1D | ND | NI |) | ND | ND | 1 | ND | ND | | | 30. | | ND | ND | ND | | 1D | ND | NI | | ND | ND | 1 | ND | ND | | | | | | | | | | | | | | | | | | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). 01421500 EAST BRANCH DELAWARE RIVER AT HANCOCK, NY - continued ### BED MATERIAL ANALYSES | DATE | V
TI
BO | OLA- I
LE IN FI
TTOM TO
MA- '
ERIAL | RECOV. M
M BOT- R
OM MA- FM
TERIAL TO
(UG/G T | IUM, R
ECOV. FM
BOT- TO
M MA- T
ERIAL (| RECOV. R
BOT-FM
M MA-TO
ERIAL T
UG/G (| ECOV. RE BOT- FM M MA- TOM ERIAL TE UG/G (U | ECOV. NI
BOT- RI
MA- FM
ERIAL TOI
JG/G TI | ANGA-
ESE,
ECOV.
BOT-
M MA-
ERIAL
UG/G) | |----------|---------------|---|---|---|--|---|---
---| | OCT 1987 | | | | | | | | | | 19 | 1415 | 17300 | <1 | <10 | 10 | 5700 | 30 | 680 | | | MERCURY | NICKEL | , ZINC, | BED | BED | BED | BED | | | | RECOV. | RECOV | . RECOV. | MAT. | MAT. | MAT. | MAT. | | | | FM BOT- | FM BOT | - FM BOT- | FALL | SIEVE | SIEVE | SIEVE | | | | TOM MA- | TOM MA- | - TOM MA- | DIAM. | DIAM. | DIAM. | DIAM. | | | | TERIAL | TERIA | L TERIAL | % FINER | % FINER | <pre>% FINER</pre> | <pre>% FINER</pre> | | | DATE | (UG/G | (UG/G | (UG/G | THAN | THAN | THAN | THAN | | | | AS HG) | AS NI |) AS ZN) | .004 MM | .062 MM | .125 MM | 2.00 MM | | | OCT 1987 | | | | | | | | | | 19 | <0.10 | 10 | 50 | 1 | . 6 | 12 | 99 | | | | | | | | | | | | ### 01422642 WEST BRANCH DELAWARE RIVER AT DE LANCEY, NY LOCATION.--Lat 42 12'29", long 74 58'35", Delaware County, Hydrologic Unit 02040101, at bridge on Bagley Brook Road at De Lancey. PH WATER DRAINAGE AREA. -- 241 mi2. PERIOD OF RECORD.--Water years 1987 to 1989. CHEMICAL DATA: 1987 (b), 1988 (c), 1989 (a). MINOR ELEMENT DATA: 1987 (b), 1988 (c), 1989 (a). PESTICIDE DATA: 1987 (b), 1988 (c), 1989 (a). NUTRIENT DATA: 1987 (b), 1988 (c), 1989 (a). BIOLOGICAL DATA: Bacteria-- 1987-88 (a). SEDIMENT DATA: 1988 (b), 1989 (a). DIS- CHARGE, REMARKS. -- Water-discharge data obtained from a discharge rating developed for this site. SPE- SPE- CIFIC #### WATER-QUALITY DATA BARO- METRIC OXYGEN, DIS- COLI- FORM, FECAL COLI- | DATE | TIME | INST.
CUBIC
FEET
PER | CIFIC
CON-
DUCT-
ANCE | CON-
DUCT-
ANCE
LAB | WHOLE
FIELD
(STAND-
ARD | TEMPER-
ATURE
WATER | TUR-
BID-
ITY | PRES-
SURE
(MM
OF | OXYGEN,
DIS-
SOLVED | SOLVED
(PER-
CENT
SATUR- | TOTAL,
IMMED.
(COLS.
PER | FORM
24-HR
MEM.FIL
(COLS./ | |---|---|---|--|------------------------------|---|---------------------------|---|---|--|---|--|---| | MAY 1987 | | SECOND | (US/CM) | (US/CM) | Units) | (DEG C) | (NTU) | HG) | (MG/L) | ATION) | 100 ML) | 100 ML) | | 08 | 1215 | | | 99 | 8.6 | 13.5 | 0.70 | | 14.6 | | >60 | ND | | 29 | 1300 | | | 113 | 8.0 | 25.0 | 1.0 | | 11.7 | | | | | JUN
29 | 1150 | | | 112 | 7.4 | 25.0 | 2.2 | | 9.2 | | | | | AUG
31 | 1100 | | | | 7.4 | 17.0 | 1.3 | | 10.1 | | | | | OCT | 1200 | | | 95 | 7.4 | | 1.9 | | 12.5 | | | | | 19
NOV | | | | 95 | | 11.0 | | | | | | | | 09 | 1030 | | | | 7.2 | 8.0 | 1.0 | | 12.3 | | | | | 30
APR 1988 | 1200 | | | | 7.2 | 7.0 | | | 15.8 | | | | | 04 | 1130 | 706 | 83 | 85 | 7.8 | 10.5 | 4.4 | 757 | 10.9 | 98 | | | | 21 | 1100 | 235 | 92 | 91 | 6.1 | 6.0 | 1.0 | 755 | 12.8 | 103 | 340 | 14.0 | | JUN | | | | | | | | | | | | | | 06 | 1100 | 184 | 99 | 96 | 7.8 | 15.5 | 1.5 | 748 | 10.5 | 107 | | | | 22
JUL | 1200 | 75 | 131 | 130 | 7.8 | 20.0 | 1.6 | 759 | 9.2 | 102 | | | | 18 | 1200 | | 146 | 142 | 7.9 | 23.5 | 6.5 | 762 | 9.0 | 106 | | | | AUG
31 | 1145 | 141 | 127 | 123 | 7.6 | 17.5 | 1.4 | 766 | 9.7 | 101 | | | | OCT | 4000 | | | 450 | | | | | | | | | | 17 | 1200 | | 150 | 150 | 7.6 | 13.0 | 0.80 | 768 | 11.4 | 108 | | | | 14 | 1200 | 603 | 89 | 85 | 7.5 | 6.0 | 5.9 | 764 | 13.2 | 106 | | | | | | | | | | | | | | SOLIDS, | SOLIDS, | | | | HARD- | | MAGNE- | | POTAS- | ALKA- | | CHLO- | FLUO- | RESIDUE | SUM OF | SOLIDS, | | | NESS | CALCIUM | SIUM, | SODIUM, | SIUM, | LINITY | SULFATE | RIDE, | RIDE, | AT 180 | CONSTI- | RESIDUE | | | TOTAL | DIG | DIS- | DIS- | DIS- | LAB | DIS- | DIS- | DIS- | DEG. C | TUENTS, | AT 105 | | | TOTAL | DIS- | 013- | | | | | | | | | | | | (MG/L | SOLVED | SOLVED | SOLVED | SOLVED | (MG/L | SOLVED | SOLVED | SOLVED | DIS- | DIS- | DEG. C, | | DATE | (MG/L
AS | SOLVED
(MG/L | SOLVED
(MG/L | SOLVED (MG/L | (MG/L | AS | (MG/L | (MG/L | (MG/L | SOLVED | DIS-
SOLVED | TOTAL | | | (MG/L | SOLVED | SOLVED | SOLVED | | | | | | | DIS- | | | MAY 1987 | (MG/L
AS
CACO3) | SOLVED
(MG/L
AS CA) | SOLVED
(MG/L
AS MG) | SOLVED
(MG/L
AS NA) | (MG/L
AS K) | AS
CACO3) | (MG/L
AS SO4) | (MG/L
AS CL) | (MG/L
AS F) | SOLVED
(MG/L) | DIS-
SOLVED
(MG/L) | TOTAL
(MG/L) | | MAY 1987
08 | (MG/L
AS
CACO3) | SOLVED
(MG/L
AS CA) | SOLVED
(MG/L
AS MG) | SOLVED (MG/L | (MG/L | AS | (MG/L | (MG/L | (MG/L | SOLVED | DIS-
SOLVED | TOTAL | | MAY 1987
08
29
JUN | (MG/L
AS
CACO3)
32
34 | SOLVED
(MG/L
AS CA)
9.4
10 | SOLVED
(MG/L
AS MG)
2.0
2.2 | SOLVED
(MG/L
AS NA) | (MG/L
AS K) | AS
CACO3) | (MG/L
AS SO4) | (MG/L
AS CL)
 | (MG/L
AS F) | SOLVED
(MG/L)
57
60 | DIS-
SOLVED
(MG/L) | TOTAL
(MG/L)
75
77 | | MAY 1987
08
29 | (MG/L
AS
CACO3) | SOLVED
(MG/L
AS CA) | SOLVED
(MG/L
AS MG) | SOLVED
(MG/L
AS NA) | (MG/L
AS K) | AS
CACO3) | (MG/L
AS SO4) | (MG/L
AS CL) | (MG/L
AS F) | SOLVED
(MG/L) | DIS-
SOLVED
(MG/L) | TOTAL
(MG/L)
75 | | MAY 1987
08
29
JUN
29
AUG
31 | (MG/L
AS
CACO3)
32
34 | SOLVED
(MG/L
AS CA)
9.4
10 | SOLVED
(MG/L
AS MG)
2.0
2.2 | SOLVED
(MG/L
AS NA) | (MG/L
AS K) | AS
CACO3) | (MG/L
AS SO4) | (MG/L
AS CL)
 | (MG/L
AS F) | SOLVED
(MG/L)
57
60 | DIS-
SOLVED
(MG/L) | TOTAL
(MG/L)
75
77 | | MAY 1987
08
29
JUN
29
AUG
31
OCT
19 | (MG/L
AS
CACO3)
32
34 | SOLVED
(MG/L
AS CA)
9.4
10 | SOLVED
(MG/L
AS MG)
2.0
2.2
2.5 | SOLVED
(MG/L
AS NA) | (MG/L
AS K)

 | AS
CACO3) | (MG/L
AS SO4)

 | (MG/L
AS CL)

 | (MG/L
AS F)

 | SOLVED
(MG/L)
57
60 | DIS-
SOLVED
(MG/L) | TOTAL (MG/L) 75 77 | | MAY 1987
08
29
JUN
29
AUG
31
OCT
19
NOV | (MG/L
AS
CACO3)
32
34
40
41 | SOLVED (MG/L AS CA) 9.4 10 12 12 | SOLVED
(MG/L
AS MG)
2.0
2.2
2.5
2.6 | SOLVED
(MG/L
AS NA) | (MG/L
AS K)

 | AS
CACO3)

 | (MG/L
AS SO4)

 | (MG/L
AS CL)

 | (MG/L
AS F)

 | SOLVED
(MG/L)
57
60
37
64 | DIS-
SOLVED
(MG/L) | 75
77
91
84 | | MAY 1987 08 29 JUN 29 AUG 31 OCT 19 NOV 09 | (MG/L
AS
CACO3)
32
34
40
41
36 | SOLVED (MG/L AS CA) 9.4 10 12 11 5.4 | SOLVED (MG/L AS MG) 2.0 2.2 2.5 2.6 2.0 | SOLVED
(MG/L
AS NA) | (MG/L
AS K)

 | AS CACO3) | (MG/L
AS SO4)

 | (MG/L
AS CL)

 | (MG/L
AS F)

 | SOLVED
(MG/L)
57
60
37
64
57 | DIS-
SOLVED
(MG/L) | TOTAL (MG/L) 75 77 91 84 70 68 | | MAY 1987
08
29
JUN
29
AUG
31
OCT
19
NOV
09
30 | (MG/L
AS
CACO3)
32
34
40
41 | SOLVED (MG/L AS CA) 9.4 10 12 12 | SOLVED
(MG/L
AS MG)
2.0
2.2
2.5
2.6 | SOLVED
(MG/L
AS NA) | (MG/L
AS K)

 | AS
CACO3)

 | (MG/L
AS SO4)

 | (MG/L
AS CL)

 | (MG/L
AS F)

 | SOLVED
(MG/L)
57
60
37
64 | DIS-
SOLVED
(MG/L) | 75
77
91
84 | | MAY 1987 08 29 JUN 29 AUG 31 OCT 19 NOV 09 | (MG/L
AS
CACO3)
32
34
40
41
36 | SOLVED (MG/L AS CA) 9.4 10 12 11 5.4 | SOLVED (MG/L AS MG) 2.0 2.2 2.5 2.6 2.0 | SOLVED
(MG/L
AS NA) | (MG/L
AS K)

 | AS CACO3) | (MG/L
AS SO4)

 | (MG/L
AS CL)

 | (MG/L
AS F)

 | SOLVED
(MG/L)
57
60
37
64
57 | DIS-
SOLVED
(MG/L) | TOTAL (MG/L) 75 77 91 84 70 68 | | MAY 1987 08 29 JUN 29 AUG 31 OCT 19 NOV 09 30 APR 1988 04 21 | (MG/L
AS
CACO3)
32
34
40
41
36
18
27 | SOLVED (MG/L AS CA) 9.4 10 12 12 11 5.4 7.7 | SOLVED (MG/L AS MG) 2.0 2.2 2.5 2.6 2.0 1.2 1.9 | SOLVED
(MG/L
AS NA) | (MG/L
AS K)

 | AS CACO3) | (MG/L
AS SO4) | (MG/L
AS CL) | (MG/L
AS F)

 | SOLVED (MG/L) 57 60 37 64 57 54 | DIS-
SOLVED
(MG/L) | TOTAL (MG/L) 75 77 91 84 70 68 85 | | MAY 1987 08 29 JUN 29 AUG 31 OCT 19 NOV 09 30 APR 1988 04 21 JUN | (MG/L
AS
CACO3)
32
34
40
41
36
18
27
22
30 | SOLVED (MG/L AS CA) 9.4 10 12 12 11 5.4 7.7 6.3 8.8 | SOLVED (MG/L AS MG) 2.0 2.2 2.5 2.6 2.0 1.2 1.9 | SOLVED (MG/L AS NA) | (MG/L
AS K) 1.0 0.90 | AS CACO3) | (MG/L
AS SO4)

8.7 | (MG/L
AS CL)

6.2
7.4 | (MG/L
AS F)

0.10
0.10 | SOLVED (MG/L) 57 60 37 64 57 54 48 56 62 | DIS-
SOLVED
(MG/L)

35 | TOTAL (MG/L) 75 77 91 84 70 68 85 70 80 | | MAY 1987 08 29 JUN 29 AUG 31 OCT 19 NOV 09 30 APR 1988 04 21 JUN 06 | (MG/L
AS
CACO3)
32
34
40
41
36
18
27
22
30 | SOLVED (MG/L AS CA) 9.4 10 12 12 11 5.4 7.7 6.3 8.8 9.6 | SOLVED (MG/L AS MG) 2.0 2.2 2.5 2.6 2.0 1.2 1.9 1.5 1.9 2.2 | SOLVED (MG/L AS NA) | (MG/L
AS K) 1.0 0.90 | AS CACO3) | (MG/L
AS SO4)

8.7
11 | (MG/L
AS CL)

6.2
7.4 | (MG/L
AS F)

0.10
0.10 | SOLVED (MG/L) 57 60 37 64 57 54 48 56 62 58 | DIS-
SOLVED
(MG/L)

35
46 | TOTAL (MG/L) 75 77 91 84 70 68 85 70 80 63 |
 MAY 1987 08 29 JUN 29 AUG 31 OCT 19 NOV 09 30 APR 1988 04 21 JUN 06 22 | (MG/L
AS
CACO3)
32
34
40
41
36
18
27
22
30 | SOLVED (MG/L AS CA) 9.4 10 12 12 11 5.4 7.7 6.3 8.8 | SOLVED (MG/L AS MG) 2.0 2.2 2.5 2.6 2.0 1.2 1.9 | SOLVED (MG/L AS NA) | (MG/L
AS K) 1.0 0.90 | AS CACO3) | (MG/L
AS SO4)

8.7 | (MG/L
AS CL)

6.2
7.4 | (MG/L
AS F)

0.10
0.10 | SOLVED (MG/L) 57 60 37 64 57 54 48 56 62 | DIS-
SOLVED
(MG/L)

35 | TOTAL (MG/L) 75 77 91 84 70 68 85 70 80 | | MAY 1987 08 29 JUN 29 AUG 31 OCT 19 NOV 09 30 APR 1988 04 21 JUN 06 22 JUL 18 | (MG/L
AS
CACO3)
32
34
40
41
36
18
27
22
30 | SOLVED (MG/L AS CA) 9.4 10 12 12 11 5.4 7.7 6.3 8.8 9.6 | SOLVED (MG/L AS MG) 2.0 2.2 2.5 2.6 2.0 1.2 1.9 1.5 1.9 2.2 | SOLVED (MG/L AS NA) | (MG/L
AS K) 1.0 0.90 | AS CACO3) | (MG/L
AS SO4)

8.7
11 | (MG/L
AS CL)

6.2
7.4 | (MG/L
AS F)

0.10
0.10 | SOLVED (MG/L) 57 60 37 64 57 54 48 56 62 58 | DIS-
SOLVED
(MG/L)

35
46 | TOTAL (MG/L) 75 77 91 84 70 68 85 70 80 63 | | MAY 1987 08 29 JUN 29 AUG 31 OCT 19 NOV 09 APR 1988 04 21 JUN 06 22 JUL 18 AUG | (MG/L
AS
CACO3)
32
34
40
41
36
18
27
22
30
33
42 | SOLVED (MG/L AS CA) 9.4 10 12 11 5.4 7.7 6.3 8.8 9.6 12 | SOLVED (MG/L AS MG) 2.0 2.2 2.5 2.6 2.0 1.2 1.9 1.5 1.9 2.2 2.9 | SOLVED (MG/L AS NA) | (MG/L
AS K) 1.0 0.90 1.0 | AS CACO3) | (MG/L
AS SO4)

8.7
11
10 | (MG/L
AS CL) 6.2 7.4 7.1 | (MG/L
AS F) 0.10 0.10 0.20 0.20 | SOLVED (MG/L) 57 60 37 64 57 54 48 56 62 58 | DIS-
SOLVED (MG/L) 35 46 49 64 | TOTAL (MG/L) 75 77 91 84 70 68 85 70 80 63 101 | | MAY 1987 08 29 JUN 29 AUG 31 OCT 19 NOV 09 30 APR 1988 04 21 JUN 06 22 JUL 18 AUG 31 OCT | (MG/L
AS
CACO3)
32
34
40
41
36
18
27
22
30
33
42
42 | SOLVED (MG/L AS CA) 9.4 10 12 11 5.4 7.7 6.3 8.8 9.6 12 12 | SOLVED (MG/L AS MG) 2.0 2.2 2.5 2.6 2.0 1.2 1.9 2.2 2.9 2.9 | SOLVED (MG/L AS NA) | (MG/L
AS K) 1.0 0.90 1.3 1.4 2.0 | AS CACO3) | (MG/L
AS SO4) 8.7 11 10 12 12 | (MG/L
AS CL) 6.2 7.4 7.1 11 14 | (MG/L
AS F) 0.10 0.10 0.20 0.20 0.10 | SOLVED (MG/L) 57 60 37 64 57 54 48 56 62 58 73 | DIS-
SOLVED
(MG/L)

35
46
49
64 | TOTAL (MG/L) 75 77 91 84 70 68 85 70 80 63 101 | | MAY 1987 08 29 JUN 29 AUG 31 OCT 19 NOV 09 APR 1988 04 21 JUN 06 22 JUL 18 AUG 31 OCT 17 NOV | (MG/L
AS
CACO3)
32
34
40
41
36
18
27
22
30
33
42
42
42 | SOLVED (MG/L AS CA) 9.4 10 12 12 11 5.4 7.7 6.3 8.8 9.6 12 12 14 | SOLVED (MG/L AS MG) 2.0 2.2 2.5 2.6 2.0 1.2 1.9 2.2 2.9 2.8 3.4 | SOLVED (MG/L AS NA) | (MG/L
AS K) 1.0 0.90 1.3 1.4 2.0 1.7 | AS CACO3) | (MG/L
AS SO4) | (MG/L
AS CL) 6.2 7.4 7.1 11 14 | (MG/L
AS F) 0.10 0.10 0.20 0.20 0.10 0.10 <-0.10 | 50LVED (MG/L) 57 60 37 64 57 54 48 56 62 58 73 82 101 | DIS-
SOLVED (MG/L) 35 46 49 64 68 62 | TOTAL (MG/L) 75 77 91 84 70 68 85 70 80 63 101 101 90 109 | | MAY 1987 08 29 JUN 29 AUG 31 OCT 19 NOV 09 30 APR 1988 04 JUN 06 21 JUN 06 22 JUL 18 AUG 31 OCT | (MG/L
AS
CACO3)
32
34
40
41
36
18
27
22
30
33
42
42 | SOLVED (MG/L AS CA) 9.4 10 12 11 5.4 7.7 6.3 8.8 9.6 12 12 | SOLVED (MG/L AS MG) 2.0 2.2 2.5 2.6 2.0 1.2 1.9 2.2 2.9 2.9 | SOLVED (MG/L AS NA) | (MG/L
AS K) 1.0 0.90 1.3 1.4 2.0 | AS CACO3) | (MG/L
AS SO4) 8.7 11 10 12 12 | (MG/L
AS CL) 6.2 7.4 7.1 11 14 | (MG/L
AS F) 0.10 0.10 0.20 0.20 0.10 | SOLVED (MG/L) 57 60 37 64 57 54 48 56 62 58 73 82 | DIS-
SOLVED (MG/L) 35 46 49 64 68 | TOTAL (MG/L) 75 77 91 84 70 68 85 70 80 63 101 101 90 | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). # 01422642 WEST BRANCH DELAWARE RIVER AT DE LANCEY, NY - continued | | | | | | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | | | | | | | |--|---|---|--|--|--|---|--|--|--|--|---|---| | DATE | SOLIDS,
VOLA-
TILE ON
IGNI-
TION,
TOTAL
(MG/L) | RESIDUE
TOTAL
FIXED
(MG/L) | NITRO-
GEN,
NITRATE
TOTAL
(MG/L
AS N) | NITRO-
GEN,
NITRITE
TOTAL
(MG/L
AS N) | NITRO-
GEN,
NO2+NO3
TOTAL
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS NH4) | NITRO-
GEN,
ORGANIC
TOTAL
(MG/L
AS N) | NITRO-
GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | NITRO-
GEN,
TOTAL
(MG/L
AS N) | NITRO-
GEN,
TOTAL
(MG/L
AS NO3) | PHOS-
PHORUS
TOTAL
(MG/L
AS P) | | MAY 1987 | | | | | | | | | | | | | | 08 | 20 | 55 | 0.660 | 0.00 | 0.660 | 0.010 | 0.01 | 0.11 | 0.12 | 0.78 | 3.5 | 0.010 | | 29 | 28 | 52 | 0.830 | 0.010 | 0.840 | 0.070 | 0.09 | 0.13 | 0.20 | 1.0 | 4.6 | 0.030 | | JUN | 20 | 32 | 0.030 | 0.010 | 0.040 | 0.070 | 0.05 | 0.13 | 0.20 | 1.0 | 4.0 | 0.030 | | 29 | 39 | 52 | 0.970 | 0.00 | 0.970 | 0.020 | 0.03 | 0.19 | 0.21 | 1.2 | 5.2 | 0.040 | | AUG | • | J2 | 0.00 | 0.00 | 0.5.0 | 0.020 | 0.00 | 0.15 | 0.22 | | 3.2 | 0.010 | | 31 | 30 | 54 | | ND | 0.900 | ND | | | 0.13 | 1.0 | 4.6 | 0.030 | | OCT | 30 | 31 | | | 0.500 | | | | 0.13 | 2.0 | 1.0 | 0.050 | | 19 | 23 | 47 | | ND | 0.840 | 0.010 | 0.01 | 0.14 | 0.15 | 0.99 | 4.4 | 0.020 | | NOV | 23 | • / | | ND | 0.040 | 0.010 | 0.01 | 0.14 | 0.15 | 0.33 | 4.4 | 0.020 | | 09 | 37 | 31 | | ND | 1.02 | 0.010 | 0.01 | 0.08 | 0.09 | 1.1 | 4.9 | 0.020 | | | | | | | | | | | | | | 0.080 | | 30 | 37 | 58 | | ND | 0.750 | 0.010 | 0.01 | 0.32 | 0.33 | 1.1 | 4.8 | 0.080 | | APR 1988 | | | | | 0.010 | | | | 0.16 | 0.07 | | 0.000 | | 04 | 26 | 44 | | ND | 0.810 | 0.010 | 0.01 | 0.15 | 0.16 | 0.97 | 4.3 | 0.030 | | 21 | 36 | 44 | | ND | 0.770 | 0.00 | 0.0 | 0.12 | 0.12 | 0.89 | 3.9 | 0.010 | | JUN | | | | | | | | | | | | | | 06 | 42 | 21 | | ND | 0.700 | 0.00 | 0.0 | 0.13 | 0.13 | 0.83 | 3.7 | 0.020 | | 22 | 83 | 18 | 0.570 | 0.010 | 0.580 | 0.030 | 0.04 | 0.16 | 0.19 | 0.77 | 3.4 | 0.320 | | JUL | | | | | | | | | | | | | | 18 | 34 | 67 | 1.09 | 0.010 | 1.10 | 0.030 | 0.04 | 0.12 | 0.15 | 1.2 | 5. 5 | 0.090 | | AUG | | | | | | | | | | | | | | 31 | 39 | 51 | 0.990 | 0.00 | 0.990 | 0.010 | 0.01 | 0.23 | 0.24 | 1.2 | 5.4 | 0.060 | | OCT | | | | | | | | | | | | | | 17 | 34 | 75 | 1.15 | 0.020 | 1.17 | 0.020 | 0.03 | 0.14 | 0.16 | 1.3 | 5.9 | 0.060 | | NOV | | | | | | | | | | | | | | 14 | 32 | 37 | | ND | 1.09 | 0.00 | 0.0 | 0.24 | 0.24 | 1.3 | 5.9 | 0.060 | DATE | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P) | PHOS-
PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4) | ALUM-
INUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS AL) | ALUM-
INUM,
DIS-
SOLVED
(UG/L
AS AL) | CADMIUM
TOTAL
RECOV-
ERABLE
(UG/L
AS CD) | CADMIUM
DIS-
SOLVED
(UG/L
AS CD) | COPPER,
TOTAL
RECOV-
ERABLE
(UG/L
AS CU) | COPPER,
DIS-
SOLVED
(UG/L
AS CU) | IRON,
TOTAL
RECOV-
ERABLE
(UG/L
AS FE) | IRON,
DIS-
SOLVED
(UG/L
AS FE) | LEAD,
TOTAL
RECOV-
ERABLE
(UG/L
AS PB) | LEAD,
DIS-
SOLVED
(UG/L
AS PB) | | | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P) | PHATE,
ORTHO,
DIS-
SOLVED
(MG/L | INUM,
TOTAL
RECOV-
ERABLE
(UG/L | INUM,
DIS-
SOLVED
(UG/L | TOTAL
RECOV-
ERABLE
(UG/L | DIS-
SOLVED
(UG/L | TOTAL
RECOV-
ERABLE
(UG/L | DIS-
SOLVED
(UG/L | TOTAL
RECOV-
ERABLE
(UG/L | DIS-
SOLVED
(UG/L | TOTAL
RECOV-
ERABLE
(UG/L | DIS-
SOLVED
(UG/L | | MAY 1987 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P) | PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4) | INUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS AL) | INUM,
DIS-
SOLVED
(UG/L
AS AL) | TOTAL
RECOV-
ERABLE
(UG/L
AS CD) | DIS-
SOLVED
(UG/L
AS CD) | TOTAL
RECOV-
ERABLE
(UG/L
AS CU) | DIS-
SOLVED
(UG/L | TOTAL
RECOV-
ERABLE
(UG/L
AS FE) | DIS-
SOLVED
(UG/L
AS FE) | TOTAL
RECOV-
ERABLE
(UG/L
AS PB) | DIS-
SOLVED
(UG/L | | MAY 1987
08 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P) | PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4) | INUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS AL) | INUM,
DIS-
SOLVED
(UG/L
AS AL) | TOTAL
RECOV-
ERABLE
(UG/L
AS CD) | DIS-
SOLVED
(UG/L
AS CD) | TOTAL
RECOV-
ERABLE
(UG/L
AS CU) | DIS-
SOLVED
(UG/L
AS CU) | TOTAL
RECOV-
ERABLE
(UG/L
AS FE) | DIS-
SOLVED
(UG/L
AS FE) | TOTAL
RECOV-
ERABLE
(UG/L
AS PB) | DIS-
SOLVED
(UG/L
AS PB) | | MAY 1987
08
29 |
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P) | PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4) | INUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS AL) | INUM,
DIS-
SOLVED
(UG/L
AS AL) | TOTAL
RECOV-
ERABLE
(UG/L
AS CD) | DIS-
SOLVED
(UG/L
AS CD) | TOTAL
RECOV-
ERABLE
(UG/L
AS CU) | DIS-
SOLVED
(UG/L | TOTAL
RECOV-
ERABLE
(UG/L
AS FE) | DIS-
SOLVED
(UG/L
AS FE) | TOTAL
RECOV-
ERABLE
(UG/L
AS PB) | DIS-
SOLVED
(UG/L | | MAY 1987
08
29
JUN | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
0.00
0.020 | PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4) | INUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS AL) | INUM,
DIS-
SOLVED
(UG/L
AS AL) | TOTAL RECOV- ERABLE (UG/L AS CD) <10 <10 | DIS-
SOLVED
(UG/L
AS CD) | TOTAL
RECOV-
ERABLE
(UG/L
AS CU)
<10
<10 | DIS-
SOLVED
(UG/L
AS CU) | TOTAL
RECOV-
ERABLE
(UG/L
AS FE)
120
80 | DIS-
SOLVED
(UG/L
AS FE) | TOTAL
RECOV-
ERABLE
(UG/L
AS PB) | DIS-
SOLVED
(UG/L
AS PB) | | MAY 1987
08
29
JUN
29 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P) | PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4) | INUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS AL) | INUM,
DIS-
SOLVED
(UG/L
AS AL) | TOTAL
RECOV-
ERABLE
(UG/L
AS CD) | DIS-
SOLVED
(UG/L
AS CD) | TOTAL
RECOV-
ERABLE
(UG/L
AS CU) | DIS-
SOLVED
(UG/L
AS CU) | TOTAL
RECOV-
ERABLE
(UG/L
AS FE) | DIS-
SOLVED
(UG/L
AS FE) | TOTAL
RECOV-
ERABLE
(UG/L
AS PB) | DIS-
SOLVED
(UG/L
AS PB) | | MAY 1987
08
29
JUN
29 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
0.00
0.020 | PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4)
0.0
0.06 | INUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS AL) | INUM,
DIS-
SOLVED
(UG/L
AS AL) | TOTAL
RECOV-
ERABLE
(UG/L
AS CD)
<10
<10 | DIS-
SOLVED
(UG/L
AS CD) | TOTAL RECOV- ERABLE (UG/L AS CU) <10 <10 <10 | DIS-
SOLVED
(UG/L
AS CU) | TOTAL
RECOV-
ERABLE
(UG/L
AS FE)
120
80 | DIS-
SOLVED
(UG/L
AS FE) | TOTAL
RECOV-
ERABLE
(UG/L
AS PB) | DIS-
SOLVED
(UG/L
AS PB) | | MAY 1987
08
29
JUN
29
AUG
31 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
0.00
0.020 | PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4) | INUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS AL) | INUM,
DIS-
SOLVED
(UG/L
AS AL) | TOTAL RECOV- ERABLE (UG/L AS CD) <10 <10 | DIS-
SOLVED
(UG/L
AS CD) | TOTAL
RECOV-
ERABLE
(UG/L
AS CU)
<10
<10 | DIS-
SOLVED
(UG/L
AS CU) | TOTAL
RECOV-
ERABLE
(UG/L
AS FE)
120
80 | DIS-
SOLVED
(UG/L
AS FE) | TOTAL
RECOV-
ERABLE
(UG/L
AS PB) | DIS-
SOLVED
(UG/L
AS PB) | | MAY 1987
08
29
JUN
29
AUG
31 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
0.00
0.020
0.020 | PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4)
0.0
0.06 | INUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS AL) | INUM,
DIS-
SOLVED
(UG/L
AS AL) | TOTAL RECOV- ERABLE (UG/L AS CD) <10 <10 <10 <10 | DIS-
SOLVED
(UG/L
AS CD) | TOTAL RECOV- ERABLE (UG/L AS CU) <10 <10 <10 | DIS-
SOLVED
(UG/L
AS CU) | TOTAL RECOV- ERABLE (UG/L AS FE) 120 80 130 | DIS-
SOLVED
(UG/L
AS FE) | TOTAL
RECOV-
ERABLE
(UG/L
AS PB)
5
<5 | DIS-
SOLVED
(UG/L
AS PB) | | MAY 1987
08
29
JUN
29
AUG
31
OCT
19 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
0.00
0.020 | PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4)
0.0
0.06 | INUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS AL) | INUM,
DIS-
SOLVED
(UG/L
AS AL) | TOTAL
RECOV-
ERABLE
(UG/L
AS CD)
<10
<10 | DIS-
SOLVED
(UG/L
AS CD) | TOTAL RECOV- ERABLE (UG/L AS CU) <10 <10 <10 | DIS-
SOLVED
(UG/L
AS CU) | TOTAL
RECOV-
ERABLE
(UG/L
AS FE)
120
80 | DIS-
SOLVED
(UG/L
AS FE) | TOTAL
RECOV-
ERABLE
(UG/L
AS PB) | DIS-
SOLVED
(UG/L
AS PB) | | MAY 1987
08
29
JUN
29
AUG
31
OCT
19
NOV | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
0.00
0.020
0.020
0.020 | PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4)
0.0
0.06
0.06
0.06 | INUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS AL) | INUM,
DIS-
SOLVED
(UG/L
AS AL) | TOTAL RECOV- ERABLE (UG/L AS CD) <10 <10 <10 <10 <10 <11 | DIS-
SOLVED
(UG/L
AS CD) | TOTAL RECOV- ERABLE (UG/L AS CU) <10 <10 <10 10 | DIS-
SOLVED
(UG/L
AS CU) | TOTAL RECOV- ERABLE (UG/L AS FE) 120 80 130 80 40 | DIS-
SOLVED
(UG/L
AS FE) | TOTAL RECOV- ERABLE (UG/L AS PB) 5 <5 6 13 <5 | DIS-
SOLVED
(UG/L
AS PB) | | MAY 1987 08 29 JUN 29 AUG 31 CCT 19 NOV 09 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
0.00
0.020
0.020
0.020
0.010 | PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4)
0.06
0.06
0.06 | INUM, TOTAL RECOV- ERABLE (UG/L AS AL) | INUM,
DIS-
SOLVED
(UG/L
AS AL) | TOTAL RECOV- ERABLE (UG/L AS CD) <10 <10 <10 <10 <10 <10 <10 <10 <10 <1 | DIS-
SOLVED
(UG/L
AS CD) | TOTAL RECOV- ERABLE (UG/L AS CU) <10 <10 <10 21 10 | DIS-
SOLVED
(UG/L
AS CU) | TOTAL RECOV- ERABLE (UG/L AS FE) 120 80 130 80 40 60 | DIS-
SOLVED
(UG/L
AS FE) | TOTAL RECOV-ERABLE (UG/L AS PB) 5 <5 6 13 <5 <5 | DIS-
SOLVED
(UG/L
AS PB) | | MAY 1987 08 29 JUN 29 AUG 31 OCT 19 NOV 09 30 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
0.00
0.020
0.020
0.020
0.010
0.010
0.020 | PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4)
0.0
0.06
0.06
0.06 | INUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS AL) | INUM,
DIS-
SOLVED
(UG/L
AS AL) | TOTAL RECOV- ERABLE (UG/L AS CD) <10 <10 <10 <10 <10 <11 | DIS-
SOLVED
(UG/L
AS CD) | TOTAL RECOV- ERABLE (UG/L AS CU) <10 <10 <10 10 | DIS-
SOLVED
(UG/L
AS CU) | TOTAL RECOV- ERABLE (UG/L AS FE) 120 80 130 80 40 | DIS-
SOLVED
(UG/L
AS FE) | TOTAL RECOV- ERABLE (UG/L AS PB) 5 <5 6 13 <5 | DIS-
SOLVED
(UG/L
AS PB) | | MAY 1987 08 29 JUN 29 AUG 31 OCT 19 NOV 09 APR 1988 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
0.00
0.020
0.020
0.020
0.010
0.010 | PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4)
0.06
0.06
0.06
0.06 | INUM, TOTAL RECOV- ERABLE (UG/L AS AL) | INUM,
DIS-
SOLVED
(UG/L
AS AL) | TOTAL RECOV- ERABLE (UG/L AS CD) <10 <10 <10 <11 <11 <11 <11 | DIS-
SOLVED
(UG/L
AS CD)

<1.0

<1.0 | TOTAL RECOV- ERABLE (UG/L AS CU) <10 <10 <10 10 2 10 8 | DIS-
SOLVED
(UG/L
AS CU) | TOTAL RECOV-ERABLE (UG/L AS FE) 120 80 130 80 40 60 | DIS-
SOLVED
(UG/L
AS FE) | TOTAL RECOV- ERABLE (UG/L AS PB) 5 <5 6 13 <5 <5 <5 | DIS-
SOLVED
(UG/L
AS PB) | | MAY 1987 08 29 JUN 29 AUG 31 OCT 19 NOV 09 APR 1988 04 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
0.00
0.020
0.020
0.020
0.010
0.010
0.020 | PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4)
0.06
0.06
0.06
0.03
0.03
0.06 | INUM, TOTAL RECOV- ERABLE (UG/L AS AL) | INUM,
DIS-
SOLVED
(UG/L
AS AL) | TOTAL RECOVERABLE (UG/L AS CD) <10 <10 <10 <11 <11 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 < | DIS-
SOLVED
(UG/L
AS CD) | TOTAL RECOVERABLE (UG/L AS CU) <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 | DIS-
SOLVED
(UG/L
AS CU) | TOTAL RECOV-ERABLE (UG/L AS FE) 120 80 130 80 40 60 580 | DIS-
SOLVED
(UG/L
AS FE) | TOTAL RECOVERABLE (UG/L AS PB) 5 <5 6 13 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 | DIS-
SOLVED
(UG/L
AS PB) | | MAY 1987 08 29 JUN 29 AUG 31 OCT 19 NOV 09 APR 1988 04 21 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
0.00
0.020
0.020
0.020
0.010
0.010 | PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4)
0.06
0.06
0.06
0.06 | INUM, TOTAL RECOV- ERABLE (UG/L AS AL) | INUM,
DIS-
SOLVED
(UG/L
AS AL) | TOTAL RECOV- ERABLE (UG/L AS CD) <10 <10 <10 <11 <11 <11 <11 | DIS-
SOLVED
(UG/L
AS CD)

<1.0

<1.0 | TOTAL RECOV- ERABLE (UG/L AS CU) <10 <10 <10 10 2 10 8 | DIS-
SOLVED
(UG/L
AS CU) | TOTAL RECOV-ERABLE (UG/L AS FE) 120 80 130 80 40 60 | DIS-
SOLVED
(UG/L
AS FE) | TOTAL RECOV- ERABLE (UG/L AS PB) 5 <5 6 13 <5 <5 <55 <55 | DIS-
SOLVED
(UG/L
AS PB) | | MAY 1987 08 29 JUN 29 AUG 31 OCT 19 NOV 09 30 APR 1988 04 JUN | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
0.00
0.020
0.020
0.010
0.010
0.020
0.010
ND | PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4)
0.06
0.06
0.06
0.03
0.03 | INUM, TOTAL RECOV- ERABLE (UG/L AS AL) | INUM,
DIS-
SOLVED
(UG/L
AS AL) | TOTAL RECOV-ERABLE (UG/L AS CD) <10 <10 <10 <11 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 | DIS-
SOLVED
(UG/L
AS CD)

<1.0

<1.0
7.0 | TOTAL RECOV- ERABLE (UG/L AS CU) <10 <10 10 2 10 8 5 6 | DIS-
SOLVED
(UG/L
AS CU) 3 3 2 | TOTAL RECOV-ERABLE (UG/L AS FE) 120 80 130 80 40 60 580 230 70 | DIS-
SOLVED
(UG/L
AS FE) | TOTAL RECOV- ERABLE (UG/L AS PB) 5 <5 6 13 <5 <5 <5 <5 <5 | DIS-
SOLVED
(UG/L
AS PB)

<5

<5
<5 | | MAY 1987 08 29 JUN 29 AUG 31 OCT 19 NOV 09 APR 1988 04 21 JUN 06 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
0.00
0.020
0.020
0.010
0.010
0.020
0.010
ND | PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4)
0.06
0.06
0.06
0.03
0.03
0.06 | INUM, TOTAL RECOV- BRABLE (UG/L AS AL) 60 50 | INUM,
DIS-
SOLVED
(UG/L
AS AL) | TOTAL RECOV-ERABLE (UG/L AS
CD) <10 <10 <10 <11 <1 | DIS-
SOLVED
(UG/L
AS CD)

<1.0

<1.0
7.0 | TOTAL RECOV- ERABLE (UG/L AS CU) <10 <10 <10 10 2 10 8 5 6 5 | DIS-
SOLVED
(UG/L
AS CU) 3 3 2 5 | TOTAL RECOV-ERABLE (UG/L AS FE) 120 80 130 80 40 60 580 230 70 | DIS-
SOLVED
(UG/L
AS FE) | TOTAL RECOV-ERABLE (UG/L AS PB) 5 <5 6 13 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 | DIS-
SOLVED
(UG/L
AS PB) | | MAY 1987 08 29 JUN 29 AUG 31 OCT 19 NOV 09 APR 1988 04 21 JUN 06 22 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
0.00
0.020
0.020
0.010
0.010
0.020
0.010
ND | PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4)
0.06
0.06
0.06
0.03
0.03 | INUM, TOTAL RECOV- ERABLE (UG/L AS AL) | INUM,
DIS-
SOLVED
(UG/L
AS AL) | TOTAL RECOV-ERABLE (UG/L AS CD) <10 <10 <10 <11 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 | DIS-
SOLVED
(UG/L
AS CD)

<1.0

<1.0
7.0 | TOTAL RECOV- ERABLE (UG/L AS CU) <10 <10 10 2 10 8 5 6 | DIS-
SOLVED
(UG/L
AS CU) 3 3 2 | TOTAL RECOV-ERABLE (UG/L AS FE) 120 80 130 80 40 60 580 230 70 | DIS-
SOLVED
(UG/L
AS FE) | TOTAL RECOV- ERABLE (UG/L AS PB) 5 <5 6 13 <5 <5 <5 <5 <5 | DIS-
SOLVED
(UG/L
AS PB)

<5

<5
<5 | | MAY 1987 08 29 JUN 29 AUG 31 OCT 19 NOV 09 APR 1988 04 JUN 06 22 JUL | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
0.00
0.020
0.020
0.010
0.010
0.010
ND
0.00 | PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4)
0.06
0.06
0.06
0.03
0.03
0.06 | INUM, TOTAL RECOV- ERABLE (UG/L AS AL) 60 50 110 | INUM,
DIS-
SOLVED
(UG/L
AS AL) | TOTAL RECOVERABLE (UG/L AS CD) <10 <10 <10 <10 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 | DIS-
SOLVED
(UG/L
AS CD)

<1.0

<1.0
7.0

1.0 | TOTAL RECOV- ERABLE (UG/L AS CU) <10 <10 10 2 10 8 5 6 5 6 | DIS-
SOLVED
(UG/L
AS CU) 3 3 2 5 | TOTAL RECOVERABLE (UG/L AS FE) 120 80 130 80 40 60 580 230 70 110 190 | DIS-
SOLVED
(UG/L
AS FE) | TOTAL RECOV- ERABLE (UG/L AS PB) 5 <5 6 13 <5 <5 <5 <5 <5 <5 <55 <55 | DIS-
SOLVED
(UG/L
AS PB)

<5

<5
<5 | | MAY 1987 08 29 JUN 29 AUG 31 OCT 19 NOV 09 30 APR 1988 04 21 JUN 06 22 JUL 18 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
0.00
0.020
0.020
0.010
0.010
0.020
0.010
ND | PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4)
0.06
0.06
0.06
0.03
0.03
0.06 | INUM, TOTAL RECOV- BRABLE (UG/L AS AL) 60 50 | INUM,
DIS-
SOLVED
(UG/L
AS AL) | TOTAL RECOV-ERABLE (UG/L AS CD) <10 <10 <10 <11 <1 | DIS-
SOLVED
(UG/L
AS CD)

<1.0

<1.0
7.0 | TOTAL RECOV- ERABLE (UG/L AS CU) <10 <10 <10 10 2 10 8 5 6 5 | DIS-
SOLVED
(UG/L
AS CU) 3 3 2 5 | TOTAL RECOV-ERABLE (UG/L AS FE) 120 80 130 80 40 60 580 230 70 | DIS-
SOLVED
(UG/L
AS FE) | TOTAL RECOV-ERABLE (UG/L AS PB) 5 <5 6 13 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 | DIS-
SOLVED
(UG/L
AS PB)

<5

<5
<5 | | MAY 1987 08 29 JUN 29 AUG 31 OCT 19 NOV 09 APR 1988 04 21 JUN 06 22 JUL 18 AUG | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
0.00
0.020
0.020
0.010
0.010
0.010
ND
0.00
0.020 | PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4)
0.0
0.06
0.06
0.06
0.03
0.03
0.06
0.03
0.06 | INUM, TOTAL RECOV- BRABLE (UG/L AS AL) 60 50 110 280 | INUM,
DIS-
SOLVED
(UG/L
AS AL) | TOTAL RECOV-ERABLE (UG/L AS CD) <10 <10 <10 <11 <1 | DIS-
SOLVED
(UG/L
AS CD)

<1.0

<1.0
7.0

1.0 | TOTAL RECOV- ERABLE (UG/L AS CU) <10 <10 <10 10 2 10 8 5 6 5 6 5 | DIS-
SOLVED
(UG/L
AS CU) 3 3 2 5 | TOTAL RECOV-ERABLE (UG/L AS FE) 120 80 130 80 40 60 580 230 70 110 190 430 | DIS-
SOLVED
(UG/L
AS FE) | TOTAL RECOV-ERABLE (UG/L AS PB) 5 <5 6 13 <5 <5 <5 <5 <5 <5 <5 6 | DIS-
SOLVED
(UG/L
AS PB)

<5

<5
<5 | | MAY 1987 08 29 JUN 29 AUG 31 OCT 19 NOV 09 APR 1988 04 21 JUN 06 22 JUL 18 AUG 31 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
0.00
0.020
0.020
0.010
0.010
0.010
ND
0.00 | PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4)
0.06
0.06
0.06
0.03
0.03
0.06 | INUM, TOTAL RECOV- ERABLE (UG/L AS AL) 60 50 110 | INUM,
DIS-
SOLVED
(UG/L
AS AL) | TOTAL RECOVERABLE (UG/L AS CD) <10 <10 <10 <10 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 | DIS-
SOLVED
(UG/L
AS CD)

<1.0

<1.0
7.0

1.0 | TOTAL RECOV- ERABLE (UG/L AS CU) <10 <10 10 2 10 8 5 6 5 6 | DIS-
SOLVED
(UG/L
AS CU) 3 3 2 5 | TOTAL RECOVERABLE (UG/L AS FE) 120 80 130 80 40 60 580 230 70 110 190 | DIS-
SOLVED
(UG/L
AS FE) | TOTAL RECOV- ERABLE (UG/L AS PB) 5 <5 6 13 <5 <5 <5 <5 <5 <5 <55 <55 | DIS-
SOLVED
(UG/L
AS PB)

<5

<5
<5 | | MAY 1987 08 29 JUN 29 AUG 31 OCT 19 NOV 09 APR 1988 04 JUN 06 22 JUL 18 AUG 31 OCT | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
0.00
0.020
0.020
0.010
0.010
0.010
ND
0.020
0.030 | PHATE,
ORTHO,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4)
0.06
0.06
0.06
0.03
0.03
0.06
0.03 | INUM, TOTAL RECOV- ERABLE (UG/L AS AL) 60 50 110 280 | INUM,
DIS-
SOLVED
(UG/L
AS AL) | TOTAL RECOVERABLE (UG/L AS CD) <10 <10 <10 <10 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 | DIS-
SOLVED
(UG/L
AS CD)

<1.0

<1.0
7.0

1.0 | TOTAL RECOV- ERABLE (UG/L AS CU) <10 <10 10 2 10 8 5 6 5 6 5 8 | DIS-
SOLVED
(UG/L
AS CU) 3 3 2 5 | TOTAL RECOVERABLE (UG/L AS FE) 120 80 130 80 40 60 580 230 70 110 190 430 190 | DIS-
SOLVED
(UG/L
AS FE) | TOTAL RECOVERABLE (UG/L AS PB) 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 | DIS-
SOLVED
(UG/L
AS PB) <5 <5 <5 <5 < < < | | MAY 1987 08 29 JUN 29 AUG 31 OCT 19 APR 1988 04 21 JUN 06 22 JUL 18 AUG 31 CCT 17 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
0.00
0.020
0.020
0.010
0.010
0.010
ND
0.00
0.020 | PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4)
0.0
0.06
0.06
0.06
0.03
0.03
0.06
0.03
0.06 | INUM, TOTAL RECOV- BRABLE (UG/L AS AL) 60 50 110 280 | INUM,
DIS-
SOLVED
(UG/L
AS AL) | TOTAL RECOV-ERABLE (UG/L AS CD) <10 <10 <10 <11 <1 | DIS-
SOLVED
(UG/L
AS CD)

<1.0

<1.0
7.0

1.0 | TOTAL RECOV- ERABLE (UG/L AS CU) <10 <10 <10 10 2 10 8 5 6 5 6 5 | DIS-
SOLVED
(UG/L
AS CU) 3 3 2 5 | TOTAL RECOV-ERABLE (UG/L AS FE) 120 80 130 80 40 60 580 230 70 110 190 430 | DIS-
SOLVED
(UG/L
AS FE) | TOTAL RECOV-ERABLE (UG/L AS PB) 5 <5 6 13 <5 <5 <5 <5 <5 <5 <5 6 | DIS-
SOLVED
(UG/L
AS PB) | | MAY 1987 08 29 JUN 29 AUG 31 OCT 19 NOV 09 APR 1988 04 JUN 06 22 JUL 18 AUG 31 OCT | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
0.00
0.020
0.020
0.010
0.010
0.010
ND
0.020
0.030 | PHATE,
ORTHO,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4)
0.06
0.06
0.06
0.03
0.03
0.06
0.03 | INUM, TOTAL RECOV- ERABLE (UG/L AS AL) 60 50 110 280 | INUM,
DIS-
SOLVED
(UG/L
AS AL) | TOTAL RECOVERABLE (UG/L AS CD) <10 <10 <10 <10 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 | DIS-
SOLVED
(UG/L
AS CD)

<1.0

<1.0
7.0

1.0 | TOTAL RECOV- ERABLE (UG/L AS CU) <10 <10 10 2 10 8 5 6 5 6 5 8 | DIS-
SOLVED
(UG/L
AS CU) 3 3 2 5 | TOTAL RECOVERABLE (UG/L AS FE) 120 80 130 80 40 60 580 230 70 110 190 430 190 | DIS-
SOLVED
(UG/L
AS FE) | TOTAL RECOVERABLE (UG/L AS PB) 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 | DIS-
SOLVED
(UG/L
AS PB) <5 <5 <5 <5 <5 < < | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). # 01422642 WEST BRANCH DELAWARE RIVER AT DE LANCEY, NY - continued | DATE | MANGA-
NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN) | MERCURY
TOTAL
RECOV-
ERABLE
(UG/L
AS HG) | TOTAL
RECOV- | NICKE
DIS-
SOLV
(UG/
AS N | L, TO
RE
ED ER
L (U | ECOV-
RABLE :
JG/L | ZINC,
DIS-
SOLVED
(UG/L
AS ZN) | BROMO-
FORM
TOTAL
(UG/L) | CARBON-
TETRA-
CHLO-
RIDE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
DI-
BROMO-
METHANE
TOTAL
(UG/L) | CHLORO-
ETHANE
TOTAL
(UG/L) | |-----------|---|--|---|--|---------------------------------------|---|---|---|---|---|---------------------------------------|--|--------------------------------------| | MAY 1987 | | | | | | | | | | | | | | | 08 | 10 | | <0.10 | <1 | | | 40 | | ND | ND | ND | ND | ND | | 29 | 20 | | <0.10 | <1 | | 1 | <10 | 20 | ND | ND | ND | ND | ND | | JUN | | | | | | | | | | | | | | | 29 | 20 | | <0.10 | 1 | | | 10 | | ND | ND | ND | ND | ND | | AUG | | | | _ | | | | | | | | | | | 31 | 30 | | <0.10 | <1 | | | <10 | | ND | ND | ND | ND | ND | | ОСТ
19 | 20 | | <0.10 | 3 | | | <10 | | ND | ND | ND | ND | ND | | NOV | 20 | | <0.10 | | | | <10 | | ND | ND | ND | ND | ND | | 09 | 10 | | <0.10 | <1 | | | <10 | | ND | ND | ND | ND | ND | | 30 | 60 | | <0.10 | | | 3 | <10 | <10 | ND | ND | ND | ND | ND | | APR 1988 | | | | | | | | | | | | | | | 04 | 30 | 11 | <0.10 | <1 | | 5 | <10 | 16 | ND | ND | ND | ND | ND | | 21 | 20 | | <0.10 | 7 | | | <10 | | ND | ND | ND | ND | ND | | JUN | | | |
 | | | | | | | | | | 06 | 30 | 18 | <0.10 | | | 1 | <10 | 23 | ND | ND | ND | ND | ND | | 22 | 60 | | <0.10 | 3 | | | 10 | | ND | ND | ND | ND | ИD | | JUL | 70 | | .0.10 | | | | .10 | | N.D. | MD | MB | | N.D. | | 18
AUG | 70 | | <0.10 | 1 | | | <10 | | ИD | ИD | ND | ИD | ИD | | 31 | 30 | | <0.10 | 3 | | | <10 | | ND | ND | ND | ND | ND | | OCT | 30 | | 70.10 | , | | | 110 | | | | 11.5 | | 1.2 | | 17 | 10 | 12 | <0.10 | 2 | | <1 | <10 | 8 | ND | ND | ND | ND | ND | | NOV | | | | | | | | | | | | | | | 14 | 30 | | <0.10 | 3 | | | <10 | | ND | ND | ND | ND | ND | | DATE | CHLOR
FORM
TOTAI
(UG/L | PROI
L TOT | -DI- CHI
DRO- BF
PENE MET
TAL TO | DI-
LORO-
ROMO- METH
THANE BROD
DTAL TO:
UG/L) (UG/ | HYL-
HIDE
FAL | ETHYL-
CHLO-
RIDE
TOTAL
UG/L) | METHYL
ENE
CHLO-
RIDE
TOTAL
(UG/L) | - 1,1,1
TRI
CHLO
ETHA
TOTA
(UG/1 | - 1,1
RO- CHL
NE ETH
L TO | -DI- CHLA
DRO- ETH'
ANE EI
TAL TO | (L- CHLO
NE ETH)
TAL TO: | I- TETF
DRO- CHLO
ANE ETHA
FAL TOT | RA-
DRO-
ANE
PAL | | MAY 1987 | , | | | | | | | | | | | | | | 08 | ND | NI | | ID NI | , | ND | ND | ND | N | D NI | o Ni | о п | , | | 29 | ND | NI | | ND NI | | ND | ND | ND | | | | | | | JUN | | | | | = | | | | | - | | - | | | 29 | ND | N | 1 C | ID NI |) | ИD | ИD | ND | N | D N | IN C | и с |) | | AUG | | | | | | | | | | | | | | | 31 | ND | N |) h | ID NI | ט | ИD | ИD | ИD | N | D N | D NI | 1N C | J | | ост
19 | ND | NI | , , | ID NI | 1 | ND | ND | ND | N | D N | D NI | о и | , | | NOV | ND | NI | , , | וא טי | , | ND | ND | ND | N | L N | . N | , NI | • | | 09 | ND | NI |) 1 | ND NI |) | ND | ND | ND | N | D N | D NI | о и г | | | 30 | ND | NI | | ND NI | | ND | ND | ND | | | | | | | APR 1988 | 3 | | | | | | | | | | | | | | 04 | ND | NI | 1 0 | ND NI |) | ND | ND | ND | N | D N | D NI | D NI |) | | 21 | ND | NI | 1 C | ND NI |) | ND | ND | ND | N | D N | D NI | ии с |) | | JUN | | | | | | | | | | _ | _ | _ | _ | | 06 | ND | NI | | ID NI | | ND | ND | ND | | | | | | | 22 | ND | NI | D 1 | ID N | י | ND | ND | ND | N | D N | D N | D NI | • | | JUL | | | | ın : | _ | ND | *** | .,, | | n | D N I | D NI | , | | 18
AUG | ND | NI | , I | ND N | , | ND | ND | ND | N | D N | NI NI | NI. | • | | 31 | ND | NI | D 1 | ND N |) | ND | ND | ND | N | D N | D N | D NI |) | | OCT | NO | M | - ' | 141 | - | | | | • | | ••• | ••• | | | 17 | ND | NI | D 1 | ND N | 0 | ND | ND | ND | N | D N | D N | D NI |) | | NOV | | | | | | | | | | | | | | | 14 | ND | NI | D 1 | ND NI | D | ND | ND | ND | N | D N | D N | D N |) | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-98 (continued). # 01422642 WEST BRANCH DELAWARE RIVER AT DE LANCEY, NY - continued # WATER-QUALITY DATA (continued) | | | 1,2-DI-
CHLORO- | | 1,2- | | | TETRA- | TRANS- | TRI- | 2-
CHLORO- | | |----------------|---------|--------------------|----------|----------|---------|----------|----------|---------|----------|---------------|--------| | | 1,2-DI- | ETHANE | 1,2-DI- | TRANSDI | 1,3-DI- | 1,4-DI- | CHLORO- | 1,3-DI- | CHLORO- | ETHYL- | VINYL | | | CHLORO- | WATER | CHLORO- | CHLORO- | CHLORO- | CHLORO- | ETHYL- | CHLORO- | ETHYL- | VINYL- | CHLO- | | | BENZENE | WHOLE | PROPANE | ETHENE | BENZENE | BENZENE | ENE | PROPENE | ENE | ETHER | RIDE | | DATE | TOTAL | | (UG/L) | MAY 1987 | | | | | | | | | | | | | 08 | ND | 29 | ND | JU N | | | | | | | | | | | | | 29 | ND | AUG | | | | | | | | | | | | | 31 | ND | OCT | | | | | | | | | | | | | 19 | ND | NOV | | | | | | | | | | | | | 09 | ND | 30
APR 1988 | ND | 04 | ND | ND | ND | ND | ND | ND | | ND | | | ND | | 21 | ND | ND
ND | ND
ND | ND
ND | ND | ND
ND | ND
ND | ND | ND
ND | ND
ND | ND | | JUN | ND | 06 | ND | 22 | ND | JUL | _ | | | | | | | | | | | | 18 | ND | AUG | | | | | | | | | | | | | 31 | ND | OCT | | | | | | | | | | | | | 17 | ND | NOV | | | | | | | | | | | | | 14 | ND | | | | | | | | | | | | | # SUSPENDED SEDIMENT DISCHARGE | | | DIS-
CHARGE,
INST.
CUBIC
FEET | SEDI-
MENT,
SUS- | SEDI-
MENT,
DIS-
CHARGE,
SUS- | |----------|------|---|------------------------|---| | DATE | TIME | PER
SECOND | PENDED
(MG/L) | PENDED (T/DAY) | | JUN 1988 | | SECOND | (MG/L) | (I)DAI) | | 06 | 1100 | 184 | 4 | 2.0 | | 22 | 1200 | 75 | 3 | 0.61 | | JUL | | | | | | 18 | 1200 | | 12 | | | AUG | | | | | | 31 | 1145 | 141 | 6 | 2.3 | | OCT | | | | | | 17 | 1200 | | 2 | | | NOV | | | | | | 14 | 1200 | 603 | 8 | 13 | # BED MATERIAL ANALYSES | NESE,
RECOV. | | |-----------------|--| | RECOV. | | | | | | FM BOT- | | | TOM MA- | | | TERIAL | | | (UG/G) | | | | | | 310 | | | | FM BOT-
TOM MA-
TERIAL
(UG/G) | | | MERCURY | NICKEL, | ZINC, | BED | BED | BED | BED | |----------|---------|---------|---------|---------|---------|---------|---------| | | RECOV. | RECOV. | RECOV. | MAT. | MAT. | MAT. | MAT. | | | FM BOT- | FM BOT- | FM BOT- | FALL | SIEVE | SIEVE | SIEVE | | | TOM MA- | TOM MA- | TOM MA- | DIAM. | DIAM. | DIAM. | DIAM. | | | TERIAL | TERIAL | TERIAL | % FINER | % FINER | % FINER | % FINER | | DATE | (UG/G | (UG/G | (UG/G | THAN | THAN | THAN | THAN | | | AS HG) | AS NI) | AS ZN) | .004 MM | .062 MM | .125 MM | 2.00 MM | | OCT 1987 | | | | | | | | | 19 | <0.10 | 10 | 40 | 1 | 8 | 17 | 97 | #### 01426500 WEST BRANCH DELAWARE RIVER AT HALE EDDY, NY LOCATION.--Lat 42 00'11", long 75 23'02", Delaware County, Hydrologic Unit 02040101, on left bank at downstream side of bridge on County Highway 56 in Hale Eddy, and 9 mi upstream from confluence of East and West Branches near Hancock. Water-quality sampling site at discharge station. DRAINAGE AREA. -- 595 mi 2 . PERIOD OF RECORD. -- April to November 1988. CHEMICAL DATA: 1988 (c), 1989 (a). MINOR ELEMENT DATA: 1988 (c), 1989 (a). PESTICIDE DATA: 1988 (c), 1989 (a). ORGANIC DATA: PCB--1988 (a). NUTRIENT DATA: 1988 (c), 1989 (a). BIOLOGICAL DATA: Bacteria -- 1988 (a). SEDIMENT DATA: 1988 (c), 1989 (a). PERIOD OF DAILY RECORD. -- WATER TEMPERATURES: October 1967 to current year (no winter record for water years 1969-77). SPE- INSTRUMENTATION. -- Water-temperature digital recorder since October 1976, provides one-hour-interval punches. Also, water-temperature satellite telemeter since May 1985, provides one-hour-interval readings. Prior to October 1976, water-temperature recorder provided continuous recordings. REMARKS. -- Water-discharge data obtained from stream-flow gage at this site. DIS- EXTREMES FOR PERIOD OF DAILY RECORD .-- MATER TEMPERATURES: Maximum (water years 1968-77, 1979-83, 1985, 1988-89), 30.5 C, July 22, 23, 1972, June 16, 1981; minimum (water years 1968, 1978-89), 0.0 C on many days during winter periods. PH #### WATER-QUALITY DATA BARO- OXYGEN. COLT- FECAL | FEET DUCT- ANCE (STAND- ATURE BID- (MM DIS- CE | PER- IMMED. 24- | LI~
RM
-HR | |---|---|--| | | CENT (COLS. MEM | FIL | | SECOND (US/CM) (US/CM) UNITS) (DEG C) (NTU) HG) (MG/L) ATTO | ATUR- PER (COI
TION) 100 ML) 100 | | | | rion) luo mil) luo | ML) | | APR 1988 | | | | | | | | 21 0930 142 104 101 6.0 7.5 755 11.6 | 98 >230 | 5.00 | | 06 1250 609 84 81 8.2 19.0 1.5 748 10.6 | | | | | 126 | | | JUL 18 1500 441 87 81 8.4 14.5 0.90 762 12.3 | 121 | | | AUG | 121 | | | | 109 | | | OCT 17 1330 893 85 7.6 15.0 8.0 768 11.3 | | | | NOV | | | | 14 1400 389 79 75 7.8 7.5 3.9 764 13.8 | 115 | | | | | | | HARD- | EG. C TUENTS, AT :
DIS- DIS- DEG
OLVED SOLVED TO | IDUE
105 | | HARD- | SIDUE SUM OF SOLI
180 CONSTI- RESI
EG. C TUENTS, AT
DIS- DIS- DEG
OLVED SOLVED TO
MG/L) (MG/L) (MG | IDUE
105
. C,
TAL
G/L) | | HARD- NESS CALCIUM SIUM, SODIUM, SIUM, LINITY SULFATE RIDE, RIDE, AT 1: TOTAL DIS- DIS- DIS- DIS- DIS- DIS- DIS- DIS- | SIDUE SUM OF SOLE 180 CONSTIRES EG. C TUENTS, AT DIS-DEG OLVED SOLVED TOM MG/L) (MG/L) (MG 55 39 | IDUE
105
. C,
TAL | | HARD- | SIDUE SUM OF SOLE 180 CONSTIRES EG. C TUENTS, AT DIS- DEG OLVED SOLVED TOM MG/L) (MG/L) (MG 55 39 | IDUE
105
. C,
TAL
G/L) | | HARD- | SIDUE SUM OF SOLE 180 CONSTIRES: EG. C TUENTS, AT DIS-DEG OLVED SOLVED TO MG/L) (MG/L) (MG 55 39 49 66 50 | 1DUE
105
. C,
PAL
G/L)
65 | | HARD- MAGNE- POTAS- ALKA- CHLO- FLUO- RESIDENCE FOR THE POTAS SULFATE RIDE, RIDE, AT 1: TOTAL DIS- DIS- DIS- DIS- DIS- DIS- DIS- DIS- | SIDUE SUM OF SOL: 180 CONSTI- RES: EG. C TUENTS, AT DIS- DIS- DEG OLVED SOLVED TO' MG/L) (MG/L) (MG 55 39 49 | IDUE
105
. C,
PAL
G/L) | | HARD- | SIDUE SUM OF SOLE 180 CONSTIRES: EG. C TUENTS, AT DIS-DEG OLVED SOLVED TO MG/L) (MG/L) (MG 55 39 49 66 50 | 1DUE
105
. C,
PAL
G/L)
65 | | HARD- | SIDUE SUM OF SOL: 180 CONSTI- EG. C TUENTS, AT: DIS- DIS- DIS- OLVED SOLVED TO' MG/L) (MG/L) (MG 55 39 49 66 50 39 62 40 | 1DUE
105
. C,
PAL
G/L)
65

77
40 | | HARD- MAGNE- POTAS- ALKA- CHLO- FLUO- RESIDENCE POTAS- ALKA- SIUM, SODIUM, SIUM, LINITY SULFATE RIDE, RIDE, AT 1: TOTAL DIS- DIS- DIS- DIS- DIS- DIS- DIS- DIS- | SIDUE SUM OF SOL: 180 CONSTI- RES: EG. C TUENTS, AT DIS- DIS- DEG OLVED SOLVED TO' MG/L) (MG/L) (MG 55 39 49 66 50 39 | IDUE
105
. C,
PAL
G/L)
65

77
40 | | HARD- | SIDUE SUM OF SOL: 180 CONSTI- EG. C TUENTS, AT: DIS- DIS- DIS- OLVED SOLVED TO' MG/L) (MG/L) (MG 55 39 49 66 50 39 62 40 | 1DUE
105
. C,
PAL
G/L)
65

77
40 | Table 4.--Selected water-quality and bottom-material data from
streams in New York, 1987-88 (continued). # 01426500 WEST BRANCH DELAWARE RIVER AT HALE EDDY, NY - continued | | | | | | - | | | | | | | | |------------------|--|---|--|--|---|--|---|--|---|--|---|--| | DATE
APR 1988 | SOLIDS,
VOLA-
TILE ON
IGNI-
TION,
TOTAL
(MG/L) | RESIDUE
TOTAL
FIXED
(MG/L) | NITRO-
GEN,
NITRATE
TOTAL
(MG/L
AS N) | NITRO-
GEN,
NITRITE
TOTAL
(MG/L
AS N) | NITRO-
GEN,
NO2+NO3
TOTAL
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS NH4) | NITRO-
GEN,
ORGANIC
TOTAL
(MG/L
AS N) | NITRO-
GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | NITRO-
GEN,
TOTAL
(MG/L
AS N) | NITRO-
GEN,
TOTAL
(MG/L
AS NO3) | PHOS-
PHORUS
TOTAL
(MG/L
AS P) | | 04 | 24 | 41 | | ND | 0.560 | 0.010 | 0.01 | 0.23 | 0.24 | 0.80 | 3.5 | 0.010 | | 21 | | | | ND
 | 0.560 | | | | 0.24 | | J.J | | | JUN | | | | | | | | | | | | | | 06 | 53 | 24 | 0.460 | 0.00 | 0.460 | 0.020 | 0.03 | 0.11 | 0.13 | 0.59 | 2.6 | 0.010 | | 22 | 23 | 17 | | ND | 0.590 | 0.00 | 0.0 | 0.16 | 0.16 | 0.75 | 3.3 | 0.080 | | JUL | | | | 2 | ••••• | **** | • • • • | 0.20 | | 0.75 | • | 0.000 | | 18 | 27 | 45 | | ND | 0.660 | 0.00 | 0.0 | 0.11 | 0.11 | 0.77 | 3.4 | 0.010 | | AUG | | | | | | | | | | | | | | 31 | 46 | 50 | 0.760 | 0.010 | 0.770 | 0.020 | 0.03 | 0.25 | 0.27 | 1.0 | 4.6 | 0.030 | | OCT | | | | | | | | | | | | | | 17 | 40 | 37 | 0.170 | 0.00 | 0.170 | 0.020 | 0.03 | 0.19 | 0.21 | 0.38 | 1.7 | 0.050 | | NOV | | | | | | | | | | | | | | 14 | 21 | 41 | | ND | 0.440 | 0.010 | 0.01 | 0.26 | 0.27 | 0.71 | 3.1 | 0.020 | | | | | | | | | | | | | | | | DATE | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P) | PHOS-
PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4) | ALUM-
INUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS AL) | ALUM-
INUM,
DIS-
SOLVED
(UG/L
AS AL) | CADMIUM
TOTAL
RECOV-
ERABLE
(UG/L
AS CD) | CADMIUM
DIS-
SOLVED
(UG/L
AS CD) | COPPER,
TOTAL
RECOV-
ERABLE
(UG/L
AS CU) | COPPER,
DIS-
SOLVED
(UG/L
AS CU) | IRON,
TOTAL
RECOV-
ERABLE
(UG/L
AS FE) | IRON,
DIS-
SOLVED
(UG/L
AS FE) | LEAD,
TOTAL
RECOV-
ERABLE
(UG/L
AS PB) | LEAD,
DIS-
SOLVED
(UG/L
AS PB) | | APR 1988 | | • • | | 10 | _ | | | | | | _ | - | | 04 | 0.00 | 0.0 | | 10 | <1 | <1.0 | 3 | 1 | 140 | 12 | <5 | < 5 | | 21 | | | <10 | | 2 | | 4 | | 60 | | < 5 | | | JUN
06 | ND | | 70 | 60 | 1 | <1.0 | 7 | 3 | 130 | 22 | <5 | <5 | | 22 | ND | | 50 | | <1 | <1.0 | 4 | | 80 | | 9 | | | JUL | ND | | 30 | | <1 | | • | | 80 | | , | | | 18 | ND | | 20 | | <1 | | 6 | | 70 | | <5 | | | AUG | | | | | 1- | | • | | . • | | | | | 31 | 0.00 | 0.0 | 80 | | 1 | | 4 | | 220 | | <5 | | | OCT | | | | | | | | | | | | | | 17 | 0.00 | 0.0 | 250 | 20 | 1 | <1.0 | 5 | 2 | 590 | 48 | < 5 | 5 | | NOV | | | | | | | | | | | _ | | | 14 | 0.00 | 0.0 | 120 | | <1 | | 7 | | 280 | | <5 | | | | Manga- | | | | | | | | | | | | | | NESE, | MANGA- | MERCURY | NICKEL, | | ZINC, | | | CARBON- | | CHLORO- | | | | TOTAL | NESE, | TOTAL | TOTAL | NICKEL, | TOTAL | ZINC, | | TETRA- | | DI- | | | | RECOV- | DIS- | RECOV- | RECOV- | DIS- | RECOV- | DIS- | BROMO- | CHLO- | CHLORO- | BROMO- | CHLORO- | | | ERABLE | SOLVED | ERABLE | ERABLE | SOLVED | ERABLE | SOLVED | FORM | RIDE | BENZENE | METHANE | ETHANE | | DATE | (UG/L TOTAL | TOTAL | TOTAL | TOTAL | TOTAL | | D D | AS MN) | AS MN) | AS HG) | AS NI) | AS NI) | AS ZN) | AS ZN) | (UG/L) | (UG/L) | (UG/L) | (UG/L) | (UG/L) | | APR 1988 | 710 E111) | AU AII) | AD 113) | VO 111) | AU HI) | אט פאן | AO 214) | (00/11/ | (00,1) | (11,50) | (00/11) | (00/11/ | | 04 | 20 | 9 | <0.10 | <1 | 3 | <10 | <3 | ND | ND | ND | ND | ND | | 21 | 50 | | <0.10 | 8 | | <10 | | ND | ND | ND | ND | ND | | JUN | | | | • | | 124 | | | | | | | | 06 | 50 | 32 | <0.10 | 4 | 3 | <10 | 11 | ND | ND | ND | ND | ND | | 22 | 30 | | <0.10 | 4 | | <10 | | ND | ND | ND | ND | ND | | JUL | | | | _ | | | | | | | | | | 18 | 40 | | <0.10 | 1 | | <10 | | ND | ND | ND | ND | ND | | AUG | | | | | | | | | | | | | | 31 | 80 | | <0.10 | 8 | | <10 | | ND | ND | ND | ND | ND | | OCT | | | | | | | | | | | | | | 17 | 400 | | | _ | | | | | | | | | | | 190 | 130 | <0.10 | 2 | 3 | <10 | 7 | ND | ND | ИD | ND | ND | | NOV
14 | 50 | 130 | <0.10 | 9 | 3 | <10
<10 | 7 | ND
ND | ND
ND | ND
ND | ND
ND | ND
ND | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). # 01426500 WEST BRANCH DELAWARE RIVER AT HALE EDDY, NY - continued ### WATER-QUALITY DATA (continued) | DATE | CHLORO-
FORM
TOTAL
(UG/L) | CIS
1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | DI-
CHLORO-
BROMO-
METHANE
TOTAL
(UG/L) | METHYL-
BROMIDE
TOTAL
(UG/L) | METHYL-
CHLO-
RIDE
TOTAL
(UG/L) | METHYL-
ENE
CHLO-
RIDE
TOTAL
(UG/L) | 1,1,1-
TRI-
CHLORO-
ETHANE
TOTAL
(UG/L) | 1,1-DI-
CHLORO-
ETHANE
TOTAL
(UG/L) | 1,1-DI-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 1,1,2-
TRI-
CHLORO-
ETHANE
TOTAL
(UG/L) | 1,1,2,2
TETRA-
CHLORO-
ETHANE
TOTAL
(UG/L) | |--|---|--|--|---|---|--|---|--|---|---|---| | APR 1988 | | | | | | | | | | | | | 04 | ND | 21 | ND | JUN | | | | | | | | | | | | | 06 | ND | 22 | ND | JUL | | | | | | | | | | | | | 18 | ND | AUG | | | | | | | | | | | | | 31 | ND | OCT | | | | | _ | | _ | | | | | | 17 | ND | ND | ND | ND | ND | ИD | ND | ND | ND | ND | ND | | NOV | N. | | *** | | | 115 | | ••• | | | | | 14 | ND | | | | | | | | | | | | | | DATE | 1,2-DI-
CHLORO-
BENZENE
TOTAL
(UG/L) | 1,2-DI-
CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L) | 1,2-DI-
CHLORO-
PROPANE
TOTAL
(UG/L) | 1,2-
TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L) | 1,3-DI-
CHLORO-
BENZENE
TOTAL
(UG/L) | 1,4-DI-
CHLORO-
BENZENE
TOTAL
(UG/L) | TETRA-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | TRANS-
1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | TRI-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 2-
CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L) | VINYL
CHLO-
RIDE
TOTAL
(UG/L) | | DATE
APR 1988 | CHLORO-
BENZENE
TOTAL | CHLORO-
ETHANE
WATER
WHOLE
TOTAL | CHLORO-
PROPANE
TOTAL | TRANSDI
CHLORO-
ETHENE
TOTAL | CHLORO-
BENZENE
TOTAL | CHLORO-
BENZENE
TOTAL | CHLORO-
ETHYL-
ENE
TOTAL | 1,3-DI-
CHLORO-
PROPENE
TOTAL | CHLORO-
ETHYL-
ENE
TOTAL | CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL | CHLO-
RIDE
TOTAL | | | CHLORO-
BENZENE
TOTAL | CHLORO-
ETHANE
WATER
WHOLE
TOTAL | CHLORO-
PROPANE
TOTAL | TRANSDI
CHLORO-
ETHENE
TOTAL | CHLORO-
BENZENE
TOTAL | CHLORO-
BENZENE
TOTAL | CHLORO-
ETHYL-
ENE
TOTAL | 1,3-DI-
CHLORO-
PROPENE
TOTAL | CHLORO-
ETHYL-
ENE
TOTAL | CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL | CHLO-
RIDE
TOTAL | | APR 1988 | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L) | CHLORO-
PROPANE
TOTAL
(UG/L) | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L) | CHLO-
RIDE
TOTAL
(UG/L) | | APR 1988
04
21 | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L) | CHLORO-
PROPANE
TOTAL
(UG/L) | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L) | CHLO-
RIDE
TOTAL
(UG/L) | | APR 1988
04
21
JUN | CHLORO-
BENZENE
TOTAL
(UG/L)
ND
ND | CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L)
ND | CHLORO-
PROPANE
TOTAL
(UG/L)
ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND | CHLORO-
BENZENE
TOTAL
(UG/L)
ND | CHLORO-
BENZENE
TOTAL
(UG/L)
ND
ND |
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND | CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L)
ND
ND | CHLO-
RIDE
TOTAL
(UG/L)
ND
ND | | APR 1988
04
21
JUN
06 | CHLORO-
BENZENE
TOTAL
(UG/L)
ND
ND | CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L)
ND
ND | CHLORO-
PROPANE
TOTAL
(UG/L)
ND
ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND | CHLORO-
BENZENE
TOTAL
(UG/L)
ND
ND | CHLORO-
BENZENE
TOTAL
(UG/L)
ND
ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND
ND | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
ND
ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND
ND | CHLORO-ETHYL-VINYL-ETHER TOTAL (UG/L) ND ND | CHLO-
RIDE
TOTAL
(UG/L)
ND
ND | | APR 1988
04
21
JUN
06
22 | CHLORO-
BENZENE
TOTAL
(UG/L)
ND
ND | CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L)
ND
ND | CHLORO-
PROPANE
TOTAL
(UG/L)
ND
ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND | CHLORO-
BENZENE
TOTAL
(UG/L)
ND
ND | CHLORO-
BENZENE
TOTAL
(UG/L)
ND
ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND
ND | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
ND
ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND
ND | CHLORO-ETHYL-VINYL-ETHER TOTAL (UG/L) ND ND | CHLO-
RIDE
TOTAL
(UG/L)
ND
ND | | APR 1988
04
21
JUN
06
22
JUL
18 | CHLORO-
BENZENE
TOTAL
(UG/L)
ND
ND
ND | CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L)
ND
ND
ND | CHLORO-PROPANE TOTAL (UG/L) ND ND ND ND ND ND ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND
ND
ND | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
ND
ND
ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND
ND
ND | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND ND ND ND | CHLO-
RIDE
TOTAL
(UG/L)
ND
ND
ND | | APR 1988
04
21
JUN
06
22
JUL
18 | CHLORO-
BENZENE
TOTAL
(UG/L)
ND
ND
ND | CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L)
ND
ND
ND | CHLORO-PROPANE TOTAL (UG/L) ND ND ND ND ND ND ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND
ND
ND | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
ND
ND
ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND
ND
ND | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND ND ND ND | CHLO-
RIDE
TOTAL
(UG/L)
ND
ND
ND | | APR 1988 04 21 JUN 06 22 JUL 18 AUG 31 OCT | CHLORO-
BENZENE
TOTAL
(UG/L)
ND
ND
ND
ND | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND ND ND ND | CHLORO-PROPANE TOTAL (UG/L) ND ND ND ND ND ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND ND ND ND ND ND ND ND | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
ND
ND
ND
ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND ND ND ND ND ND ND ND | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND ND ND ND ND | CHLO-
RIDE
TOTAL
(UG/L)
ND
ND
ND
ND | | APR 1988 04 21 JUN 06 22 JUL 18 AUG 31 OCT 17 | CHLORO-
BENZENE
TOTAL
(UG/L)
ND
ND
ND
ND | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND ND ND ND | CHLORO-PROPANE TOTAL (UG/L) ND ND ND ND ND ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND ND ND ND ND ND ND ND | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
ND
ND
ND
ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND ND ND ND ND ND ND ND | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND ND ND ND ND | CHLO-
RIDE
TOTAL
(UG/L)
ND
ND
ND
ND | | APR 1988 04 21 JUN 06 22 JUL 18 AUG 31 OCT | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND ND ND ND ND ND | CHLORO-PROPANE TOTAL (UG/L) ND ND ND ND ND ND ND ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND N | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
ND
ND
ND
ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND ND ND ND ND ND ND | CHLO-
RIDE
TOTAL
(UG/L)
ND
ND
ND
ND | # SUSPENDED SEDIMENT DISCHARGE | TIME | DIS- CHARGE, INST. CUBIC FEET PER SECOND | SEDI-
MENT,
SUS-
PENDED
(MG/L) | SEDI-
MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY) | |------|--|--|---| | | | | | | 1315 | 1510 | | | | 0930 | 142 | | | | | | | | | 1250 | 609 | 5 | 8.2 | | 1345 | 808 | 2 | 4.4 | | | | | | | 1500 | 441 | <1 | | | | | | | | 1400 | 139 | 4 | 1.5 | | | | | | | 1330 | 893 | 12 | 29 | | | | | | | 1400 | 389 | 4 | 4.2 | | | 1315
0930
1250
13 4 5 | INST. CUBIC FEET PER SECOND 1315 1510 0930 142 1250 609 1345 808 1500 441 1400 139 1330 893 | CHARGE, INST. SEDI- CUBIC MENT, FEET SUS- PER PENDED SECOND (MG/L) 1315 1510 0930 142 1250 609 5 1345 808 2 1500 441 <1 1400 139 4 1330 893 12 | ### 01427000 WEST BRANCH DELAWARE RIVER AT HANCOCK, NY LOCATION.--Lat 41 57'08", long 75 17'31", Delaware County, Hydrologic Unit 02040101, at bridge at end of Pennsylvania State Highway 191 in Hancock and 1.3 mi (2.1 km) upstream from confluence with East Branch. Gaging Station 1906-1912. DRAINAGE AREA. -- 650 mi2. SEDIMENT DATA: 1987-88 (b). PERIOD OF RECORD.--Water year May to November 1987 (discontinued). CHEMICAL DATA: 1987-88 (b). MINOR ELEMENT DATA: 1987-88 (b). PESTICIDE DATA: 1987-88 (b). NUTRIENT DATA: 1987-88 (b). BIOLOGICAL DATA: Bacteria -- 1987 (a). Remarks.--Water-discharge data based on records from stream-flow gage 01426500 West Branch Delaware River at Hale Eddy, NY. Sampling site moved upstream to 01426500 West Branch Delaware River at Hale Eddy NY in 1988. #### WATER-OUALITY DATA | | | | | | WATER-C | DALLIT DA | VIA | | | | | | |-----------|--------------------|---|--|---|--------------------------------------|---|-------------------------------------|--|--|---|--|--| | DATE | TIME | DIS-
CHARGE,
IN
CUBIC
FEET
PER
SECOND | SPE-
CIFIC
CON-
DUCT-
ANCE
LAB
(US/CM) | PH WATER WHOLE FIELD (STAND- ARD UNITS) | TEMPER-
ATURE
WATER
(DEG C) | TUR-
BID-
ITY
(NTU) | OXYGEN,
DIS-
SOLVED
(MG/L) | COLI-
FORM,
TOTAL,
IMMED.
(COLS.
PER
100 ML) | FECAL
COLI-
FORM
24-HR
MEM.FIL
(COLS./
100 ML) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG) | | MAY 1987 | | | | | | | | | | | | | | 08 | 1030 | 132 | 96 | 7.7 | 13.5 | 0.80 | 11.4 | >190 | 2.00 | 29 | 8.2 | 2.0 | | 29 | 1030 | 230 | 91 | 8.2 | 22.0 | 0.80 | 10.8 | | | 27 | 7.8 | 1.9 | | JUN | | | | | | • | | | | | , | | | 29 | 1345 | 424 | 80 | 7.9 | 23.5 | 1.1 | 11.3 | | | 27 | 7.7 | 1.9 | | AUG | | | | | | | | | | | | | | 31 | 1245 | 144 | | 7.8 | 18.0 | 0.90 | 10.6 | | | 34 | 10 | 2.1 | | OCT | | | | | | | | | | | | | | 19 | 1330 | 162 | 90 | 7.6 | 13.0 | 1.6 | 13.0 | | | 28 | 8.0 | 2.0 | | NOA | | | | | | | | | | | | | | 09 | 1200 | 201 | | 7.0 | 7.5 | 1.2 | 12.8 | | | 24 | 6.7 | 1.8 | | 30 | 1400 | 1160 | | 7.2 | 6.0 | 27 | 16.2 | | | 19 | 5.2 | 1.5 | | | SOLIDS,
RESIDUE | SOLIDS, | SOLIDS,
VOLA- | | NITRO- | NIMBO | NITRO- | NITRO- | NITRO- | NITRO- | NITRO-
GEN, AM- | | | | AT 180 | RESIDUE | TILE ON | | GEN, | NITRO-
GEN, | GEN, | GEN, | GEN, | GEN, | MONIA + | NITRO- | | | DEG. C | AT 105 | IGNI- | RESIDUE | | NITRITE | NO2+NO3 | AMMONIA | AMMONIA | ORGANIC | ORGANIC | GEN, | | | DIS- | DEG. C, | TION, | TOTAL | DATE | SOLVED | TOTAL | TOTAL | FIXED | (MG/L | DAIL | (MG/L) | (MG/L) | (MG/L) | (MG/L) | AS N) | AS N) | AS N) | AS N) | AS NH4) | AS N) | AS N) | AS N) | | | (MG/L) | (MG/L) | (MG/L) | (MG/L) | AS N) | AS N) | AS N | AS N | AS NITE | AS N) | AS N | AS N | | MAY 1987 | | | | | | | | | | | | | | 08 | 70 | 77 | 2 2 | 55 | 0.400 | 0.00 | 0.400 | 0.010 | 0.01 | 0.09 | 0.10 | 0.50 | | 29 | 48 | 80 | 25 | 55 | | ND | 0.210 | 0.010 | 0.01 | 0.07 | 0.08 | 0.29 | | JUN | | 00 | | 33 | | ND | 0.210 | 0.010 | 0.01 | 0.07 | 0.00 | 0.23 | | 29 | 27 | 57 | 26 | 29 | | ND | 0.200 | 0.010 | 0.01 | 0.12 | 0.13 | 0.33 | | AUG | - | 5, | 20 | | | | | 0.010 | 0.01 | ***** | **** | ***** | | 31 | 55 | 59 | 28 | 31 | | ND | 0.550 | ND | | | 0.19 | 0.74 | | OCT | | | | | | | | | | | | | | 19 | 60 | 64 | 17 | 47 | | ND | 0.380 | 0.00 | 0.0 | 0.11 | 0.11 |
0.49 | | NOV | | | | | | | | | | | | | | 09 | 54 | 56 | 33 | 23 | | ND | 0.490 | ND | | | 0.12 | 0.61 | | 30 | 50 | 86 | 30 | 58 | | ND | 0.350 | 0.020 | 0.03 | 0.32 | 0.34 | 0.69 | | | | | | | | | | | | | | | | | | | PHC | os- Pho | S- | | | | | | | | | | | | PHOR | | | | COPP | | IRO | | | | | | NIT | | | | | | | | | | | | | | GE | | | | | OV- DI | | OV- DIS | | | | | | | TOT | | | | | BLE SOL | | | VED ERA | | BLE SOL | | | DATE | | | | | | | | | | | | | | | AS N | O3) AS | P) AS P |) AS P | 04) AS | CD) AS | CD) AS | CU) AS | CU) AS | FE) AS | PB) AS | PB) | | MAY 1005 | 7 | | | | | | | | | | | | | MAY 1987 | | 2 0 | 010 0 | 00 0 | 0 | - 10 - | | .10 | | 90 | .E | | | 08 | | | | | | -10 | | <10 - | - | | <5 | | | 29 | 1 | .3 0. | 010 0 . | 00 0 | .0 | <10 | 1.0 | <10 | 2 | 90 | 6 | 5 | | JUN | 4 | E ^ | 010 0 | 00 0 | 0 | -10 | | -10 | | 110 | .E | | | 29 | 1 | .5 0. | 010 0. | 00 0 | .0 | <10 - | - | <10 - | - | 110 | <5 | - | | AUG | _ | 2 2 | 010 0 | 00 0 | 0 | 10 | | 20 | | 00 | <5 | | | 31 | 3 | .3 0. | 010 0. | 00 0 | .0 | <10 - | - | 20 - | - | 80 | <5 | - | | OCT
10 | _ | 2 2 | 010 0 | 00 2 | | | 1 0 | 7 | 2 | 00 | .c | .e | | 19 | 2 | .2 0. | 010 0. | 00 0 | .0 | 1 < | 1.0 | 7 | 3 | 90 | <5 | <5 | | NOV | _ | 7 ^ | 010 0 | 00 2 | 0 | ₋ 1 - | | | _ | 120 | -5 - - | _ | | 09 | | | | | .0 | ~1 | | - | | 120 | ~ 5 | | | 30 | 3 | .1 0. | 090 0. | 010 0 | .03 | <1 - | _ | 6 - | - 1 | 200 | <5 | | # 01427000 WEST BRANCH DELAWARE RIVER AT HANCOCK, NY - continued # WATER-QUALITY DATA (continued) | DATE
MAY 1987 | MANGA-
NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | MERCURY
TOTAL
RECOV-
ERABLE
(UG/L
AS HG) | NICKEL,
TOTAL
RECOV-
ERABLE
(UG/L
AS NI) | NICKEL,
DIS-
SOLVED
(UG/L
AS NI) | ZINC,
TOTAL
RECOV-
ERABLE
(UG/L
AS ZN) | ZINC,
DIS-
SOLVED
(UG/L
AS ZN) | BROMO-
FORM
TOTAL
(UG/L) | CARBON-
TETRA-
CHLO-
RIDE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
DI-
BROMO-
METHANE
TOTAL
(UG/L) | CHLORO-
ETHANE
TOTAL
(UG/L) | |------------------|---|---|---|---|---|--|---|--|---|---|---| | 08
29 | 50
30 | <0.10
<0.10 | <1
<1 |
<1 | <10
<10 | 10 | ND
ND | ND
ND | ND
ND | ND
ND | ND
ND | | JUN | 30 | 20.10 | ~1 | ~1 | <10 | 10 | NU | ND | ND | ND | ND | | 29 | 20 | <0.10 | <1 | | <10 | | ND | ND | ND | ND | ND | | AUG
31 | 20 | <0.10 | 1 | | 40 | | ND | ND | ND | ND | ND | | OCT 19 | 10 | <0.10 | <1 | <1 | 10 | 20 | ND | ND | ND | ND | ND | | NOV
09 | 20 | <0.10 | <1 | | <10 | | ND | ND | ND | ND | ND | | 30 | 110 | <0.10 | <1 | | 10 | | ND | ND | ND | ND | ND | | DATE | CHLORO-
FORM
TOTAL | CIS
1,3-DI-
CHLORO-
PROPENE
TOTAL | DI-
CHLORO-
BROMO-
METHANE
TOTAL | METHYL-
BROMIDE
TOTAL | METHYL-
CHLO-
RIDE
TOTAL | METHYL-
ENE
CHLO-
RIDE
TOTAL | 1,1,1-
TRI-
CHLORO-
ETHANE | 1,1-DI-
CHLORO-
ETHANE
TOTAL | 1,1-DI-
CHLORO-
ETHYL-
ENE
TOTAL | 1,1,2-
TRI-
CHLORO-
ETHANE
TOTAL | 1,1,2,2
TETRA-
CHLORO-
ETHANE
TOTAL | | DAIL | (UG/L) | MAY 1987 | (,-, | ,,,,, | (00, 2, | (,-, | (,, | (,-, | (,, | (,-, | (| (,, | (// | | 08 | ND | 29
JUN | ND | 29
AUG | ND | 31
OCT | ND | 19
NOV | ND | 09 | ND | 30 | ND | DATE | 1,2-DI-
CHLORO-
BENZENE
TOTAL
(UG/L) | 1,2-DI-
CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L) | 1,2-DI-
CHLORO-
PROPANE
TOTAL
(UG/L) | 1,2-
TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L) | 1,3-DI-
CHLORO-
BENZENE
TOTAL
(UG/L) | 1,4-DI-
CHLORO-
BENZENE
TOTAL
(UG/L) | TETRA-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | TRANS-
1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | TRI-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 2-
CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L) | VINYL
CHLO-
RIDE
TOTAL
(UG/L) | | MAY 1987
08 | NT | Mr. | N. | ATP | N.E. | M | 47P | | ATP. | 475 | M | | 29 | ND
ND | JUN | ND. | 110 | 142 | N. | ND | 29
AUG | ND | 31
OCT | ND | 19 | ND | 09
30 | ND
ND | | | | | | | | | | | | | # SUSPENDED SEDIMENT DISCHARGE | | | DIS- | |----------|------|---------| | | | CHARGE, | | | | IN | | | | CUBIC | | | | FEET | | DATE | TIME | PER | | | | SECOND | | MAY 1987 | | | | 08 | 1030 | 132 | | 29 | 1030 | 230 | | JUN | | | | 29 | 1345 | 424 | | AUG | | | | 31 | 1245 | 144 | | OCT | | | | 19 | 1330 | 162 | | NOV | | | | 09 | 1200 | 201 | | 30 | 1400 | 1160 | | | | | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). # 01427000 WEST BRANCH DELAWARE RIVER AT HANCOCK, NY - continued # BED MATERIAL ANALYSES | | | SOLIDS,
VOLA-
TILE IN
BOTTOM
MA- | CADMIUM
RECOV.
FM BOT-
TOM MA-
TERIAL | COPPER,
RECOV.
FM BOT-
TOM MA-
TERIAL | IRON,
RECOV.
FM BOT-
TOM MA-
TERIAL | LEAD,
RECOV.
FM BOT-
TOM MA-
TERIAL | MANGA-
NESE,
RECOV.
FM BOT-
TOM MA- | |----------------|--|--|--|---|--|--|--| | DATE | TIME | TERIAL
(MG/KG) | (UG/G
AS CD) | (UG/G
AS CU) | (UG/G
AS FE) | (UG/G
AS PB) | TERIAL
(UG/G) | | OCT 1987 | | | | | | | | | 19 | 1330 | 21700 | <1 | 7 | 10000 | 10 | 530 | | DATE | MERCURY
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G | NICKEL,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G | ZINC,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G | BED
MAT.
FALL
DIAM.
% FINER
THAN | BED
MAT.
SIEVE
DIAM.
% FINER
THAN | BED
MAT.
SIEVE
DIAM.
% FINER
THAN | BED
MAT.
SIEVE
DIAM.
% FINER
THAN | | | AS HG) | AS NI) | AS ZN) | .004 MM | .062 MM | .125 MM | 2.00 MM | | OCT 1987
19 | <0.10 | 10 | 60 | 1 | 10 | 17 | 100 | ### 01434000 DELAWARE RIVER AT PORT JERVIS, NY LOCATION.--Lat 41 22'14", long 74 41'52", Pike County, Pa., Hydrologic Unit 02040104, on right bank 250 ft downstream from bridge (on U.S. Highways 6 and 209) between Port Jervis, N.Y. and Matamoras, Pa., 1.2 mi upstream from Neversink River, and 6.5 mi downstream from Mongaup River. Water-quality sampling site at discharge station. DRAINAGE AREA. -- 3.070 mi 2 . PERIOD OF RECORD.--Water years 1957-60, 1964 to current year. CHEMICAL DATA: 1958-59 (e), 1964-65 (c), 1966 (a), 1967-68 (c), 1969-76 (d), 1987 (b), 1988 (c), 1989 (a). MINOR ELEMENTS DATA: 1970 (a), 1972-73 (a), 1974-76 (c), 1987 (b), 1988 (c), 1989 (a). PESTICIDE DATA: 1974 (a), 1987 (b), 1988 (c), 1989 (a). ORGANIC DATA: OC--1974 (b), 1975 (d). NUTRIENT DATA: 1968 (a), 1969-76 (d), 1987 'b), 1988 (c), 1989 (a). BIOCOLCAL DATA: BIOLOGICAL DATA: Bacteria--1973-76 (d), 1987 (a), 1988 (c), 1989 (a). Phytoplankton--1974 (b), 1975-76 (c). Periphyton--1976 (a). SEDIMENT DATA: 1959 (c), 1976 (c), 1988 (b), 1989 (a). PERIOD OF DAILY RECORD. -- SPECIFIC CONDUCTANCE: January 1973 to September 1973. WATER TEMPERATURES: February 1957 to September 1960, January 1973 to September 1973, June 1974 to current year. SUSPENDED-SEDIMENT DISCHARGE: February 1957 to September 1960, March 1970 to June 1976. INSTRUMENTATION .-- Water-temperature digital recorder since January 1973, provides one-hour-interval punches. REMARKS.--Water-discharge data obtained from stream-flow gage at this site. EXTREMES FOR PERIOD OF DAILY RECORD. -- WATER TEMPERATURES: Maximum (water years 1957-59, 1973-81, 1983-84, 1988-90), 30.0 C, July 13, 1981; minimum (water years 1958-60, 1973, 1975-90), 0.0 C, on many days during winter periods, except 1984. | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | SPE-
CIFIC
CON-
DUCT-
ANCE
LAB
(US/CM) | PH WATER WHOLE FIELD (STAND- ARD UNITS) | TEMPER-
ATURE
WATER
(DEG C) | TUR-
BID-
ITY
(NTU) | BARO-
METRIC
PRES-
SURE
(MM
OF
HG) | OXYGEN,
DIS-
SOLVED
(MG/L) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION) | COLI-
FORM,
TOTAL,
IMMED.
(COLS.
PER
100 ML) | FECAL
COLI-
FORM
24-HR
MEM.FIL
(COLS./
100 ML) | |-----------|------|--|---|--|---|--------------------------------------|------------------------------|--|-------------------------------------|--|--|--| | MAY 1987 | | | | | | | | | | | | | | 07 | 1345 | 3200 | | 71 | 7.9 | 15.0 | 0.60 | | 11.7 | | | | | 28 | 1530 | 1810 | | 79 | 7.8 | 24.0 | 0.70 | | 9.7 | | ~ ~ | | | JUN | | | | | | | | | | | | | | 30 | 1100 | 1390 | | 82 | 7.9 | 25.0
| 0.70 | | 9.4 | | >50 | 10.0 | | SEP | 2045 | 1.000 | | | | 45.5 | | | | | 100 | 24.0 | | 01 | 0915 | 1730 | | | 7.4 | 17.5 | 0.90 | | 9.2 | | >100 | 34.0 | | ОСТ
20 | 1030 | 1680 | | 75 | 7.4 | 10.0 | 0.60 | | 10.8 | | 20 | 8.00 | | NOV | 1030 | 1680 | | ,, | / • 😘 | 10.0 | 0.60 | | 10.0 | | 20 | 8.00 | | 10 | 0930 | 2490 | | | 7.0 | 5.0 | 0.50 | | 11.8 | | 70 | 6.00 | | DEC | 0,50 | 2470 | | | | 5.0 | 0.55 | | | | , - | | | 01 | 1000 | 11000 | | | 7.2 | 5.0 | 56 | | 16.5 | | >2000 | >400 | | APR 1988 | | | | | | | | | | | | | | 05 | 1000 | 6630 | 71 | 72 | 6.5 | 9.5 | 1.3 | 760 | 11.4 | 100 | 70 | 6.00 | | 20 | 1400 | 2290 | 76 | 75 | 6.6 | 9.5 | 0.90 | 755 | 11.9 | 105 | | | | JUN | | | | | | | | | | | | | | 07 | 1015 | 2600 | 77 | 74 | 7.0 | 18.5 | 0.80 | 748 | 9.2 | 100 | 100 | 18.0 | | 23 | 1000 | 2560 | 85 | 82 | 6.7 | 24.0 | 1.4 | | 7.2 | | >210 | 16.0 | | JUL
19 | 1030 | 1560 | 87 | 86 | | 25.0 | 0.90 | | 7.5 | | >280 | 36.0 | | SEP | 1030 | 1260 | 81 | 80 | 6.6 | 45.0 | 0.90 | | 1.5 | | >280 | 36.0 | | 01 | 0945 | 1870 | 90 | 87 | 7.0 | 19.0 | 1.1 | | 8.4 | | >100 | 36.0 | | OCT | 0,40 | 10,0 | ,, | ο, | , | 19.0 | 1.1 | | 0.4 | | /100 | JJ.: | | 18 | 1000 | 1710 | 86 | 83 | 7.0 | 12.0 | 0.40 | | 10.3 | | >30 | 4.00 | | NOV | | | | | | | | | | | | | | 15 | 1000 | 3740 | 81 | 78 | 7.2 | 5.5 | 2.3 | | 11.9 | | 360 | 88.0 | | | | | | | | | | | | | | | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). # 01434000 DELAWARE RIVER AT PORT JERVIS, NY - continued | DATE | HARD-
NESS
TOTAL
(MG/L
AS
CACO3) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K) | ALKA-
LINITY
LAB
(MG/L
AS
CACO3) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | SOLIDS,
RESIDUE
AT 105
DEG. C,
TOTAL
(MG/L) | |---|---|--|--|--|---|--|--|--|--|---|--|--| | MAY 1987 | | | | | | | | | | | | | | 07
28 | 20
24 | 6.1
7.6 | 1.2
1.3 | | | | | | | 58
4 2 | | 67
53 | | JUN
30
SEP | 25 | 7.5 | 1.5 | | | | | | | 22 | | 49 | | 01
⊙T | 27 | 8.4 | 1.5 | | | | | | | 58 | | 59 | | 20
NOV | 23 | 7.0 | 1.4 | | | | | | | 50 | | 53 | | 10 | 32 | 9.8 | 1.9 | | | | | | | 42 | | 48 | | 01
APR 1988 | 19 | 5.8 | 1.2 | | | | | | | 52 | | 58 | | 05
20
JUN | 20
22 | 5.9
6.6 | 1.3
1.3 | 3.8
4.3 | 0.80
0.70 | 10
12 | 9.3
11 | 7.0
7.3 | 0.10
0.10 | 41
64 | 34
38 | 65
84 | | 07
23 | 23
25 | 6.8
7. 4 | 1.4
1.6 | 4.1
5.6 | 0.70
1.2 | 14
14 | 11
11 | 6. 9
8.5 | 0.30 |
66 | 40
44 | 35
73 | | JUL
19 | 25 | 6.9 | 1.8 | 5.3 | 1.0 | 15 | 11 | 8.3 | 0.10 | 48 | 43 | 54 | | SEP
01
OCT | 26 | 7.6 | 1.8 | 5.1 | 1.1 | 16 | 11 | 8.1 | 0.10 | 67 | 44 | 71 | | 18 | 27 | 7.6 | 1.9 | 4.8 | 1.1 | 18 | 9.9 | 7.5 | <0.10 | 53 | 44 | 57 | | 15 | 23 | 6.9 | 1.4 | 3.9 | 0.90 | 13 | 12 | 6.9 | <0.10 | 55 | 40 | 76 | | | | | | | | | | | | | | | | DATE | SOLIDS,
VOLA-
TILE ON
IGNI-
TION,
TOTAL
(MG/L) | RESIDUE
TOTAL
FIXED
(MG/L) | NITRO-
GEN,
NITRATE
TOTAL
(MG/L
AS N) | NITRO-
GEN,
NITRITE
TOTAL
(MG/L
AS N) | NITRO-
GEN,
NO2+NO3
'TOTAL
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS NH4) | NITRO-
GEN,
ORGANIC
TOTAL
(MG/L
AS N) | NITRO-
GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | NITRO-
GEN,
TOTAL
(MG/L
AS N) | NITRO-
GEN,
TOTAL
(MG/L
AS NO3) | PHOS-
PHORUS
TOTAL
(MG/L
AS P) | | MAY 1987 | VOLA-
TILE ON
IGNI-
TION,
TOTAL
(MG/L) | TOTAL
FIXED
(MG/L) | GEN,
NITRATE
TOTAL
(MG/L
AS N) | GEN,
NITRITE
TOTAL
(MG/L
AS N) | GEN,
NO2+NO3
'TOTAL
(MG/L
AS N) | GEN,
AMMONIA
TOTAL
(MG/L
AS N) | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4) | GEN,
ORGANIC
TOTAL
(MG/L
AS N) | GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | GEN,
TOTAL
(MG/L
AS N) | GEN,
TOTAL
(MG/L
AS NO3) | PHORUS
TOTAL
(MG/L
AS P) | | MAY 1987
07
28 | VOLA-
TILE ON
IGNI-
TION,
TOTAL | TOTAL
FIXED | GEN,
NITRATE
TOTAL
(MG/L | GEN,
NITRITE
TOTAL
(MG/L | GEN,
NO2+NO3
TOTAL
(MG/L | GEN,
AMMONIA
TOTAL
(MG/L | GEN,
AMMONIA
TOTAL
(MG/L | GEN,
ORGANIC
TOTAL
(MG/L | GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L | GEN,
TOTAL
(MG/L | GEN,
TOTAL
(MG/L | PHORUS
TOTAL
(MG/L | | MAY 1987
07
28
JUN
30 | VOLA-
TILE ON
IGNI-
TION,
TOTAL
(MG/L) | TOTAL
FIXED
(MG/L) | GEN,
NITRATE
TOTAL
(MG/L
AS N) | GEN, NITRITE TOTAL (MG/L AS N) | GEN,
NO2+NO3
TOTAL
(MG/L
AS N) | GEN,
AMMONIA
TOTAL
(MG/L
AS N) | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4) | GEN,
ORGANIC
TOTAL
(MG/L
AS N) | GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | GEN,
TOTAL
(MG/L
AS N) | GEN,
TOTAL
(MG/L
AS NO3) | PHORUS
TOTAL
(MG/L
AS P) | | MAY 1987
07
28
JUN | VOLA-
TILE ON
IGNI-
TION,
TOTAL
(MG/L) | TOTAL
FIXED
(MG/L)
43 | GEN,
NITRATE
TOTAL
(MG/L
AS N) | GEN, NITRITE TOTAL (MG/L AS N) ND ND | GEN,
NO2+NO3
'TOTAL
(MG/L
AS N)
0.060
0.250 | GEN,
AMMONIA
TOTAL
(MG/L
AS N)
0.010
0.020 | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4)
0.01 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.11
0.09 | GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | GEN,
TOTAL
(MG/L
AS N)
0.18
0.36 | GEN,
TOTAL
(MG/L
AS NO3)
0.80
1.6 | PHORUS
TOTAL
(MG/L
AS P)
0.010
0.020 | | MAY 1987
07
28
JUN
30
SEP
01 | VOLA-
TILE ON
IGNI-
TION,
TOTAL
(MG/L)
24
29 | TOTAL
FIXED
(MG/L)
43
34
25 | GEN,
NITRATE
TOTAL
(MG/L
AS N) | GEN, NITRITE TOTAL (MG/L AS N) ND ND | GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
0.060
0.250 | GEN,
AMMONIA
TOTAL
(MG/L
AS N)
0.010
0.020 | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4)
0.01
0.03 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.11
0.09 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.12 0.11 | GEN,
TOTAL
(MG/L
AS N)
0.18
0.36 | GEN,
TOTAL
(MG/L
AS NO3)
0.80
1.6 | PHORUS
TOTAL
(MG/L
AS P)
0.010
0.020
 | MAY 1987 07 28 JUN 30 SEP 01 OCT 20 NOV 10 DEC | VOLA-
TILE ON
IGNI-
TION,
TOTAL
(MG/L)
24
29
26
29
14 | TOTAL
FIXED
(MG/L)
43
34
25
38 | GEN, NITRATE TOTAL (MG/L AS N) | GEN, NITRITE TOTAL (MG/L AS N) ND ND ND ND | GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
0.060
0.250
0.250 | GEN,
AMMONIA
TOTAL
(MG/L
AS N)
0.010
0.020
0.010
ND | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4)
0.01
0.03 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.11
0.09 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.12 0.11 0.12 | GEN,
TOTAL
(MG/L
AS N)
0.18
0.36
0.37 | GEN,
TOTAL
(MG/L
AS NO3)
0.80
1.6
1.6 | PHORUS
TOTAL
(MG/L
AS P)
0.010
0.020
0.010 | | MAY 1987 07 28 JUN 30 SEP 01 OCT 20 NOV 10 DEC 01 APR 1988 | VOLA- TILE ON IGNI- TION, TOTAL (MG/L) 24 29 26 29 14 32 30 | TOTAL FIXED (MG/L) 43 34 25 38 39 16 35 | GEN, NITRATE TOTAL (MG/L AS N) | GEN, NITRITE TOTAL (MG/L AS N) ND | GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
0.060
0.250
0.250
0.310
0.100
0.190 | GEN, AMMONIA TOTAL (MG/L AS N) 0.010 0.020 0.010 ND 0.010 ND | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4)
0.01
0.03
0.01

0.01 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.11
0.09
0.11

0.25 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.12 0.11 0.12 0.20 0.26 0.04 0.23 | GEN,
TOTAL
(MG/L
AS N)
0.18
0.36
0.37
0.51
0.36 | GEN,
TOTAL
(MG/L)
AS NO3)
0.80
1.6
2.3
1.6
1.0 | PHORUS
TOTAL
(MG/L
AS P)
0.010
0.020
0.010
0.010
0.000
0.010 | | MAY 1987 07 28 JUN 30 SEP 01 OCT 20 NOV 10 DEC 01 APR 1988 05 20 | VOLA-
TILE ON
IGNI-
TION,
TOTAL
(MG/L)
24
29
26
29
14 | TOTAL FIXED (MG/L) 43 34 25 38 39 16 | GEN, NITRATE TOTAL (MG/L AS N) | GEN, NITRITE TOTAL (MG/L AS N) ND ND ND ND ND ND | GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
0.060
0.250
0.250
0.310
0.100 | GEN, AMMONIA TOTAL (MG/L AS N) 0.010 0.020 0.010 ND 0.010 | GEN, AMMONIA TOTAL (MG/L AS NH4) 0.01 0.03 0.01 0.01 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.11
0.09
0.11 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.12 0.11 0.12 0.20 0.26 | GEN,
TOTAL
(MG/L
AS N)
0.18
0.36
0.37
0.51
0.36 | GEN,
TOTAL
(MG/L
AS NO3)
0.80
1.6
1.6
2.3
1.6 | PHORUS
TOTAL
(MG/L
AS P)
0.010
0.020
0.010
0.010
0.010 | | MAY 1987 07 28 JUN 30 SEP 01 OCT 20 NOV 10 DEC 01 APR 1988 05 20 JUN 07 23 | VOLA-
TILE ON IGNI-
TION, TOTAL (MG/L) 24 29 26 29 14 32 30 | TOTAL FIXED (MG/L) 43 34 25 38 39 16 35 | GEN, NITRATE TOTAL (MG/L AS N) | GEN, NITRITE TOTAL (MG/L AS N) ND | GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
0.060
0.250
0.250
0.310
0.100
0.190
0.280 | GEN, AMMONIA TOTAL (MG/L AS N) 0.010 0.020 0.010 ND 0.010 ND | GEN, AMMONIA TOTAL (MG/L AS NH4) 0.01 0.03 0.01 0.01 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.11
0.09
0.11

0.25 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.12 0.11 0.12 0.20 0.26 0.04 0.23 0.18 | GEN,
TOTAL
(MG/L
AS N)
0.18
0.36
0.37
0.51
0.36
0.23
0.51 | GEN,
TOTAL
(MG/L
AS NO3)
0.80
1.6
2.3
1.6
2.3
2.3 | PHORUS
TOTAL
(MG/L
AS P)
0.010
0.020
0.010
0.010
0.000
0.010
0.030 | | MAY 1987 07 28 JUN 30 SEP 01 OCT 20 NOV 10 DEC 01 APR 1988 05 20 JUN 07 23 JUL 19 | VOLA- TILE ON IGNI- TION, TOTAL (MG/L) 24 29 26 29 14 32 30 22 37 | TOTAL FIXED (MG/L) 43 34 25 38 39 16 35 43 47 | GEN, NITRATE TOTAL (MG/L AS N) | GEN, NITRITE TOTAL (MG/L AS N) ND | GEN, NO2+NO3 TOTAL (MG/L AS N) 0.060 0.250 0.250 0.310 0.100 0.190 0.280 0.450 0.170 0.060 | GEN, AMMONIA TOTAL (MG/L AS N) 0.010 0.020 0.010 ND 0.010 ND 0.00 0.00 0.00 | GEN, AMMONIA TOTAL (MG/L AS NH4) 0.01 0.03 0.01 0.01 0.01 0.0 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.11
0.09
0.11

0.25

0.18
0.10 | GEN, AM- MONIA + ORGANIC TOTTAL (MG/L AS N) 0.12 0.11 0.12 0.20 0.26 0.04 0.23 0.18 0.10 0.19 | GEN,
TOTAL
(MG/L
AS N)
0.18
0.36
0.37
0.51
0.36
0.23
0.51
0.63
0.27 | GEN,
TOTAL
(MG/L
AS NO3)
0.80
1.6
2.3
1.6
2.3
2.8
1.2 | PHORUS
TOTAL
(MG/L
AS P)
0.010
0.020
0.010
0.010
0.030
0.010
0.030
0.010
0.020 | | MAY 1987 07 28 JUN 30 SEP 01 OCT 20 NOV 10 DEC 01 APR 1988 05 20 JUN 07 23 JUL 19 SEP | VOLA-
TILE ON IGNI-
TION, TOTAL (MG/L) 24 29 26 29 14 32 30 22 37 30 41 | TOTAL FIXED (MG/L) 43 34 25 38 39 16 35 43 47 | GEN, NITRATE TOTAL (MG/L AS N) | GEN, NITRITE TOTAL (MG/L AS N) ND | GEN, NO2+NO3 TOTAL (MG/L AS N) 0.060 0.250 0.250 0.310 0.100 0.190 0.280 0.450 0.170 0.060 0.160 | GEN, AMMONIA TOTAL (MG/L AS N) 0.010 0.020 0.010 ND 0.010 ND 0.000 0.00 0.000 | GEN, AMMONIA TOTAL (MG/L AS NH4) 0.01 0.03 0.01 0.01 0.00 0.0 0.0 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.11
0.09
0.11

0.25

0.18
0.10
0.19
0.20 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.12 0.11 0.12 0.20 0.26 0.04 0.23 0.18 0.10 0.19 0.22 | GEN,
TOTAL
(MG/L
AS N)
0.18
0.36
0.37
0.51
0.36
0.23
0.51
0.63
0.27 | GEN,
TOTAL
(MG/L
AS NO3)
0.80
1.6
2.3
1.6
2.3
2.8
1.2 | PHORUS TOTAL (MG/L AS P) 0.010 0.020 0.010 0.010 0.000 0.010 0.000 0.010 0.030 0.010 0.020 0.010 0.020 0.010 0.020 0.010 0.020 0.010 0.0280 | | MAY 1987 07 28 JUN 30 SEP 01 CTT 20 NOV 10 DEC 01 APR 1988 05 20 JUN 07 23 JUL 19 SEP | VOLA- TILE ON IGNI- TION, TOTAL (MG/L) 24 29 26 29 14 32 30 22 37 30 41 | TOTAL FIXED (MG/L) 43 34 25 38 39 16 35 43 47 5 32 43 | GEN, NITRATE TOTAL (MG/L AS N) | GEN, NITRITE TOTAL (MG/L AS N) ND | GEN, NO2+NO3 TOTAL (MG/L AS N) 0.060 0.250 0.250 0.310 0.100 0.190 0.280 0.450 0.170 0.060 0.160 0.340 | GEN, AMMONIA TOTAL (MG/L AS N) 0.010 0.020 0.010 ND 0.010 ND 0.00 0.00 0.00 0.00 0.020 0.010 | GEN, AMMONIA TOTAL (MG/L AS NH4) 0.01 0.03 0.01 0.01 0.0 0.0 0.0 0.0 0.03 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.11
0.09
0.11

0.25

0.18
0.10
0.19
0.20 | GEN, AM- MONIA + ORGANIC TOTTAL (MG/L AS N) 0.12 0.11 0.12 0.20 0.26 0.04 0.23 0.18 0.10 0.19 0.22 | GEN,
TOTAL
(MG/L
AS N)
0.18
0.36
0.37
0.51
0.36
0.23
0.51
0.63
0.27
0.25
0.38 | GEN,
TOTAL
(MG/L
AS NO3)
0.80
1.6
2.3
1.6
2.3
2.8
1.2
1.1 | PHORUS TOTAL (MG/L AS P) 0.010 0.020 0.010 0.000 0.010 0.000 0.010 0.030 0.010 0.020 0.010 0.020 0.010 0.020 0.010 0.020 0.010 0.020 0.010 0.020 0.010 0.020 0.010 0.020 0.00 | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). # 01434000 DELAWARE RIVER AT PORT JERVIS, NY - continued | DATE | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P) | PHOS-
PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4) | ALUM-
INUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS AL) | ALUM-
INUM,
DIS-
SOLVED
(UG/L
AS AL) | CADMIUM
TOTAL
RECOV-
ERABLE
(UG/L
AS CD) | CADMIUM
DIS-
SOLVED
(UG/L
AS CD) | COPPER,
TOTAL
RECOV-
ERABLE
(UG/L
AS CU) | COPPER,
DIS-
SOLVED
(UG/L
AS CU) | IRON,
TOTAL
RECOV-
ERABLE
(UG/L
AS FE) | IRON,
DIS-
SOLVED
(UG/L
AS FE) | LEAD,
TOTAL
RECOV-
ERABLE
(UG/L
AS PB) | LEAD,
DIS-
SOLVED
(UG/L
AS PB) | |---|---|---|---|---|---
--|---|--|---|--|--|---| | MAY 1987 | | | | | | | | | | | | | | 07
28
JUN | 0.00 | 0.0 | | | <10
<10 | | 10
<10 | | 90
70 | | 16
< 5 | | | 30
SEP | 0.00 | 0.0 | | | <10 | +- | <10 | | 80 | | < 5 | | | 01 | 0.00 | 0.0 | | | <10 | 1.0 | 30 | 2 | 90 | | <5 | <5 | | 20 | ND | | | | <1 | | 6 | | 30 | | <5 | | | 10 | ND | | | | 1 | | 7 | | 80 | | <5 | | | 01
APR 1988 | 0.00 | 0.0 | | | <1 | 1.0 | 6 | 4 | 370 | | <5 | <5 | | 05
20 | 0.00
ND | 0.0 |
<10 | 10 | <1
3 | <1.0 | 2
2 | 1 | 110
70 | 20
 | <5
<5 | <5
 | | JUN
07
23 | ND
ND | | 30
40 | 20 | <1
<1 | <1.0 | 6
6 | 2 | 90
110 | 45 | <5
<5 | _<5
 | | JUL
19 | 0.00 | 0.0 | 30 | | 1 | | 4 | | 110 | | <5 | | | SEP
01 | ND | | 50 | | <1 | | 7 | | 120 | | <5 | | | ОСТ
18 | ND | | 20 | 10 | <1 | <1.0 | 4 | 2 | 80 | 12 | <5 | 5 | | NOV
15 | ND | | 70 | | <1 | | 7 | | 150 | | <5 | | | | | | | | | | | | | | | | | DATE | MANGA-
NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN) | MERCURY
TOTAL
RECOV-
ERABLE
(UG/L
AS HG) | NICKEL,
TOTAL
RECOV-
ERABLE
(UG/L
AS NI) | NICKEL,
DIS-
SOLVED
(UG/L
AS NI) | ZINC,
TOTAL
RECOV-
ERABLE
(UG/L
AS ZN) | ZINC,
DIS-
SOLVED
(UG/L
AS ZN) | PHENOL
(C6H-
5OH)
TOTAL
(UG/L) | BROMO-
FORM
TOTAL
(UG/L) | CARBON-
TETRA-
CHLO-
RIDE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
DI-
BROMO-
METHANE
TOTAL
(UG/L) | | MAY 1987 | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL
RECOV-
ERABLE
(UG/L
AS HG) | TOTAL
RECOV-
ERABLE
(UG/L
AS NI) | DIS-
SOLVED
(UG/L | TOTAL
RECOV-
ERABLE
(UG/L
AS ZN) | DIS-
SOLVED
(UG/L
AS ZN) | (C6H-
5OH)
TOTAL | FORM
TOTAL
(UG/L) | TETRA-
CHLO-
RIDE
TOTAL
(UG/L) | BENZENE
TOTAL
(UG/L) | DI-
BROMO-
METHANE
TOTAL
(UG/L) | | | NESE,
TOTAL
RECOV-
ERABLE
(UG/L | NESE,
DIS-
SOLVED
(UG/L | TOTAL
RECOV-
ERABLE
(UG/L | TOTAL
RECOV-
ERABLE
(UG/L | DIS-
SOLVED
(UG/L | TOTAL
RECOV-
ERABLE
(UG/L | DIS-
SOLVED
(UG/L | (C6H-
5OH)
TOTAL | FORM
TOTAL | TETRA-
CHLO-
RIDE
TOTAL | BENZENE
TOTAL | DI-
BROMO-
METHANE
TOTAL | | MAY 1987
07 | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL
RECOV-
ERABLE
(UG/L
AS HG) | TOTAL
RECOV-
ERABLE
(UG/L
AS NI) | DIS-
SOLVED
(UG/L
AS NI) | TOTAL
RECOV-
ERABLE
(UG/L
AS ZN) | DIS-
SOLVED
(UG/L
AS ZN) | (C6H-
5OH)
TOTAL
(UG/L) | FORM TOTAL (UG/L) ND | TETRA-
CHLO-
RIDE
TOTAL
(UG/L) | BENZENE
TOTAL
(UG/L)
ND | DI-
BROMO-
METHANE
TOTAL
(UG/L) | | MAY 1987
07
28
JUN
30
SEP
01 | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV- ERABLE (UG/L AS HG) <0.10 <0.10 | TOTAL RECOV- ERABLE (UG/L AS NI) <1 <1 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV- ERABLE (UG/L AS ZN) <10 <10 | DIS-
SOLVED
(UG/L
AS ZN) | (C6H-
5OH)
TOTAL
(UG/L) | FORM TOTAL (UG/L) ND ND | TETRA-
CHLO-
RIDE
TOTAL
(UG/L)
ND | BENZENE
TOTAL
(UG/L)
ND
ND | DI-
BROMO-
METHANE
TOTAL
(UG/L)
ND | | MAY 1987
07
28
JUN
30
SEP
01
OCT
20 | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL
RECOV-
ERABLE
(UG/L
AS HG)
<0.10
<0.10 | TOTAL RECOV- ERABLE (UG/L AS NI) <1 <1 <1 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV- ERABLE (UG/L AS ZN) <10 <10 <10 | DIS-
SOLVED
(UG/L
AS ZN) | (C6H-
5OH)
TOTAL
(UG/L) | FORM TOTAL (UG/L) ND ND | TETRA-
CHLO-
RIDE
TOTAL
(UG/L)
ND
ND | BENZENE
TOTAL
(UG/L)
ND
ND | DI-
BROMO-
METHANE
TOTAL
(UG/L)
ND
ND | | MAY 1987 07 28 JUN 30 SEP 01 CCT 20 NOV 10 | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN)
20
30
20 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL
RECOV-
ERABLE
(UG/L
AS HG)
<0.10
<0.10
<0.10 | TOTAL RECOV- ERABLE (UG/L AS NI) <1 <1 <1 <1 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV- ERABLE (UG/L AS ZN) <10 <10 <10 10 | DIS-
SOLVED
(UG/L
AS ZN) | (C6H-
50H)
TOTAL
(UG/L) | FORM TOTAL (UG/L) ND ND ND | TETRA-
CHLO-
RIDE
TOTAL
(UG/L)
ND
ND | BENZENE
TOTAL
(UG/L)
ND
ND
ND | DI-
BROMO-
METHANE
TOTAL
(UG/L)
ND
ND
ND | | MAY 1987
07
28
JUN
30
SEP
01
OCT
20
NOV
10
DEC
01 | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN)
20
30
20
10
20 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV- ERABLE (UG/L AS HG) <0.10 <0.10 <0.10 <0.10 | TOTAL RECOV- ERABLE (UG/L AS NI) <1 <1 <1 <1 <1 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV- ERABLE (UG/L AS ZN) <10 <10 <10 20 | DIS-
SOLVED
(UG/L
AS ZN) | (C6H-
50H)
TOTAL
(UG/L) | FORM
TOTAL
(UG/L)
ND
ND
ND | TETRA-CHLO-RIDE RIDE TOTAL (UG/L) ND ND ND ND | BENZENE
TOTAL
(UG/L)
ND
ND
ND
ND | DI- BROMO- METHANE TOTAL (UG/L) ND ND ND ND | | MAY 1987 07 28 JUN 30 SEP 01 OCT 20 NOV 10 DEC 01 APR 1988 05 | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN)
20
30
20
10
20
80
30 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV- ERABLE (UG/L AS HG) <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 | TOTAL RECOV- ERABLE (UG/L AS NI) <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV- ERABLE (UG/L AS ZN) <10 <10 <10 <10 10 20 <10 10 <10 <10 10 | DIS-
SOLVED
(UG/L
AS ZN) | (C6H-
50H)
TOTAL
(UG/L) | FORM TOTAL (UG/L) ND | TETRA-CHLO-RIDE TOTAL (UG/L) ND | BENZENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND
ND | DI- BROMO- METHANE TOTAL (UG/L) ND | | MAY 1987 07 28 JUN 30 SEP 01 OCT 20 NOV 10 DEC 01 APR 1988 05 20 JUN | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN)
20
30
20
10
20
80
30 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV- ERABLE (UG/L AS HG) <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 | TOTAL RECOVERABLE (UG/L AS NI) | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV-ERABLE (UG/L AS ZN) <10 <10 <10 20 <10 10 10 10 10 10 10 10 10 10 | DIS-
SOLVED
(UG/L
AS ZN) 10 20 <3 | (C6H-
50H)
TOTAL
(UG/L) | FORM TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TETRA-CHLO-RIDE TOTAL (UG/L) ND | BENZENE TOTAL (UG/L) ND | DI- BROMO- METHANE TOTAL (UG/L) ND | | MAY 1987 07 28 JUN 30 SEP 01 CCT 20 NOV 10 DEC 01 APR 1988 05 20 JUN 07 23 | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN)
20
30
20
10
20
80
30 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV- ERABLE (UG/L AS HG) <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 | TOTAL RECOV- ERABLE (UG/L AS NI) <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV- ERABLE (UG/L AS ZN) <10 <10 <10 <10 10 20 <10 10 <10 <10 10 | DIS-
SOLVED
(UG/L
AS ZN) | (C6H-
50H)
TOTAL
(UG/L) | FORM TOTAL (UG/L) ND | TETRA-CHLO-RIDE TOTAL (UG/L) ND | BENZENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND
ND | DI- BROMO- METHANE TOTAL (UG/L) ND | | MAY 1987 07 28 JUN 30 SEP 01 COT 20 NOV 10 DEC 01 APR 1988 05 20 JUN 07 23 JUL 19 | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN)
20
30
20
10
20
80
30
10 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV- ERABLE (UG/L AS HG) <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 | TOTAL RECOV-ERABLE (UG/L AS NI) <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 < | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOVERABLE (UG/L AS ZN) <10 <10 <10 20 <10 10 20 <10 10 <10 10 <10 10 <10 10 10 10 10 10 10 10 10 10 | DIS-
SOLVED
(UG/L
AS ZN) 10 20 <3 | (C6H-
50H)
TOTAL
(UG/L) | FORM TOTAL (UG/L) ND | TETRA-CHLO-RIDE TOTAL (UG/L) ND | BENZENE TOTAL (UG/L) ND | DI- BROMO- METHANE TOTAL (UG/L) ND | | MAY 1987 07 28 JUN 30 SEP 01 CCT 20 NOV 10 DEC 01 APR 1988 05 JUN 07 23 JUN 19 SEP | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN)
20
30
20
10
20
80
30
10
20
50 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV- ERABLE (UG/L AS HG) <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 | TOTAL RECOVERABLE (UG/L AS NI) <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 < | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV-ERABLE (UG/L AS ZN) <10 <10 <10 20 <10 10 20 <10 10 10 <10 10 10 <10 10 10 <10 10 10 <10 10 10 <10 10 <10 10 10 <10 10 10 <10 10 10 <10 10 10 <10 10 10 <10 10 10 <10 10 10 <10 10 10 10 10 10 10 10 10 10 | DIS-
SOLVED
(UG/L
AS ZN) 10 20 <3 8 | (C6H-
50H)
TOTAL
(UG/L) | FORM TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TETRA-CHLO-RIDE RIDE TOTAL (UG/L) ND | BENZENE TOTAL (UG/L) ND | DI- BROMO- METHANE TOTAL (UG/L) ND | | MAY 1987 07 28 JUN 30 SEP 01 OCT 20 NOV 10 DEC 01 APR 1988 05 20 JUN 07 23 JUL 19 SEP | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) 20
30 20 10 20 80 30 10 20 70 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOVERABLE (UG/L AS HG) <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 | TOTAL RECOVERABLE (UG/L AS NI) | DIS- SOLVED (UG/L AS NI) 2 <1 1 4 | TOTAL RECOVERABLE (UG/L AS ZN) <10 <10 <10 20 <10 10 20 <10 10 <10 10 <10 10 <10 10 <10 10 <10 10 <10 10 <10 10 <10 10 <10 10 <10 10 <10 10 <10 10 <10 10 <10 < | DIS-
SOLVED
(UG/L
AS ZN) 10 20 <3 8 | (C6H-
50H)
TOTAL
(UG/L) | FORM TOTAL (UG/L) ND | TETRA-CHLO-RIDE TOTAL (UG/L) ND | BENZENE TOTAL (UG/L) ND | DI- BROMO- METHANE TOTAL (UG/L) ND | # 01434000 DELAWARE RIVER AT PORT JERVIS, NY - continued ### WATER-QUALITY DATA (continued) | | | | | | WATER-Q | | | • | | | | | |---|--|--|---|--|---|---|--|--|---|--|--|---| | DATE | CHLORO-
ETHANE
TOTAL
(UG/L) | CHLORO-
FORM
TOTAL
(UG/L) | CIS
1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | DI-
CHLORO-
BROMO-
METHANE
TOTAL
(UG/L) | METHYL-
BROMIDE
TOTAL
(UG/L) | METHYL-
CHLO-
RIDE
TOTAL
(UG/L) | METHYL-
ENE
CHLO-
RIDE
TOTAL
(UG/L) | 1,1,1-
TRI-
CHLORO-
ETHANE
TOTAL
(UG/L) | 1,1-DI-
CHLORO-
ETHANE
TOTAL
(UG/L) | 1,1-DI-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 1,1,2-
TRI-
CHLORO-
ETHANE
TOTAL
(UG/L) | 1,1,2,2
TETRA-
CHLORO-
ETHANE
TOTAL
(UG/L) | | MAY 1987 | | | | | | | | | | | | | | 07 | ND | 28 | ND | JUN | | | | | | _ | _ | | | | | | | 30 | ND | SEP
01 | ND | OCT | ND | | ND. | | 110 | ND | 110 | | ND | | ND | 112 | | 20 | ND | NOV | | | | | | | | | | | | | | 10
DEC | ND | 01 | ND | APR 1988 | | | | | | | | | 112 | 2 | | | | 05 | ND | 20 | ND | JUN
07 | ND | 23 | ND | ND | ND | ND | ND | ND
ND | ND | ND | ND | ND | ND | ND | | JUL | | 2 | | | | | | | 2 | | 2 | | | 19 | ND | SEP | | | | | | | | | | | | | | 01
OCT | ND | 18 | ND | NOV | | | | | | | | | | | | | | 15 | ND | DATE | | ro- wat
ene who
al tot | ORO-
INE 1,2-1
PER CHLOI
OLE PROPA
PAL TOTA | RO- CHLO:
ANE ETHE:
AL TOT. | SDI 1,3-
RO- CHLO
NE BENZ
AL TOT | RO- CHLOF
ENE BENZE
'AL TOTA | ro- ethy
ene ene
al tot | ORO- 1,3-
CL- CHLO
PROP | DI- CHLO
RO- ETHY
ENE EN
AL TOT | RO- ETHY
L- VINY
E ETH | RO-
L- VIN
L- CHI
ER RID
AL TOI | io-
De
Pal | | | (UG/ | L) (UG/ | L) (UG/1 | L) (UG/ | L) (UG/ | L) (UG/I | | L) (UG/ | L) (UG | /L) (UG/ | L) (UG | (/L) | | MAY 1987 | 7 | | | | | | ري (۲) | _, , | -, , | | | | | 07 | ND | | | | | | J) (UG/ | _, ,,,, | _, , , , , | | | | | 28 | ND | NI |) ND | ND | ND |) ND | 3) (0G/
NC | | |) ND | NE | 1 | | JUN | | | | ND
ND | | | |) ND | NE |) ND | | | | 30 | ND | NI |) ND | | ND |) ND | NE | O ND | NC | 2.0 ND | NE |) | | SEP | ND | NI | O ND | ND
ND | nd
nd | nd nd | NE
NE | O NDO NDO | NE NE | 2.0 ND | NE |) | | SEP
01 | | NI | O ND | ND | nd
nd | nd nd | NE
NE | O NDO NDO | NE NE | 2.0 ND | NE |) | | SEP
01
OCT | ND
ND | NI
NI | ND ND ND | ND
ND | ND
ND
ND | nd nd nd | NE
NE
NE | O ND ND ND ND | NE NE | 2.0 ND
ND
ND | NE
NE |)
) | | SEP
01 | ND | NI
NI | ND ND ND | ND
ND | ND
ND
ND | nd nd nd | NE
NE | O ND ND ND ND | NE NE | 2.0 ND
ND
ND | NE
NE |)
) | | SEP
01
OCT
20
NOV
10 | ND
ND | NE
NE
NE | ND ND ND ND ND | ND
ND | nd
nd
nd | ND ND ND ND ND | NE
NE
NE | O ND O ND O ND | NE NE | 2.0 ND ND ND ND | NC
NC | | | SEP 01 OCT 20 NOV 10 DEC | nd
nd
nd | NI
NI
NI
NI | ND ND ND ND ND ND ND | ND
ND
ND
ND | ND
ND
ND
ND | ND ND ND ND ND ND | NC
NC
NC
NC | O ND | NE NE | 2.0 ND ND ND ND | NE
NE
NE | | | SEP 01 OCT 20 NOV 10 DEC 01 | ND
ND
ND
ND | NI
NI
NI
NI | ND ND ND ND ND ND ND | ND
ND
ND | ND
ND
ND
ND | ND ND ND ND ND ND | NE
NE
NE | O ND | NE NE | 2.0 ND ND ND ND | NE
NE
NE | | | SEP 01 CCT 20 NOV 10 DEC 01 APR 1988 | ND ND ND | NI
NI
NI
NI | ND | ND
ND
ND
ND
ND | ND
ND
ND
ND
ND | nD nD nD nD nD nD nD nD nD | NE | O ND | NE | 2.0 ND | NE
NE
NE
NE
NE | | | SEP 01 OCT 20 NOV 10 DEC 01 | ND
ND
ND
ND | NE NE NE | ND N | ND
ND
ND
ND | ND | nD n | NC
NC
NC
NC | D ND | NE | 2.0 ND N | NE NE NE | | | SEP 01 OCT 20 NOV 10 DEC 01 APR 1988 05 20 JUN | ND | NE
NE
NE
NE
NE
NE
NE | ND | ND ND ND ND ND ND | ND ND ND ND ND ND ND | ND ND ND ND ND ND ND ND | NE N | O ND | NE N | 2.0 ND N | NE
NE
NE
NE
NE
NE | | | SEP 01 OCT 20 NOV 10 DEC 01 APR 1988 05 20 JUN 07 | ND N | NE N | ND N | ND | ND | ND N | NE N | O ND | NE N | 2.0 ND N | NE N | | | SEP 01 OCT 20 NOV 10 DEC 01 APR 1988 05 20 JUN 07 23 | ND | NE N | ND N | ND ND ND ND ND ND | ND | ND N | NE N | O ND | NE N | 2.0 ND N | NE N | | | SEP 01 OCT 20 NOV 10 DEC 01 APR 1988 05 20 JUN 07 | ND N | NI
NI
NI
NI
NI
NI
NI | ND N | ND ND ND ND ND ND ND ND | ND | ND N | NE N | O ND ND O ND | NE N | 2.0 ND N | NE N | | | SEP 01 OCT 20 NOV 10 DEC 01 APR 1988 05 20 JUN 07 23 JUL 19 SEP | ND | NE NE | ND N | ND | ND N | ND N | NE N | O ND | NE N | 2.0 ND N | NE N | | | SEP 01 OCT 20 NOV 10 DEC 01 APR 1988 05 20 JUN 07 23 JUL 19 SEP 01 | ND | NE NE | ND N | ND ND ND ND ND ND ND ND ND | ND N | ND N | NE N | O ND | NE N | 2.0 ND N | NE N | | | SEP 01 OCT 20 NOV 10 DEC 01 APR 1988 05 20 JUN 07 23 JUL 19 SEP 01 OCT | ND | NE N | ND N | ND | ND | ND N | NE N | O ND | NE N | 2.0 ND N | NE N | | | SEP 01 OCT 20 NOV 10 DEC 01 APR 1988 05 20 JUN 07 23 JUL 19 SEP 01 | ND | NE N | ND N | ND | ND | ND N | NE N | O ND | NE N | 2.0 ND N | NE N | | | SEP 01 OCT 20 NOV 10 DEC 01 APR 1988 05 20 JUN 07 23 JUL 19 SEP 01 OCT 18 | ND | NE NE | ND N | ND | ND N | ND N | NE N | O ND | NE N | 2.0 ND N | NE N | | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). # 01434000 DELAWARE RIVER AT PORT JERVIS, NY - continued # SUSPENDED SEDIMENT DISCHARGE | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND | SEDI-
MENT,
SUS-
PENDED
(MG/L) | SEDI-
MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY) | |-----------|------|--|--|--| | JUN 1988 | | | | | | 23
JUL | 1000 | 2560 | 2 | 14 | | 19 | 1030 | 1560 | 3 | 13 | | SEP | | | | | | 01 | 0945 | 1870 | 4 | 20 | | OCT | | | | | | 18 | 1000 | 1710 | 1 | 4.6 | | NOV | | | | | | 15 | 1000 | 3740 | 3 | 30 | # BED MATERIAL ANALYSES | DATE | VC
TIL
BOI
M
TIME TE | DLA- RE
E IN FM
TOM TOM
IA- TE
RIAL (U | ECOV. MI
BOT- RE
1 MA- FM
ERIAL TON
JG/G TE | COV. FM
BOT~ TO
MA~ T
ERIAL (| ECOV. RI BOT- FM M MA- TOI ERIAL TI UG/G (1 | ECOV. RE BOT- FM M MA- TON ERIAL TE | BOT- REG
MA- FM I
ERIAL TOM
JG/G TEI | NGA-
SE,
COV.
BOT-
MA-
RIAL
G/G) | |----------------|--|--|--|--|---|-------------------------------------|---|--| | ОСТ 1987
20 | 1030 2 | 0200 | <1 | <10 | 9 | 6100 | 30 | 300 | | DATE | MERCURY
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS HG) | NICKEL,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS NI) | ZINC,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS ZN) | BED
MAT.
FALL
DIAM.
% FINER
THAN
.004 MM | THAN | THAN | BED
MAT.
SIEVE
DIAM.
% FINER
THAN
2.00 MM | | | OCT 1987
20 | <0.10 | 10 | 80 | 1 | 5 | 28 | 99 | | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). #### 01437500 NEVERSINK RIVER AT GODEFFROY, NY LOCATION.--Lat 41 26'28", long 74 36'07", Orange County, Hydrologic Unit 02040104, on right bank just upstream from highway bridge on Graham Road, 0.5 mi downstream from Basher Kill, 0.8 mi southeast of Godeffroy, 1.7 mi south of Cuddebackville, and 8.5 mi upstream from mouth. DRAINAGE AREA. -- 307 mi 2 . PERIOD OF RECORD.--Water years 1987 to current year. CHEMICAL DATA: 1987 (b), 1988 (c), 1989 (a). MINOR ELEMENTS DATA: 1987 (b), 1988 (c), 1989 (a). PESTICIDE DATA: 1987 (b), 1988 (c), 1989 (a). NUTRIENT DATA: 1987 (b), 1988 (c), 1989 (a). BIOLOGICAL DATA: Bacteria--1987 (a), 1988 (c), 1989 (a). SEDIMENT DATA: 1988 (b), 1989 (a). REMARKS .-- Water-discharge data obtained from stream-flow gage at this site. | | | DIS- | | SPE- | PH | | | BARO- | | OXYGEN, | COLI- | FECAL | |-----------|------|------------------|---------------|---------------|----------------|---------|-------|-----------------|---------|----------------|-----------------|---------------| | | | CHARGE,
INST. | SPE-
CIFIC | CIFIC
CON- | WATER
WHOLE | | | METRIC
PRES- | | DIS-
SOLVED |
FORM,
TOTAL, | COLI-
FORM | | | | CUBIC | CON- | DUCT- | FIELD | TEMPER- | TUR- | SURE | OXYGEN, | (PER- | IMMED. | 24-HR | | | | FEET | DUCT- | ANCE | (STAND- | ATURE | BID- | (MM | DIS- | CENT | (COLS. | MEM.FIL | | DATE | TIME | PER | ANCE | LAB | ARD | WATER | ITY | OF | SOLVED | SATUR- | PER | (COLS./ | | | | SECOND | (US/CM) | (US/CM) | UNITS) | (DEG C) | (NTU) | HG) | (MG/L) | ATION) | 100 ML) | 100 ML) | | MAY 1987 | | | | | | | | | | | | | | 07 | 1500 | 483 | | 80 | 7.9 | 16.5 | 1.6 | | 11.1 | | | | | 28 | 1400 | 266 | | 95 | 7.6 | 20.0 | 0.60 | | 9.7 | | | | | JUN | | | | | | | | | | | | | | 30 | 1000 | 165 | | 96 | 7.2 | 22.0 | 0.70 | | 9.3 | | >40 | 40.0 | | SEP | | | | | | | | | | | | | | 01 | 1030 | 262 | | | 7.2 | 16.5 | 1.0 | | 9.9 | | >260 | 52.0 | | OCT. | 4400 | 222 | | | 5 0 | | | | | | 100 | | | 20 | 1130 | 232 | | 89 | 7.2 | 10.5 | 1.1 | | 11.0 | | 180 | 6.00 | | NOV
10 | 1045 | 257 | | | 7.2 | 5.0 | 0.70 | | 11.7 | | 180 | 40.0 | | DEC | 1045 | 237 | | | 1.2 | 5.0 | 0.70 | | 11./ | | 100 | 40.0 | | 01 | 1130 | 1130 | | | 7.0 | 5.0 | 6.4 | | 16.9 | | >2000 | >400 | | APR 1988 | 1130 | 1130 | | | ,.0 | 3.0 | 0.4 | | 10.5 | | 22000 | 2400 | | 05 | 1115 | 477 | 86 | 86 | 6.6 | 10.5 | 0.80 | 760 | 11.5 | 104 | 70 | 6.00 | | 20 | 1300 | 228 | 92 | 91 | 9.1 | 9.0 | 1.3 | 755 | 13.0 | 114 | | | | JUN | | | | | | | | | | | | | | 07 | 1130 | 244 | 88 | 8,6 | 6.6 | 17.5 | 1.0 | 748 | 9.3 | 99 | 60 | 24.0 | | 23 | 1100 | 134 | 100 | 98 | 6.7 | 22.0 | 0.90 | | 8.4 | | >200 | 34.0 | | JUL | | | | | | | | | | | | | | 19 | 1200 | 159 | 95 | 93 | 7.0 | 24.0 | 1.0 | | 8.4 | | >240 | 160 | | SEP | | | | | | | | | | | | | | 01 | 1100 | 186 | 111 | 106 | 6.8 | 17.0 | 1.0 | 766 | 8.7 | 90 | >280 | 54.0 | | oct . | | | | | | | | | | | | | | 18 | 0800 | 84 | 103 | 100 | 6.6 | 11.0 | 0.40 | | 10.5 | | >60 | 4.00 | | NOV | 0000 | 262 | 95 | 0.3 | 7.1 | F 0 | - 1 | | 12.0 | | 040 | . 26. 0 | | 15 | 0900 | 362 | 95 | 93 | 7.1 | 5.0 | 5.1 | | 12.8 | | 840 | >26.0 | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). # 01437500 NEVERSINK RIVER AT GODEFFROY, NY - continued | DATE
MAY 1987 | HARD-
NESS
TOTAL
(MG/L
AS
CACO3) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K) | ALKA-
LINITY
LAB
(MG/L
AS
CACO3) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | SOLIDS,
RESIDUE
AT 105
DEG. C,
TOTAL
(MG/L) | |--|---|--|--|--|--|---|---|--|--|---|---|---| | 07 | 20 | 6.1 | 1.2 | | | | | | | 56 | | 64 | | 28 | 25 | 7.7 | 1.3 | | | | | | | 57 | | 83 | | JUN
30
SEP | 27 | 8.3 | 1.5 | | | | | | | 56 | | 67 | | 01 | 26 | 8.1 | 1.5 | | | | | | | 68 | | 72 | | 20
NOV | 24 | 7.2 | 1.4 | | | | | | | 61 | | 72 | | 10 | 21 | 6.3 | 1.3 | | | | | | | 53 | | 56 | | 01
APR 1988 | 17 | 5.0 | 1.2 | | | | | | | 49 | | 66 | | 05
20 | 21
23 | 6.3
6.9 | 1.2
1.4 | 6.5
6.9 | 0.90
0.80 | 10
13 | 9.6
11 | 10
12 | 0.10
0.10 | 62
53 | 41
47 | 67
58 | | JUN
07 | 21 | 6.6 | 1.2 | 5.7 | 0.70 | 14 | 12 | 10 | 0.30 | 46 | 45 | 54 | | 23
JUL | 27 | 8.3 | 1.6 | 6.7 | 1.0 | 21 | 11 | 10 | 0.20 | | 51 | 49 | | 19
SEP | 22 | 6.5 | 1.4 | 7.2 | 1.1 | 12 | 10 | 10 | 0.10 | 66 | 44 | 83 | | 01
OCT | 28 | 8.5 | 1.7 | 8.3 | 1.0 | 16 | 14 | 12 | 0.10 | 89 | 55 | 92 | | 18 | 27 | 8.2 | 1.6 | 7.8 | 1.2 | 17 | 10 | 11 | 0.10 | 53 | 50 | 55 | | 15 | 24 | 7.0 | 1.5 | 6. 6 | 1.1 | 13 | 14 | 11 | 0.10 | 62 | 49 | 66 | | | | | | | | | | | | | | | | DATE | SOLIDS,
VOLA-
TILE ON
IGNI-
TION,
TOTAL
(MG/L) | RESIDUE
TOTAL
FIXED
(MG/L) | NITRO-
GEN,
NITRATE
TOTAL
(MG/L
AS N) | NITRO-
GEN,
NITRITE
TOTAL
(MG/L
AS N) | NITRO-
GEN,
NO2+NO3
TOTAL
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS NH4) | NITRO-
GEN,
ORGANIC
TOTAL
(MG/L
AS N) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | NITRO-
GEN,
TOTAL
(MG/L
AS N) | NITRO-
GEN,
TOTAL
(MG/L
AS NO3) | PHOS-
PHORUS
TOTAL
(MG/L
AS P) | | DATE
MAY 1987 | VOLA-
TILE ON
IGNI-
TION,
TOTAL | TOTAL
FIXED | GEN,
NITRATE
TOTAL
(MG/L | GEN,
NITRITE
TOTAL
(MG/L | GEN,
NO2+NO3
TOTAL
(MG/L | GEN,
AMMONIA
TOTAL
(MG/L | GEN,
AMMONIA
TOTAL
(MG/L | GEN,
ORGANIC
TOTAL
(MG/L | GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L | GEN,
TOTAL
(MG/L | GEN,
TOTAL
(MG/L | PHORUS
TOTAL
(MG/L | | MAY 1987
07 | VOLA-
TILE ON
IGNI-
TION,
TOTAL
(MG/L) | TOTAL
FIXED
(MG/L) | GEN,
NITRATE
TOTAL
(MG/L
AS N) | GEN, NITRITE TOTAL (MG/L AS N) | GEN,
NO2+NO3
TOTAL
(MG/L
AS N) | GEN,
AMMONIA
TOTAL
(MG/L
AS N) | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4) | GEN,
ORGANIC
TOTAL
(MG/L
AS N) | GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | GEN,
TOTAL
(MG/L
AS N) | GEN,
TOTAL
(MG/L
AS NO3) | PHORUS
TOTAL
(MG/L
AS P) | | MAY 1987
07
28
JUN | VOLA-
TILE ON
IGNI-
TION,
TOTAL
(MG/L) | TOTAL
FIXED
(MG/L) | GEN,
NITRATE
TOTAL
(MG/L
AS N) | GEN,
NITRITE
TOTAL
(MG/L
AS N) | GEN,
NO2+NO3
TOTAL
(MG/L
AS N) | GEN,
AMMONIA
TOTAL
(MG/L
AS N) | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4) | GEN,
ORGANIC
TOTAL
(MG/L
AS N) | GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | GEN,
TOTAL
(MG/L
AS N) | GEN,
TOTAL
(MG/L
AS NO3) | PHORUS
TOTAL
(MG/L
AS P) | | MAY 1987
07
28
JUN
30 | VOLA-
TILE ON
IGNI-
TION,
TOTAL
(MG/L) | TOTAL
FIXED
(MG/L)
45
38 | GEN, NITRATE TOTAL (MG/L AS N) | GEN, NITRITE TOTAL (MG/L AS N) ND ND | GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
0.180
0.500 | GEN,
AMMONIA
TOTAL
(MG/L
AS N)
0.010
0.020 | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4)
0.01
0.03 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.13
0.09 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.14 0.11 | GEN,
TOTAL
(MG/L
AS N)
0.32
0.61 | GEN,
TOTAL
(MG/L
AS NO3)
1.4
2.7 | PHORUS
TOTAL
(MG/L
AS P)
0.020
0.060 | | MAY 1987
07
28
JUN
30 | VOLA-
TILE ON
IGNI-
TION,
TOTAL
(MG/L) | TOTAL
FIXED
(MG/L)
45 | GEN,
NITRATE
TOTAL
(MG/L
AS N) | GEN, NITRITE TOTAL (MG/L AS N) ND | GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
0.180
0.500 | GEN,
AMMONIA
TOTAL
(MG/L
AS N)
0.010
0.020 | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4)
0.01 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.13
0.09 | GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
0.14 | GEN,
TOTAL
(MG/L
AS N)
0.32
0.61 | GEN,
TOTAL
(MG/L
AS NO3)
1.4
2.7 | PHORUS
TOTAL
(MG/L
AS P)
0.020
0.060 | | MAY 1987
07
28
JUN
30
SEP
01
OCT
20 | VOLA-
TILE ON
IGNI-
TION,
TOTAL
(MG/L) | TOTAL
FIXED
(MG/L)
45
38 | GEN, NITRATE TOTAL (MG/L AS N) | GEN, NITRITE TOTAL (MG/L AS N) ND ND | GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
0.180
0.500 | GEN,
AMMONIA
TOTAL
(MG/L
AS N)
0.010
0.020 | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4)
0.01
0.03 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.13
0.09 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.14 0.11 0.21 | GEN,
TOTAL
(MG/L
AS N)
0.32
0.61 | GEN,
TOTAL
(MG/L
AS NO3)
1.4
2.7 | PHORUS
TOTAL
(MG/L
AS P)
0.020
0.060 | | MAY 1987 07 28 JUN 30 SEP 01 OCT 20 NOV 10 | VOLA- TILE ON IGNI- TION, TOTAL (MG/L) 19 45 17 | TOTAL
FIXED
(MG/L)
45
38
39
47 | GEN, NITRATE TOTAL (MG/L AS N) | GEN, NITRITE TOTAL (MG/L AS N) ND ND ND | GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
0.180
0.500
0.350 | GEN,
AMMONIA
TOTAL
(MG/L
AS N)
0.010
0.020
0.020 | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4)
0.01
0.03
0.03 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.13
0.09
0.19 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.14 0.11 0.21 | GEN,
TOTAL
(MG/L
AS N)
0.32
0.61
0.56 | GEN,
TOTAL
(MG/L
AS
NO3)
1.4
2.7
2.5 | PHORUS
TOTAL
(MG/L
AS P)
0.020
0.060
0.060 | | MAY 1987
07
28
JUN
30
SEP
01
OCT
20
NOV
10
DEC
01 | VOLA-
TILE ON
IGNI-
TION,
TOTAL
(MG/L)
19
45
17
25 | TOTAL
FIXED
(MG/L)
45
38
39
47 | GEN,
NITRATE
TOTAL
(MG/L
AS N) | GEN, NITRITE TOTAL (MG/L AS N) ND ND ND ND ND | GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
0.180
0.500
0.350
0.760
0.400 | GEN, AMMONIA TOTAL (MG/L AS N) 0.010 0.020 0.020 0.000 0.010 | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4)
0.01
0.03
0.03 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.13
0.09
0.19 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.14 0.11 0.21 0.21 | GEN,
TOTAL
(MG/L
AS N)
0.32
0.61
0.56
0.97 | GEN,
TOTAL
(MG/L
AS NO3)
1.4
2.7
2.5
4.3
3.0 | PHORUS
TOTAL
(MG/L
AS P)
0.020
0.060
0.060
0.070 | | MAY 1987 07 28 JUN 30 SEP 01 OCT 20 NOV 10 DEC 01 APR 1988 05 | VOLA- TILE ON IGNI- TION, TOTAL (MG/L) 19 45 17 25 24 37 25 21 | TOTAL
FIXED
(MG/L)
45
38
39
47
48
19
36 | GEN, NITRATE TOTAL (MG/L AS N) | GEN, NITRITE TOTAL (MG/L AS N) ND ND ND ND ND ND ND ND | GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
0.180
0.500
0.350
0.760
0.400
0.420
0.260 | GEN, AMMONIA TOTAL (MG/L AS N) 0.010 0.020 0.020 0.000 0.010 ND 0.010 | GEN, AMMONIA TOTAL (MG/L AS NH4) 0.01 0.03 0.03 0.00 0.01 0.01 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.13
0.09
0.19
0.21
0.26 | GEN, AM- MONIA + ORGANIC TOTTAL (MG/L AS N) 0.14 0.11 0.21 0.21 0.27 0.22 0.20 0.23 | GEN,
TOTAL
(MG/L
AS N)
0.32
0.61
0.56
0.97
0.67
0.64
0.46 | GEN,
TOTAL
(MG/L
AS NO3)
1.4
2.7
2.5
4.3
3.0
2.8
2.0 | PHORUS
TOTAL
(MG/L
AS P)
0.020
0.060
0.060
0.070
0.030
0.030
0.050 | | MAY 1987 07 28 JUN 30 SEP 01 OCT 20 NOV 10 DEC 01 APR 1988 05 20 | VOLA-
TILE ON IGNI-
TION, TOTAL (MG/L) 19 45 17 25 24 37 | TOTAL
FIXED (MG/L)
45
38
39
47
48
19 | GEN, NITRATE TOTAL (MG/L AS N) | GEN, NITRITE TOTAL (MG/L AS N) ND | GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
0.180
0.500
0.350
0.760
0.400
0.420
0.260 | GEN, AMMONIA TOTAL (MG/L AS N) 0.010 0.020 0.020 0.000 0.010 ND 0.010 | GEN, AMMONIA TOTAL (MG/L AS NH4) 0.01 0.03 0.03 0.00 0.01 0.01 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.13
0.09
0.19
0.21 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.14 0.11 0.21 0.21 0.27 0.22 | GEN,
TOTAL
(MG/L
AS N)
0.32
0.61
0.56
0.97
0.67 | GEN,
TOTAL
(MG/L
AS NO3)
1.4
2.7
2.5
4.3
3.0
2.8
2.0 | PHORUS
TOTAL
(MG/L
AS P)
0.020
0.060
0.060
0.070
0.030
0.030 | | MAY 1987 07 28 JUN 30 SEP 01 OCT 20 NOV 10 DEC 01 APR 1988 05 20 JUN 07 23 | VOLA- TILE ON IGNI- TION, TOTAL (MG/L) 19 45 17 25 24 37 25 21 | TOTAL
FIXED
(MG/L)
45
38
39
47
48
19
36 | GEN, NITRATE TOTAL (MG/L AS N) | GEN, NITRITE TOTAL (MG/L AS N) ND | GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
0.180
0.500
0.350
0.760
0.400
0.420
0.260 | GEN, AMMONIA TOTAL (MG/L AS N) 0.010 0.020 0.020 0.000 0.010 ND 0.010 | GEN, AMMONIA TOTAL (MG/L AS NH4) 0.01 0.03 0.03 0.00 0.01 0.01 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.13
0.09
0.19
0.21
0.26 | GEN, AM- MONIA + ORGANIC TOTTAL (MG/L AS N) 0.14 0.11 0.21 0.21 0.27 0.22 0.20 0.23 | GEN,
TOTAL
(MG/L
AS N)
0.32
0.61
0.56
0.97
0.67
0.64
0.46 | GEN,
TOTAL
(MG/L
AS NO3)
1.4
2.7
2.5
4.3
3.0
2.8
2.0 | PHORUS
TOTAL
(MG/L
AS P)
0.020
0.060
0.060
0.070
0.030
0.030
0.050 | | MAY 1987 07 28 JUN 30 SEP 01 CCT 20 NOV 10 DEC 01 APR 1988 05 20 JUN 07 | VOLA- TILE ON IGNI- TION, TOTAL (MG/L) 19 45 17 25 24 37 25 21 16 41 | TOTAL
FIXED (MG/L) 45 38 39 47 48 19 36 46 42 | GEN, NITRATE TOTAL (MG/L AS N) | GEN, NITRIE TOTAL (MG/L AS N) ND | GEN, NO2+NO3 TOTAL (MG/L AS N) 0.180 0.500 0.350 0.760 0.400 0.420 0.260 0.280 0.130 0.290 | GEN, AMMONIA TOTAL (MG/L AS N) 0.010 0.020 0.020 0.000 0.010 ND 0.010 0.010 0.010 0.010 | GEN, AMMONIA TOTAL (MG/L AS NH4) 0.01 0.03 0.03 0.01 0.01 0.01 0.01 0.0 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.13
0.09
0.19
0.21
0.26 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.14 0.11 0.21 0.21 0.27 0.22 0.20 0.20 0.23 0.19 0.29 | GEN,
TOTAL
(MG/L
AS N)
0.32
0.61
0.56
0.97
0.67
0.64
0.46 | GEN,
TOTAL
(MG/L
AS NO3)
1.4
2.7
2.5
4.3
3.0
2.8
2.0
2.3
1.4
2.6 | PHORUS
TOTAL
(MG/L
AS P)
0.020
0.060
0.060
0.070
0.030
0.030
0.050
0.020
0.030 | | MAY 1987 07 28 JUN 30 SEP 01 OCT 20 NOV 10 DEC 01 APR 1988 05 20 JUN 07 23 JUL 19 SEP 01 | VOLA- TILE ON IGNI- TION, TOTAL (MG/L) 19 45 17 25 24 37 25 21 16 41 40 | TOTAL
FIXED
(MG/L)
45
38
39
47
48
19
36
46
42
13 | GEN, NITRATE TOTAL (MG/L AS N) 0.450 | GEN, NITRITE TOTAL (MG/L AS N) ND | GEN, NO2+NO3 TOTAL (MG/L AS N) 0.180 0.500 0.350 0.760 0.420 0.260 0.280 0.130 0.290 0.450 | GEN, AMMONIA TOTAL (MG/L AS N) 0.010 0.020 0.020 0.000 0.010 ND 0.010 0.010 0.010 0.010 0.020 | GEN, AMMONIA TOTAL (MG/L AS NH4) 0.01 0.03 0.03 0.01 0.01 0.01 0.01 0.01 0.01 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.13
0.09
0.19
0.21
0.26 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.14 0.11 0.21 0.27 0.22 0.20 0.23 0.19 0.29 0.31 | GEN,
TOTAL
(MG/L
AS N)
0.32
0.61
0.56
0.97
0.67
0.64
0.46
0.51
0.32 | GEN,
TOTAL
(MG/L
AS NO3)
1.4
2.7
2.5
4.3
3.0
2.8
2.0
2.3
1.4
2.6
3.4 | PHORUS
TOTAL
(MG/L
AS P)
0.020
0.060
0.060
0.070
0.030
0.030
0.050
0.020
0.030 | | MAY 1987 07 28 JUN 30 SEP 01 CCT 20 NOV 10 DEC 01 APR 1988 05 20 JUN 07 23 JUL 19 SEP | VOLA- TILE ON IGNI- TION, TOTAL (MG/L) 19 45 17 25 24 37 25 21 16 41 40 40 | TOTAL
FIXED (MG/L) 45 38 39 47 48 19 36 46 42 13 9 | GEN, NITRATE TOTAL (MG/L AS N) 0.450 1.01 | GEN, NITRIE TOTAL (MG/L AS N) ND | GEN, NO2+NO3 TOTAL (MG/L AS N) 0.180 0.500 0.350 0.760 0.400 0.420 0.260 0.280 0.130 0.290 0.450 1.01 | GEN, AMMONIA TOTAL (MG/L AS N) 0.010 0.020 0.020 0.010 ND 0.010 0.010 0.010 0.010 0.010 0.010 | GEN, AMMONIA TOTAL (MG/L AS NH4) 0.01 0.03 0.03 0.01 0.01 0.01 0.01 0.01 0.01 0.01 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.13
0.09
0.19
0.21
0.26

0.19
0.22
0.19
0.28
0.29 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.14 0.11 0.21 0.27 0.22 0.20 0.23 0.19 0.29 0.31 | GEN,
TOTAL
(MG/L
AS N)
0.32
0.61
0.56
0.97
0.67
0.64
0.46
0.51
0.32 | GEN,
TOTAL
(MG/L
AS NO3)
1.4
2.7
2.5
4.3
3.0
2.8
2.0
2.3
1.4
2.6
3.4
5.2 | PHORUS
TOTAL
(MG/L
AS P)
0.020
0.060
0.070
0.030
0.030
0.050
0.020
0.030
0.020
0.030 | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). # 01437500 NEVERSINK RIVER AT GODEFFROY, NY - continued | MAY 1987 O.00 O.0 | |--| | 28 0.040 0.12 <10 <10 160 <5 <5 30 | | Note | | 30 0.550 0.15 <10 <10 <10 120 7 7 SEP 01 0.050 0.15 <10 <10 30 90 7 7 80 7 80 | | 011 0.050 0.15 <- | | CCT 20 0.010 0.03 <1 11 80 <5 NOV | | 20 0.010 0.03 <1 11 80 <5 NOV 10 0.010 0.03 <1 55 550 550 <5 DEC 01 0.010 0.03 1 1 1.0 7 5 340 <5 AFR 1988 05 0.00 0.0 0.0 20 <1 <1.0 6 3 160 56 <5 <5 20 0.00 0.0 60 3 3 190 <5 20 0.00 0.0 60 3 3 190 <5 21 0.00 0.0 0.0 60 3 <1 140 190 <5 JUN 07 0.020 0.06 60 20 1 <1.0 7 4 230 120 <5 -5 23 0.00 0.0 30 <1 <1 4 140 <5 JUL 19 0.120 0.37 50 <1 4 140 <5 SEP 01 0.030 0.09 80 1 1 13 110 <5 SEP 01 0.040 0.12 30 <10 <1 <1.0 19 3 80 21 <5 <5 NOV 15
0.00 0.0 110 3 10 200 <5 NOV 15 0.00 0.0 110 3 10 200 <5 NOV 15 0.00 0.0 110 3 10 10 200 <5 MANGA- NESE, TOTAL NESE, TOTAL NESE, TOTAL NESE, TOTAL NESE, TOTAL NESE, SOLVED ERABLE | | 10 0.010 0.03 | | 01 0.010 0.03 1 1.0 7 5 340 <5 <5 APR 1988 05 0.00 0.0 0.0 20 <1 <1.0 6 3 160 56 <5 <5 20 0.00 0.0 60 3 3 3 190 <5 <-5 20 0.00 0.0 60 3 3 3 190 <5 <-5 20 0.020 0.06 60 20 1 <1.0 7 4 230 120 <5 <-5 23 0.00 0.0 30 <1 4 140 140 <5 <-5 JUL 19 0.120 0.37 50 <1 4 140 <5 SEP 01 0.030 0.09 80 1 1 13 110 <5 <-5 NOV 15 0.00 0.0 110 3 3 10 200 <5 <-5 NOV 15 0.00 0.0 110 3 10 200 <5 < MANGA- NESE, TOTAL RECOV- DIS- | | NAMICA NESE, TOTAL NICKEL, NOW 15 DIS RECOV REABLE SOLVED REABLE SOLVED REABLE REABLE SOLVED REABLE REABLE SOLVED REABLE REABLE REABLE SOLVED REABLE | | 20 0.00 0.0 60 3 3 190 <5 JUN 07 0.020 0.06 60 20 1 <1.0 7 4 230 120 <5 <5 23 0.00 0.0 30 <1 4 140 140 <5 JUL 19 0.120 0.37 50 <1 4 14 140 <5 SEP 01 0.030 0.09 80 1 1 13 110 <5 CCT 18 0.040 0.12 30 <10 <1 <1.0 19 3 80 21 <5 <5 NOV 15 0.00 0.0 110 3 10 10 200 <5 MANGA- NESE, TOTAL T | | JUN | | 23 0.00 0.0 30 <1 4 140 <5 JUL 19 0.120 0.37 50 <1 4 140 <5 SEP 01 0.030 0.09 80 1 13 110 <5 OCT 18 0.040 0.12 30 <10 <1 <1.0 19 3 80 21 <5 <5 NOV 15 0.00 0.0 110 3 3 10 200 <5 RECOV- DIS- RECOV- DIS- RECOV- PRABLE ERABLE SOLVED ERABLE SOLVED ERABLE SOLVED ERABLE SOLVED AS MN) AS MN) AS HG) AS NI) AS NI) AS NI) AS ZN) AS ZN) (UG/L) (UG/L) (UG/L) (UG/L) (UG/L) MAY 1987 07 20 <0.10 <1 <10 ND ND ND ND ND ND ND JUN 30 20 <0.10 <1 <10 ND N | | JUL 19 0.120 0.37 50 <1 | | 19 0.120 0.37 50 <1 4 140 <5 SEP 01 0.030 0.09 80 1 13 110 <5 CCT 18 0.040 0.12 30 <10 <1 <1.0 19 3 80 21 <5 <5 NOV 15 0.00 0.0 110 3 10 200 <5 NOV 15 0.00 0.0 110 3 10 200 <5 MANGA- NESE, TOTAL RECOV- DIS- REABLE SOLVED RABLE RABLE | | 01 0.030 0.09 80 1 13 110 <5 OCT 18 0.040 0.12 30 <10 <1 <1.0 19 3 80 21 <5 <5 NOV 15 0.00 0.0 110 3 3 10 200 <5 NOV 15 0.00 0.0 110 3 3 10 200 <5 NOV 15 0.00 0.0 110 3 1 10 200 <5 NOV NOSE, TOTAL TOTAL NICKEL, TO | | 18 0.040 0.12 30 <10 <1 <1.0 19 3 80 21 <5 <5 NOV | | MANGA- | | NESE, MANGA- NECURY NICKEL, TOTAL NICKEL, TOTAL ZINC, TETRA- TETRA- DI- TOTAL NICKEL, TOTAL ZINC, TETRA- DI- TETRA- DI- TOTAL NICKEL, TOTAL ZINC, TETRA- DI- | | 07 20 <0.10 <1 <10 ND | | 28 50 <0.10 <1 <10 ND ND ND ND ND ND ND JUN 30 20 <0.10 <1 10 ND | | JUN 30 20 <0.10 <1 10 ND ND ND ND ND ND SEP 01 20 <0.10 3 <10 ND ND ND ND ND ND OCT 20 10 0.10 2 30 ND ND ND ND ND | | 30 20 <0.10 <1 10 ND ND ND ND ND ND SEP 01 20 <0.10 3 <10 ND | | 01 20 <0.10 3 <10 ND ND ND ND ND ND CCT 20 10 0.10 2 30 ND ND ND ND ND | | 20 10 0.10 2 30 ND ND ND ND ND | | | | 10 40 <0.10 2 20 ND ND ND ND ND ND DEC | | 01 50 <0.10 <1 1 20 20 ND | | 05 40 31 <0.10 6 2 <10 9 ND ND ND ND ND | | | | 20 30 <0.10 11 <10 ND ND ND ND ND | | JUN 07 40 21 <0.10 7 1 <10 13 ND ND ND ND ND | | JUN 07 40 21 <0.10 7 1 <10 13 ND ND ND ND ND ND 23 40 <0.10 <1 10 ND ND ND ND ND JUL | | JUN 07 40 21 <0.10 7 1 <10 13 ND ND ND ND ND ND ND 23 40 <0.10 <1 10 ND ND ND ND ND ND JUL 19 60 <0.10 2 <10 ND ND ND ND ND ND SEP | | JUN 07 40 21 <0.10 7 1 <10 13 ND ND ND ND ND ND ND 23 40 <0.10 <1 10 ND ND ND ND ND ND JUL 19 60 <0.10 2 <10 ND ND ND ND ND | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). # 01437500 NEVERSINK RIVER AT GODEFFROY, NY - continued | DATE | CHLORO-
FORM
TOTAL
(UG/L) | CIS
1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | DI-
CHLORO-
BROMO-
METHANE
TOTAL
(UG/L) | METHYL-
BROMIDE
TOTAL
(UG/L) | METHYL-
CHLO-
RIDE
TOTAL
(UG/L) | METHYL-
ENE
CHLO-
RIDE
TOTAL
(UG/L) | 1,1,1-
TRI-
CHLORO-
ETHANE
TOTAL
(UG/L) | 1,1-DI-
CHLORO-
ETHANE
TOTAL
(UG/L) | 1,1-DI-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 1,1,2-
TRI-
CHLORO-
ETHANE
TOTAL
(UG/L) | 1,1,2,2
TETRA-
CHLORO-
ETHANE
TOTAL
(UG/L) | |--|---|--|---|---|---|---|---|--|--|--|--| | MAY 1987 | | | | | | | | | | | | | 07 | ND | 28 | ND | JUN | | | | *** | | | | | | | *** | | 30
SEP | ND | 01 | ND | OCT | | | | | | | | | | | | | 20
Nov | ND | 10 | ND | DEC | | | | | • | | | *** | | | | | 01 | ND | APR 1988
05 | ND | 20 | ND | JUN | | | | | | | | | | | | | 07
23 | nd
nd | JUL | ND | 19 | ND | SEP
01 | ND | OCT | ND | 18
NOV | ND | 15 | ND | DATE | 1,2-DI-
CHLORO-
BENZENE
TOTAL
(UG/L) | 1,2-DI-
CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L) | 1,2-DI-
CHLORO-
PROPANE
TOTAL
(UG/L) | 1,2-
TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L) | 1,3-DI-
CHLORO-
BENZENE
TOTAL
(UG/L) | 1,4-DI-
CHLORO-
BENZENE
TOTAL
(UG/L) | TETRA-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | TRANS-
1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | TRI-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 2-
CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L) | VINYL
CHLO-
RIDE
TOTAL
(UG/L) | | | CHLORO-
BENZENE
TOTAL | CHLORO-
ETHANE
WATER
WHOLE
TOTAL | CHLORO-
PROPANE
TOTAL | TRANSDI
CHLORO-
ETHENE
TOTAL | CHLORO-
BENZENE
TOTAL | CHLORO-
BENZENE
TOTAL | CHLORO-
ETHYL-
ENE
TOTAL | 1,3-DI-
CHLORO-
PROPENE
TOTAL | CHLORO-
ETHYL-
ENE
TOTAL | CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL | CHLO-
RIDE
TOTAL | | DATE MAY 1987 07 | CHLORO-
BENZENE
TOTAL | CHLORO-
ETHANE
WATER
WHOLE
TOTAL | CHLORO-
PROPANE
TOTAL | TRANSDI
CHLORO-
ETHENE
TOTAL | CHLORO-
BENZENE
TOTAL | CHLORO-
BENZENE
TOTAL | CHLORO-
ETHYL-
ENE
TOTAL | 1,3-DI-
CHLORO-
PROPENE
TOTAL | CHLORO-
ETHYL-
ENE
TOTAL | CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL | CHLO-
RIDE
TOTAL | | MAY 1987
07
28 | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L) | CHLORO-
PROPANE
TOTAL
(UG/L) | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L) | CHLO-
RIDE
TOTAL
(UG/L) | | MAY 1987
07
28
JUN | CHLORO-
BENZENE
TOTAL
(UG/L)
ND
ND | CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L)
ND
ND | CHLORO-
PROPANE
TOTAL
(UG/L)
ND
ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND | CHLORO-
BENZENE
TOTAL
(UG/L)
ND
ND | CHLORO-
BENZENE
TOTAL
(UG/L)
ND
ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND | CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L)
ND | CHLO-
RIDE
TOTAL
(UG/L)
ND | | MAY 1987
07
28
JUN
30
SEP | CHLORO-
BENZENE
TOTAL
(UG/L)
ND | CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L) | CHLORO-
PROPANE
TOTAL
(UG/L) | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L) | CHLO-
RIDE
TOTAL
(UG/L) | | MAY 1987
07
28
JUN
30
SEP
01 | CHLORO-
BENZENE
TOTAL
(UG/L)
ND
ND | CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L)
ND
ND | CHLORO-
PROPANE
TOTAL
(UG/L)
ND
ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND | CHLORO-
BENZENE
TOTAL
(UG/L)
ND
ND | CHLORO-
BENZENE
TOTAL
(UG/L)
ND
ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND | CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L)
ND | CHLO-
RIDE
TOTAL
(UG/L)
ND | | MAY 1987
07
28
JUN
30
SEP
01 | CHLORO-BENZENE TOTAL (UG/L) ND ND ND | CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L)
ND
ND
ND | CHLORO-PROPANE TOTAL (UG/L) ND ND ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND
ND | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
ND
ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND
ND | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND ND ND | CHLO-
RIDE
TOTAL
(UG/L)
ND
ND | | MAY 1987
07
28
JUN
30
SEP
01 | CHLORO-
BENZENE
TOTAL
(UG/L)
ND
ND | CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L)
ND
ND | CHLORO-
PROPANE
TOTAL
(UG/L)
ND
ND
ND |
TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND
ND | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
ND
ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND
ND | CHLORO-ETHYL-VINYL-ETHER TOTAL (UG/L) ND ND ND | CHLO-
RIDE
TOTAL
(UG/L)
ND
ND | | MAY 1987
07
28
JUN
30
SEP
01
OCT
20
NOV
10 | CHLORO-BENZENE TOTAL (UG/L) ND ND ND | CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L)
ND
ND
ND | CHLORO-PROPANE TOTAL (UG/L) ND ND ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND
ND | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
ND
ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND
ND | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND ND ND | CHLO-
RIDE
TOTAL
(UG/L)
ND
ND | | MAY 1987
07
28
JUN
30
SEP
01
OCT
20
NOV
10 | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND | CHLORO- ETHANE WATER WHOLE TOTAL (UG/L) ND ND ND ND ND ND | CHLORO-PROPANE TOTAL (UG/L) ND ND ND ND ND ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND | CHLORO-ETHYL-ENE ENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND | CHLORO-ETHYL-ENE ENE TOTAL (UG/L) ND | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND ND ND ND ND ND | CHLO-RIDE TOTAL (UG/L) ND ND ND ND ND | | MAY 1987
07
28
JUN
30
SEP
01
OCT
20
NOV
10 | CHLORO-
BENZENE
TOTAL
(UG/L)
ND
ND
ND | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND ND ND ND | CHLORO- PROPANE TOTAL (UG/L) ND ND ND ND ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
ND
ND
ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND ND ND ND | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND ND ND ND ND | CHLO-
RIDE
TOTAL
(UG/L)
ND
ND
ND | | MAY 1987 07 28 JUN 30 SEP 01 OCT 20 NOV 10 DEC 01 APR 1988 05 | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND | CHLORO-PROPANE TOTAL (UG/L) ND N | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND N | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND N | CHLORO-ETHYL-ENE TOTAL (UG/L) ND N | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND ND ND ND ND ND ND ND ND | CHLO-RIDE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND | | MAY 1987 07 28 JUN 30 SEP 01 OCT 20 NOV 10 DEC 01 APR 1988 05 20 | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND | CHLORO- PROPANE TOTAL (UG/L) ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND N | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
ND
ND
ND
ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND N | CHLORO-ETHYL-VINYL-ETHER TOTAL (UG/L) ND N | CHLO-RIDE TOTAL (UG/L) ND ND ND ND ND ND ND ND | | MAY 1987 07 28 JUN 30 SEP 01 OCT 20 NOV 10 DEC 01 APR 1988 05 20 JUN | CHLORO- BENZENE TOTAL (UG/L) ND | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND | CHLORO-PROPANE TOTAL (UG/L) ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND N | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND N | CHLORO-ETHYL-ENE TOTAL (UG/L) ND N | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND | CHLO-RIDE TOTAL (UG/L) ND | | MAY 1987 07 28 JUN 30 SEP 01 OCT 20 NOV 10 DEC 01 APR 1988 05 20 | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND | CHLORO-PROPANE TOTAL (UG/L) ND N | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND N | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND N | CHLORO-ETHYL-ENE TOTAL (UG/L) ND N | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND ND ND ND ND ND ND ND ND | CHLO-RIDE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND | | MAY 1987 07 28 JUN 30 SEP 01 OCT 20 NOV 10 DEC 01 APR 1988 05 20 JUN 07 23 JUL | CHLORO-BENZENE TOTAL (UG/L) ND N | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND | CHLORO-PROPANE TOTAL (UG/L) ND N | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND
ND
ND | CHLOROBENZENE TOTAL (UG/L) ND | CHLOROBENZENE TOTAL (UG/L) ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND N | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND N | CHLORO-ETHYL-ENE TOTAL (UG/L) ND N | CHLORO-ETHYL- VINYL- VINYL- ETHER TOTAL (UG/L) ND | CHLO-RIDE TOTAL (UG/L) ND N | | MAY 1987 07 28 JUN 30 SEP 01 CCT 20 NOV 10 DEC 01 APR 1988 05 20 JUN 07 23 JUL 19 | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND | CHLORO-PROPANE TOTAL (UG/L) ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND
ND
ND | CHLOROBENZENE TOTAL (UG/L) ND | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND N | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND N | CHLORO-ETHYL-ENE TOTAL (UG/L) ND N | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND | CHLO-RIDE TOTAL (UG/L) ND | | MAY 1987 07 28 JUN 30 SEP 01 OCT 20 NOV 10 DEC 01 APR 1988 05 20 JUN 07 23 JUL 19 SEP 01 | CHLORO-BENZENE TOTAL (UG/L) ND N | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND | CHLORO-PROPANE TOTAL (UG/L) ND N | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND
ND
ND | CHLOROBENZENE TOTAL (UG/L) ND | CHLOROBENZENE TOTAL (UG/L) ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND N | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND N | CHLORO-ETHYL-ENE TOTAL (UG/L) ND N | CHLORO-ETHYL- VINYL- VINYL- ETHER TOTAL (UG/L) ND | CHLO-RIDE TOTAL (UG/L) ND N | | MAY 1987 07 28 JUN 30 SEP 01 OCT 20 NOV 10 DEC 01 APR 1988 05 20 JUN 07 23 JUL 19 SEP 01 OCT | CHLORO-BENZENE TOTAL (UG/L) ND N | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND | CHLORO-PROPANE TOTAL (UG/L) ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND
ND
ND
ND
ND | CHLOROBENZENE TOTAL (UG/L) ND | CHLOROBENZENE TOTAL (UG/L) ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND N | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND N | CHLORO-ETHYL-ENE TOTAL (UG/L) ND N | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND | CHLO-RIDE TOTAL (UG/L) ND | | MAY 1987 07 28 JUN 30 SEP 01 OCT 20 NOV 10 DEC 01 APR 1988 05 20 JUN 07 23 JUL 19 SEP 01 | CHLORO-BENZENE TOTAL (UG/L) ND N | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND | CHLORO-PROPANE TOTAL (UG/L) ND N | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND
ND
ND
ND
ND | CHLOROBENZENE TOTAL (UG/L) ND | CHLOROBENZENE TOTAL (UG/L) ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND N | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND N | CHLORO-ETHYL- ENE ENE TOTAL (UG/L) ND | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND | CHLO-RIDE TOTAL (UG/L) ND N | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). # 01437500 NEVERSINK RIVER AT GODEFFROY, NY - continued ### SUSPENDED SEDIMENT DISCHARGE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND | SEDI-
MENT,
SUS-
PENDED
(MG/L) | SEDI-
MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY) | |------|--|---|---| | | | | | | 1130 | 244 | 4 | 2.6 | | | | | | | 1200 | 159 | 4 | 1.7 | | 1100 | 196 | 6 | 3.0 | | 1100 | 100 | Ů | 3.0 | | 0800 | 84 | 1 | 0.23 | | | | _ | | | 0900 | 362 | 3 | 2.9 | | | 1130
1200
1100
0800 | CHARGE, INST. CUBIC FEET PER SECOND 1130 244 1200 159 1100 186 0800 84 | CHARGE, INST. SEDI- CUBIC MENT, FEET SUS- PER PENDED SECOND (MG/L) 1130 244 4 1200 159 4 1100 186 6 0800 84 1 | # BED MATERIAL ANALYSES | DATE | , | SOLIDS, VOLA- TILE IN BOTTOM MA- TERIAL (MG/KG) | CADMIUM
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS CD) | CHRO-
MIUM,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G) | COPPER,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS CU) | IRON,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS FE) | LEAD,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS PB) | MANGA-
NESE,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G) | |----------------|---|---|--|--|--|--|--|---| | OCT 1987 | | | | | | | | | | 20 | 1130 | 11300 | <1 | <10 | 4 | 4000 | <10 | 180 | | DATE | MERCU
RECO
FM BO
TOM M
TERI
(UG/
AS H | V. REC
T- FM B
A- TOM
AL TER
G (UG | OV. RECOT- FM EMA- TOMIAL TER | COV. MA
BOT- FA
MA- DIA
RIAL % FI
B/G TH | AT. MALL SINAM. DIA
INER & FI | AT. M. EVE SI AM. DI INER % F. HAN T | EVE SIE
AM. DIA
INER % FI | AT.
EVE
M.
ENER
IAN | | OCT 1987
20 | <0. | 10 |
<10 | 40 | 0 | 4 | 13 | 100 | #### 01502701 SUSQUEHANNA RIVER AT AFTON, NY LOCATION.--Lat 42 13'38", long 75 31'27", Chenango County, Hydrologic Unit 02050101, at bridge on State Highway 41, 0.1 mi southeast of Afton and intersection of State Highways 7 and 41, and 0.2 mi downstream from Kelsey Brook. DRAINAGE AREA. -- 1,716 mi2. PERIOD OF RECORD. -- Water years 1988 to current year. CHEMICAL DATA: 1988 (b), 1989 (a). MINOR ELEMENT DATA: 1988 (b), 1989 (a). PESTICIDE DATA: 1988 (b), 1989 (a). NUTRIENT DATA: 1988 (b), 1989 (a). BIOLOGICAL DATA: Bacteria -- 1988 -89 (a). SEDIMENT DATA: 1988 (a). REMARKS .-- Water-discharge data obtained from a discharge rating developed for this site. | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND | SPE-
CIFIC
CON-
DUCT-
ANCE
LAB
(US/CM) | PH WATER WHOLE FIELD (STAND- ARD UNITS) | TEMPER-
ATURE
WATER
(DEG C) | TUR-
BID-
ITY
(NTU) | BARO-
METRIC
PRES-
SURE
(MM
OF
HG) | OXYGEN,
DIS-
SOLVED
(MG/L) | COLI-
FORM,
TOTAL,
IMMED.
(COLS.
PER
100 ML) | FECAL
COLI-
FORM
24-HR
MEM.FIL
(COLS./
100 ML) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | |-----------------------|--|--|--|---|---|---|--|--|---|--|--|--| | APR 1988
05 | 1100 | 5220 | 158 | 7.5 | 9.0 | 14 | | 10.8 | | | 65 | 22 | | MAY | 0800 | 3140 | 154 | 7.4 | 6.0 | 3.6 | | 11.4 | 2300 | 290 | 63 | 21 | | 03 | | | | | | | | | | | | | | 07 | 0830 | 1200 | 188 | 8.0 | 17.0 | 2.6 | 756 | 9.3 | 1500 | 90.0 | 78 | 26 | | 03
OCT | 0930 | 402 | 218 | 7.5 | 26.0 | 3.3 | 756 | 8.2 | 600 | 120 | 87 | 29 | | 06 | 0900 | 3 5 5 | 238 | | 11.0 | 4.4 | 771 | 8.4 | 11000 | 460 | 96 | 32 | | DATE | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K) | ALKA-
LINITY
LAB
(MG/L
AS
CACO3) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | SOLIDS,
RESIDUE
AT 105
DEG. C,
TOTAL
(MG/L) | SOLIDS,
VOLA-
TILE ON
IGNI-
TION,
TOTAL
(MG/L) | RESIDUE
TOTAL
FIXED
(MG/L) | | APR 1988
05 | 2.4 | 3.9 | 1.0 | 53 | 14 | 6.8 | 0.10 | 100 | 82 | 140 | 24 | 116 | | MAY
03 | 2.5 | 4.2 | 1.0 | 50 | 14 | 7.0 | 0.10 | 84 | 80 | 88 | 52 | 36 | | JUN
07 | 3.1 | 5.4 | 1.0 | 66 | 12 | 8.1 | 0.10 | 124 | 95 | 144 | 32 | 112 | | AUG
03 | 3.6 | 7.0 | 1.2 | 76 | 15 | 11 | <0.10 | 128 | 112 | 164 | 64 | 100 | | ост
06 | 4.0 | 8.3 | 1.5 | 79 | 17 | 12 | 0.10 | 132 | 122 | 140 | 32 | 108 | | | NITRO-
GEN,
NITRATE
TOTAL | NITRO-
GEN,
NITRITE
TOTAL | NITRO-
GEN,
NO2+NO3
TOTAL | NITRO-
GEN,
AMMONIA
TOTAL | NITRO-
GEN,
AMMONIA
TOTAL | NITRO-
GEN,
ORGANIC
TOTAL | NITRO-
GEN, AM-
MONIA +
ORGANIC
TOTAL | NITRO-
GEN,
TOTAL | NITRO-
GEN,
TOTAL | PHOS-
PHORUS
TOTAL | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED | PHOS-
PHATE,
ORTHO,
DIS-
SOLVED | | DATE | (MG/L
AS N) | (MG/L
AS N) | (MG/L
AS N) | (MG/L
AS N) | (MG/L
AS NH4) | (MG/L
AS N) | (MG/L
AS N) | (MG/L
AS N) | (MG/L
AS NO3) | (MG/L
AS P) | (MG/L
AS P) | (MG/L
AS PO4) | | APR 1988
05
MAY | 0.680 | 0.00 | 0.680 | 0.030 | 0.04 | 0.19 | 0.22 | 0.90 | 4.0 | 0.040 | 0.00 | 0.0 | | 03
JUN | | ND | 0.550 | 0.030 | 0.04 | 0.16 | 0.19 | 0.74 | 3.3 | 0.020 | 0.00 | 0.0 | | 07
AUG | 0.350 | 0.00 | 0.350 | 0.020 | 0.03 | 0.34 | 0.36 | 0.71 | 3.1 | 0.030 | 0.00 | 0.0 | | 03
OCT | | ND | 0.070 | 0.010 | 0.01 | 0.32 | 0.33 | 0.40 | 1.8 | 0.030 | 0.00 | 0.0 | | 06 | 0.560 | 0.00 | 0.560 | 0.030 | 0.04 | 0.21 | 0.24 | 0.80 | 3.5 | 0.040 | 0.00 | 0.0 | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). # 01502701 SUSQUEHANNA RIVER AT AFTON, NY - continued # WATER-QUALITY DATA (continued) | DATE | ALUM-
INUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS AL) | CADMIUM
TOTAL
RECOV-
ERABLE
(UG/L
AS CD) | COPPER,
TOTAL
RECOV-
ERABLE
(UG/L
AS CU) | IRON,
TOTAL
RECOV-
ERABLE
(UG/L
AS FE) | LEAD,
TOTAL
RECOV-
ERABLE
(UG/L
AS PB) | MANGA-
NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | MERCURY
TOTAL
RECOV-
ERABLE
(UG/L
AS HG) | NICKEL,
TOTAL
RECOV-
ERABLE
(UG/L
AS NI) | ZINC,
TOTAL
RECOV-
ERABLE
(UG/L
AS ZN) | BROMO-
FORM
TOTAL
(UG/L) | CARBON-
TETRA-
CHLO-
RIDE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | |-----------------------|--|---|---|---|---|---|---|---|--|---|---|--| | APR 1988
05
MAY | 750 | <1 | 6 | 1300 | < 5 | 50 | <0.10 | 4 | 10 | 0 | 0 | 0.0 | | 03 | 170 | 2 | 10 | 370 | <5 | 30 | <0.10 | <1 | <10 | 0 | 0 | 0.0 | | JUN
07 | 110 | <1 | 6 | 280 | <5 | 40 | <0.10 | 3 | <10 | ~- | ~- | | | AUG
03
OCT | 80 | <1 | <1 | 200 | <5 | 70 | <0.10 | 1 | <10 | ND | ND | ND | | 06 | 150 | <1 | 52 | 330 | 8 | 40 | 0.10 | 2 | 200 | ND | ND | ND | | DATE | CHLORO-
DI-
BROMO-
METHANE
TOTAL
(UG/L) | CHLORO-
ETHANE
TOTAL
(UG/L) | CHLORO-
FORM
TOTAL
(UG/L) | CIS
1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | DI -
CHLORO-
BROMO-
METHANE
TOTAL
(UG/L) | METHYL-
BROMIDE
TOTAL
(UG/L) | METHYL-
CHLO-
RIDE
TOTAL
(UG/L) | METHYL-
ENE
CHLO-
RIDE
TOTAL
(UG/L) | 1,1,1-
TRI-
CHLORO-
ETHANE
TOTAL
(UG/L) | 1,1-DI-
CHLORO-
ETHANE
TOTAL
(UG/L) | 1,1-DI-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 1,1,2-
TRI-
CHLORO-
ETHANE
TOTAL
(UG/L) | | APR 1988 | | | | | | | | | | | | | | 05
MAY | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 03
JUN | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 07
AUG | | | | | | | | | | | | | | 03 | ND | 06 | ND | ND | 0.1 | ND | DATE | 1,1,2,2
TETRA-
CHLORO-
ETHANE
TOTAL
(UG/L) | 1,2-DI-
CHLORO-
BENZENE
TOTAL
(UG/L) | 1,2-DI-
CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L) | 1,2-DI-
CHLORO-
PROPANE
TOTAL
(UG/L) | 1,2-
TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L) | 1,3-DI-
CHLORO-
BENZENE
TOTAL
(UG/L) | 1,4-DI-
CHLORO-
BENZENE
TOTAL
(UG/L) | TETRA-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | TRANS-
1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | TRI-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 2-
CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L) | VINYL
CHLO-
RIDE
TOTAL
(UG/L) | | APR 1988 | 0 | 0 | 0.00 | 0 | 0 | ٥ | 0 | 0.0 | 0 | 0 | 0 | 0 | | 05
MAY | | - | 0.00 | | - | 0 | - | 0.0 | _ | | _ | 0 | | 03
JUN | 0 | 0 | 0.00 | 0 | 0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0 | | 07
AUG | | | | | | | | | | | | | | 03
OCT | ND | 06 | N D | ND ### SUSPENDED SEDIMENT DISCHARGE | | DIS- | | SEDI- | |------|---------|----------------------------------|---| | | CHARGE, | | MENT, | | | INST. | SEDI- | DIS- | | | CUBIC | MENT, | CHARGE, | | | FEET | sus- | sus- | | TIME | PER | PENDED | PENDED | | | SECOND | (MG/L) | (T/DAY) | | | | | | | 0830 | 1200 | 5 | 16 | | | | INST. CUBIC FEET TIME PER SECOND | CHARGE, INST. SEDI- CUBIC MENT, FEET SUS- TIME PER PENDED SECOND (MG/L) | #### 01512850 CHENANGO RIVER AT BINGHAMTON, NY LOCATION.--Lat 42 06'11", long 75 54'55", Broome County, Hydrologic Unit 02050102, at bridge on Clinton Street, at Binghamton, and 0.7 mi upstream from mouth. DRAINAGE AREA. -- 1,602 mi2. PERIOD OF RECORD.--Water years 1967,1988 to current year. CHEMICAL DATA: 1967 (a), 1988 (b), 1989 (a). MINOR ELEMENT DATA: 1967 (a), 1988 (b), 1989 (a). PESTICIDE DATA: 1988 (b), 1989 (a). NUTRIENT DATA: 1988 (b), 1989 (a). BIOLOGICAL DATA: Bacteria--1988 (b), 1989 (a). SEDIMENT DATA: 1988 (a). REMARKS.--Water-discharge data obtained from a discharge rating developed for this site. | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND | SPE-
CIFIC
CON-
DUCT-
ANCE
LAB
(US/CM) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS) | TEMPER-
ATURE
WATER
(DEG C) | TUR-
BID-
ITY
(NTU) | BARO-
METRIC
PRES-
SURE
(MM
OF
HG) | OXYGEN,
DIS-
SOLVED
(MG/L) |
COLI-
FORM,
TOTAL,
IMMED.
(COLS.
PER
100 ML) | FECAL
COLI-
FORM
24-HR
MEM.FIL
(COLS./
100 ML) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | |-----------------------|--|--|--|---|--|--|---|--|---|--|--|---| | APR 1988
05
MAY | 1200 | 5700 | 171 | 7.3 | 12.0 | 16 | | 11.2 | | | 67 | 21 | | 03
JUN | 1200 | 2500 | 201 | 7.4 | 11.0 | 4.6 | | 11.0 | 6000 | 20.0 | 80 | 25 | | 07
AUG | 1045 | 820 | 282 | 8.0 | 17.5 | 6.5 | 755 | 9.0 | 480 | 15.0 | 110 | 35 | | 03
OCT | 1100 | 430 | 295 | 7.5 | 28.0 | 5.3 | 756 | 7.0 | 2400 | 80.0 | 120 | 36 | | 06 | 1045 | 290 | 372 | | 12.0 | 5.3 | 772 | 6.7 | 1600 | 95.0 | 140 | 43 | | DATE | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K) | ALKA-
LINITY
LAB
(MG/L
AS
CACO3) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | SOLIDS,
RESIDUE
AT 105
DEG. C,
TOTAL
(MG/L) | SOLIDS,
VOLA-
TILE ON
IGNI-
TION,
TOTAL
(MG/L) | RESIDUE
TOTAL
FIXED
(MG/L) | | APR 1988
05 | 3.5 | 5.8 | 1.0 | 51 | 15 | 10 | 0.10 | 120 | 87 | 160 | 32 | 128 | | MAY
03 | 4.3 | 7.0 | 1.0 | 61 | 17 | 12 | 0.10 | 112 | 103 | 128 | 68 | 60 | | JUN
07 | 6.6 | 11 | 1.2 | 95 | 14 | 17 | 0.10 | 172 | 142 | 224 | 44 | 180 | | AUG
03 | 7.2 | 13 | 1.3 | 87 | 19 | 21 | <0.10 | 188 | 150 | 228 | 80 | 148 | | 06 | 9.0 | 17 | 1.6 | 121 | 20 | 28 | <0.10 | 204 | 191 | 220 | 64 | 156 | | DATE | NITRO-
GEN,
NITRATE
TOTAL
(MG/L
AS N) | NITRO-
GEN,
NITRITE
TOTAL
(MG/L
AS N) | NITRO-
GEN,
NO2+NO3
TOTAL
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS NH4) | NITRO-
GEN,
ORGANIC
TOTAL
(MG/L
AS N) | NITRO-
GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | NITRO-
GEN,
TOTAL
(MG/L
AS N) | NITRO-
GEN,
TOTAL
(MG/L
AS NO3) | PHOS-
PHORUS
TOTAL
(MG/L
AS P) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P) | PHOS-
PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4) | | APR 1988
05 | 1.05 | 0.020 | 1.07 | 0.060 | 0.08 | 0.12 | 0.18 | 1.2 | 5.5 | 0.060 | 0.00 | 0.0 | | MAY
03 | 0.900 | 0.020 | 0.900 | 0.020 | 0.03 | 0.15 | 0.17 | 1.1 | 4.7 | 0.020 | 0.00 | 0.0 | | JUN
07 | 0.740 | 0.010 | 0.750 | 0.070 | 0.09 | 0.43 | 0.50 | 1.2 | 5.5 | 0.030 | 0.00 | 0.0 | | AUG
03 | 0.240 | 0.00 | 0.240 | 0.030 | 0.04 | 0.45 | 0.48 | 0.72 | 3.2 | E0.040 | E0.040 | | | 03
0CT
06 | 0.240 | 0.00 | 0.690 | 0.030 | 0.04 | 0.19 | 0.22 | 0.72 | 4.0 | 0.040 | ND | | | | 0.000 | 0.00 | 0.030 | 0.030 | 0.04 | 0.19 | 0.22 | 0.91 | 4.0 | 0.040 | 112 | | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). # 01512850 CHENANGO RIVER AT BINGHAMTON, NY - continued # WATER-QUALITY DATA (continued) | DATE | ALUM-
INUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS AL) | CADMIUM
TOTAL
RECOV-
ERABLE
(UG/L
AS CD) | COPPER,
TOTAL
RECOV-
ERABLE
(UG/L
AS CU) | IRON,
TOTAL
RECOV-
ERABLE
(UG/L
AS FE) | LEAD,
TOTAL
RECOV-
ERABLE
(UG/L
AS PB) | MANGA-
NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | MERCURY
TOTAL
RECOV-
ERABLE
(UG/L
AS HG) | NICKEL,
TOTAL
RECOV-
ERABLE
(UG/L
AS NI) | ZINC,
TOTAL
RECOV-
ERABLE
(UG/L
AS ZN) | BROMO-
FORM
TOTAL
(UG/L) | CARBON-
TETRA-
CHLO-
RIDE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | |------------------|--|---|---|---|---|---|---|---|--|---|---|--| | APR 1988
05 | 900 | <1 | 6 | 1400 | <5 | 50 | <0.10 | 4 | 10 | 0 | 0 | 0.0 | | MAY | | | - | | - | | | _ | _ | - | | | | 03
JUN | 200 | 1 | 6 | 450 | < 5 | 30 | <0.10 | <1 | <10 | 0 | 0 | 0.0 | | 07
AUG | 340 | 1 | 8 | 680 | 5 | 70 | <0.10 | 4 | 20 | | | | | 03 | 180 | <1 | 10 | 440 | < 5 | 80 | <0.10 | 3 | <10 | ND | ND | ND | | 06 | 200 | <1 | 7 | | <5 | 50 | <0.10 | 4 | | ND | ND | ND | | DATE | CHLORO-
DI-
BROMO-
METHANE
TOTAL
(UG/L) | CHLORO-
ETHANE
TOTAL
(UG/L) | CHLORO-
FORM
TOTAL
(UG/L) | CIS
1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | DI -
CHLORO-
BROMO-
METHANE
TOTAL
(UG/L) | METHYL-
BROMIDE
TOTAL
(UG/L) | METHYL-
CHLO-
RIDE
TOTAL
(UG/L) | METHYL-
ENE
CHLO-
RIDE
TOTAL
(UG/L) | 1,1,1-
TRI-
CHLORO-
ETHANE
TOTAL
(UG/L) | 1,1-DI-
CHLORO-
ETHANE
TOTAL
(UG/L) | 1,1-DI-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 1,1,2-
TRI-
CHLORO-
ETHANE
TOTAL
(UG/L) | | APR 1988 | | | | | | | | | | | | | | 05
MAY | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 03
JUN | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 07 | | | | | | | | | | | | | | AUG
03
OCT | ND | 06 | ND | DATE | 1,1,2,2
TETRA-
CHLORO-
ETHANE
TOTAL
(UG/L) | 1,2-DI-
CHLORO-
BENZENE
TOTAL
(UG/L) | 1,2-DI-
CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L) | 1,2-DI
CHLORO-
PROPANE
TOTAL
(UG/L) | 1,2-
TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L) | 1,3-DI-
CHLORO-
BENZENE
TOTAL
(UG/L) | 1,4-DI-
CHLORO-
BENZENE
TOTAL
(UG/L) | TETRA-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | TRANS-
1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | TRI-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 2-
CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L) | VINYL
CHLO-
RIDE
TOTAL
(UG/L) | | APR 1988
05 | 0 | 0 | 0.00 | 0 | 0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0 | | MAY | - | | | _ | | | - | | | - | - | • | | 03
JUN | 0 | 0 | 0.00 | 0 | 0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0 | | 07 | | | | | | - - | | | *** | | | | | 03 | ND | ост
06 | ND 0.1 | ND | ND | # SUSPENDED SEDIMENT DISCHARGE | | | DIS- | | SEDI- | |----------|------|---------|--------|---------| | | | CHARGE, | | MENT, | | | | INST. | SEDI- | DIS- | | | | CUBIC | MENT, | CHARGE, | | | | FEET | SUS- | sus- | | DATE | TIME | PER | PENDED | PENDED | | | | SECOND | (MG/L) | (T/DAY) | | JUN 1988 | | | | | | 07 | 1045 | 820 | 13 | 29 | #### 01514937 SUSQUEHANNA RIVER AT SMITHBORO, NY LOCATION.--Lat 42 01'41", long 76 23'07", Tioga County, Hydrologic Unit 02050103, at bridge on State Highway 282, 1.2 mi west of Nichols and 1.2 mi east of Smithboro. DRAINAGE AREA. -- 4,725 mi2. PERIOD OF RECORD.--Water years 1988 to current year. CHEMICAL DATA: 1988 (b), 1989 (a). MINOR ELEMENT DATA: 1988 (b), 1989 (a). PESTICIDE DATA: 1988-89 (a). ORGANIC DATA: 0C--1988 (b). NUTRIENT DATA: 1988 (b), 1989 (a). BIOLOGICAL DATA: Bacteria--1988-89 (a). SEDIMENT DATA: 1988 (a). REMARKS.--Water-discharge data obtained from a discharge rating developed for this site. | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND | SPE-
CIFIC
CON-
DUCT-
ANCE
LAB
(US/CM) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS) | TEMPER-
ATURE
WATER
(DEG C) | TUR-
BID-
ITY
(NTU) | BARO-
METRIC
PRES-
SURE
(MM
OF
HG) | OXYGEN,
DIS-
SOLVED
(MG/L) | COLI-
FORM,
TOTAL,
IMMED.
(COLS.
PER
100 ML) | FECAL
COLI-
FORM
24-HR
MEM.FIL
(COLS./
100 ML) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3) | |----------------|--|--|--|---|--|--|--|--|--|---|--| | APR 1988
05 | 1600 | 14000 | 166 | 7.3 | 15.0 | 17 | | 10.3 | | | 63 | | MAY
05 | 1030 | 6850 | 175 | 7.8 | 11.0 | 5.6 | | 8.4 | 4700 | 280 | 66 | | JUN
09 | 0945 | 2850 | 241 |
7.9 | 16.0 | 7.6 | 759 | 10.2 | 1700 | 65.0 | 93 | | AUG
04 | 1100 | 1200 | 310 | 7.9 | 28.0 | 2.8 | 755 | 8.2 | 160 | 45.0 | 110 | | OCT
04 | 1030 | 850 | 327 | 7.7 | 15.0 | 3.0 | 765 | 7.4 | 780 | 75.0 | 120 | | DATE | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K) | ALKA-
LINITY
LAB
(MG/L
AS
CACO3) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | SOLIDS,
RESIDUE
AT 105
DEG. C,
TOTAL
(MG/L) | | APR 1988
05 | 20 | 3.1 | 6.0 | 1.1 | 47 | 16 | 11 | 0.10 | 116 | 85 | 152 | | MAY
05 | 21 | 3.4 | 7.5 | 1.2 | 49 | 17 | 11 | 0.10 | 96 | 91 | 100 | | JUN | | | | | | | | | | | | | 09 | 29 | 4.9 | 10 | 1.2 | 7 5 | 14 | 16 | 0.10 | 148 | 120 | 188 | | 04
OCT | 34 | 6.4 | 15 | 1.6 | 102 | 21 | 23 | 0.10 | 184 | 162 | 248 | | 04 | 37 | 6.3 | 14 | 1.9 | 98 | 23 | 24 | 0.10 | 188 | 165 | 196 | | DATE | SOLIDS,
VOLA-
TILE ON
IGNI-
TION,
TOTAL
(MG/L) | RESIDUE
TOTAL
FIXED
(MG/L) | NITRO-
GEN,
NITRATE
TOTAL
(MG/L
AS N) | NITRO-
GEN,
NITRITE
TOTAL
(MG/L
AS N) | NITRO-
GEN,
NO2+NO3
TOTAL
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS NH4) | NITRO-
GEN,
ORGANIC
TOTAL
(MG/L
AS N) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | NITRO-
GEN,
TOTAL
(MG/L
AS N) | NITRO-
GEN,
TOTAL
(MG/L
AS NO3) | | APR 1988
05 | 32 | 120 | 0 000 | 0.020 | 0.020 | 0.000 | 0 10 | 0.35 | 0.43 | 1 2 | c <i>c</i> | | MAY | _ | 52 | 0.800 | 0.030 | 0.830 | 0.080 | 0.10 | 0.35 | 0.43 | 1.3 | 5.6 | | 05
JUN | 48 | | 0.600 | 0.00 | 0.600 | 0.050 | 0.06 | 0.19 | 0.24 | 0.84 | 3.7 | | 09
AUG | 56 | 132 | 0.590 | 0.010 | 0.600 | 0.030 | 0.04 | 0.25 | 0.28 | 0.88 | 3.9 | | 04
OCT | 80 | 168 | 0.590 | 0.00 | 0.590 | 0.030 | 0.04 | 0.46 | 0.49 | 1.1 | 4.8 | | 04 | 52 | 144 | 0.980 | 0.020 | 1.00 | 0.040 | 0.05 | 0.18 | 0.22 | 1.2 | 5.4 | # 01514937 SUSQUEHANNA RIVER AT SMITHBORO, NY - continued ### WATER-QUALITY DATA (continued) | DATE APR 1988 05 MAY 05 JUN | PHOS-PHORUS TOTAL (MG/L AS P) 0.060 | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
0.00 | PHOS-
PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4)
0.0 | ALUM-
INUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS AL)
790
250 | CADMIUM
TOTAL
RECOV-
ERABLE
(UG/L
AS CD) | COPPER,
TOTAL
RECOV-
ERABLE
(UG/L
AS CU) | IRON,
TOTAL
RECOV-
ERABLE
(UG/L
AS FE)
1300 | LEAD,
TOTAL
RECOV-
ERABLE
(UG/L
AS PB) | MANGA-
NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | MERCURY
TOTAL
RECOV-
ERABLE
(UG/L
AS HG)
<0.10 | |--|---|---|---|---|--|--|---|--|--|--| | 09
AUG | 0.070 | 0.00 | 0.0 | 310 | 1 | 10 | 610 | 5 | 60 | <0.10 | | 04 | 0.050 | 0.010 | 0.03 | 80 | <1 | 37 | 190 | <5 | 70 | <0.10 | | 04 | 0.070 | 0.030 | 0.09 | 90 | <1 | 8 | 220 | <5 | 40 | <0.10 | | DATE
APR 1988 | NICKEL,
TOTAL
RECOV-
ERABLE
(UG/L
AS NI) | ZINC,
TOTAL
RECOV-
ERABLE
(UG/L
AS ZN) | PHENOL
(C6H-
5OH)
TOTAL
(UG/L) | BROMO-
FORM
TOTAL
(UG/L) | CARBON-
TETRA-
CHLO-
RIDE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
DI-
BROMO-
METHANE
TOTAL
(UG/L) | CHLORO-
ETHANE
TOTAL
(UG/L) | CHLORO-
FORM
TOTAL
(UG/L) | CIS
1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | | 05 | 4 | 20 | ИD | 0 | 0 | 0.0 | 0 | 0 | 0 | 0 | | MAY
05
JUN | 2 | 20 | ИD | 0 | 0 | 0.0 | 0 | 0 | 0 | 0 | | 09
AUG | 8 | 20 | ИД | | | | | | | | | 04
OCT | 2 | 10 | | ND | ИD | ND | ИD | ND | 0.1 | ND | | 04 | 3 | 20 | | ND | ИD | ИD | ИD | ИD | 0.1 | ND | | | | | | | | | | | | | | DATE
APR 1988 | DI-
CHLORO-
BROMO-
METHANE
TOTAL
(UG/L) | METHYL-
BROMIDE
TOTAL
(UG/L) | METHYL-
CHLO-
RIDE
TOTAL
(UG/L) | METHYL-
ENE
CHLO-
RIDE
TOTAL
(UG/L) | 1,1,1-
TRI-
CHLORO-
ETHANE
TOTAL
(UG/L) | 1,1-DI-
CHLORO-
ETHANE
TOTAL
(UG/L) | 1,1-DI-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 1,1,2-
TRI-
CHLORO-
ETHANE
TOTAL
(UG/L) | 1,1,2,2
TETRA-
CHLORO-
ETHANE
TOTAL
(UG/L) | 1,2-DI-
CHLORO-
BENZENE
TOTAL
(UG/L) | | APR 1988
05 | CHLORO-
BROMO-
METHANE
TOTAL | BROMIDE
TOTAL | CHLO-
RIDE
TOTAL | ENE
CHLO-
RIDE
TOTAL | TRI-
CHLORO-
ETHANE
TOTAL | CHLORO-
ETHANE
TOTAL | CHLORO-
ETHYL-
ENE
TOTAL | TRI-
CHLORO-
ETHANE
TOTAL | TETRA-
CHLORO-
ETHANE
TOTAL | CHLORO-
BENZENE
TOTAL | | APR 1988
05
MAY
05 | CHLORO-
BROMO-
METHANE
TOTAL
(UG/L) | BROMIDE
TOTAL
(UG/L) | CHLO-
RIDE
TOTAL
(UG/L) | ENE
CHLO-
RIDE
TOTAL
(UG/L) | TRI-
CHLORO-
ETHANE
TOTAL
(UG/L) | CHLORO-
ETHANE
TOTAL
(UG/L) | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | TRI-
CHLORO-
ETHANE
TOTAL
(UG/L) | TETRA-
CHLORO-
ETHANE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | | APR 1988
05
MAY
05
JUN
09 | CHLORO-
BROMO-
METHANE
TOTAL
(UG/L) | BROMIDE
TOTAL
(UG/L) | CHLO-
RIDE
TOTAL
(UG/L) | ENE
CHLO-
RIDE
TOTAL
(UG/L) | TRI-
CHLORO-
ETHANE
TOTAL
(UG/L) | CHLORO-
ETHANE
TOTAL
(UG/L) | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | TRI-
CHLORO-
ETHANE
TOTAL
(UG/L) | TETRA-
CHLORO-
ETHANE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | | APR 1988
05
MAY
05
JUN
09
AUG
04 | CHLORO-
BROMO-
METHANE
TOTAL
(UG/L)
0 | BROMIDE
TOTAL
(UG/L)
0 | CHLO-
RIDE
TOTAL
(UG/L)
0 | ENE
CHLO-
RIDE
TOTAL
(UG/L)
0 | TRI-
CHLORO-
ETHANE
TOTAL
(UG/L)
0 | CHLORO-
ETHANE
TOTAL
(UG/L)
0 | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
0 | TRI-
CHLORO-
ETHANE
TOTAL
(UG/L)
0 | TETRA-
CHLORO-
ETHANE
TOTAL
(UG/L)
0 | CHLORO-
BENZENE
TOTAL
(UG/L) | | APR 1988
05
MAY
05
JUN
09
AUG | CHLORO-
BROMO-
METHANE
TOTAL
(UG/L)
0 | BROMIDE
TOTAL
(UG/L)
0
0 | CHLO-
RIDE
TOTAL
(UG/L)
0 | ENE
CHLO-
RIDE
TOTAL
(UG/L)
0 | TRI-
CHLORO-
ETHANE
TOTAL
(UG/L)
0 | CHLORO-
ETHANE
TOTAL
(UG/L)
0
0 | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
0 | TRI-
CHLORO-
ETHANE
TOTAL
(UG/L)
0 | TETRA-
CHLORO-
ETHANE
TOTAL
(UG/L)
0 | CHLORO-
BENZENE
TOTAL
(UG/L)
0
0 | | APR 1988
05
MAY
05
JUN
09
AUG
04
OCT
04 | CHLORO-BROMO-METHANE TOTAL (UG/L) 0 0 ND | BROMIDE
TOTAL
(UG/L)
0
0

ND | CHLO-RIDE TOTAL (UG/L) 0 0 ND ND 1,2- TRANSDI CHLORO- | ENE CHLO- RIDE TOTAL (UG/L) 0 0 0.9 1.6 | TRI-
CHLORO-
ETHANE
TOTAL
(UG/L)
0
0 | CHLORO-ETHANE TOTAL (UG/L) 0 0 ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
0
0 | TRI-
CHLORO-
ETHANE
TOTAL
(UG/L)
0
0 | TETRA-
CHLORO-
ETHANE
TOTAL
(UG/L)
0
0 | CHLORO-BENZENE TOTAL (UG/L) 0 0 ND | | APR 1988
05
MAY
05
JUN
09
AUG
04
OCT
04 | CHLORO-BROMO-METHANE TOTAL (UG/L) 0 0 ND ND 1,2-DI-CHLORO-ETHANE WATER WHOLE TOTAL | BROMIDE TOTAL (UG/L) 0 0 ND ND 1,2-DI-CHLORO-PROPANE TOTAL | CHLO-RIDE RIDE TOTAL (UG/L) 0 0 ND ND 1,2- TRANSDI CHLORO- ETHENE TOTAL | ENE CHLO- RIDE TOTAL (UG/L) 0 0 0.9 1.6 1,3-DI- CHLORO- BENZENE TOTAL | TRI- CHLORO- ETHANE TOTAL (UG/L) 0 0 ND ND 1,4-DI- CHLORO- BENZENE TOTAL | CHLORO-ETHANE TOTAL (UG/L) 0 0 ND ND TETRA-CHLORO-ETHYL- ENE TOTAL | CHLORO-ETHYL-ENE TOTAL (UG/L) 0 0 ND TRANS-1,3-DI-CHLORO-PROPENE TOTAL | TRI- CHLORO- ETHANE TOTAL (UG/L) 0 0 ND ND TRI- CHLORO- ETHYL- ENE TOTAL | TETRA-CHLORO-ETHANE TOTAL (UG/L) 0 0 ND ND 2- CHLORO-ETHYL- VINYL- ETHER TOTAL | CHLOROBENZENE TOTAL (UG/L) 0 0 ND ND VINYL CHLO- RIDE TOTAL | | APR 1988
05
MAY
05
JUN
09
AUG
04
OCTT
04
DATE
APR 1988
05
MAY
05 | CHLORO-BROMO-METHANE TOTAL (UG/L) 0 0 ND ND 1,2-DI-CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) | BROMIDE TOTAL (UG/L) 0 0 ND ND 1,2-DI-CHLORO-PROPANE TOTAL (UG/L) | CHLO-RIDE TOTAL (UG/L) 0 0 ND ND 1,2- TRANSDI CHLORO-ETHENE TOTAL (UG/L) | ENE CHLO- RIDE TOTAL (UG/L) 0 0 0.9 1.6 1,3-DI- CHLORO- BENZENE TOTAL (UG/L) | TRI- CHLORO- ETHANE TOTAL (UG/L) 0 0 ND ND 1,4-DI- CHLORO- BENZENE TOTAL
(UG/L) | CHLORO-ETHANE TOTAL (UG/L) 0 0 ND ND TETRA- CHLORO-ETHYL- ENE TOTAL (UG/L) | CHLORO-ETHYL-ENE TOTAL (UG/L) 0 0 ND TRANS- 1,3-DI- CHLORO-PROPENE TOTAL (UG/L) | TRI- CHLORO- ETHANE TOTAL (UG/L) 0 0 ND TRI- CHLORO- ETHYL- ENE TOTAL (UG/L) | TETRA-CHLORO-ETHANE TOTAL (UG/L) 0 0 ND ND 2- CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) | CHLORO-BENZENE TOTAL (UG/L) 0 0 ND ND VINYL CHLO-RIDE TOTAL (UG/L) | | APR 1988
05
MAY
05
JUN
09
AUG
04
OCT
04
DATE
APR 1988
05
MAY
05
JUN
09 | CHLORO-BROMO-METHANE TOTAL (UG/L) 0 0 ND ND 1,2-DI-CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) 0.00 | BROMIDE TOTAL (UG/L) 0 0 ND ND 1,2-DI-CHLORO-PROPANE TOTAL (UG/L) 0 | CHLO-RIDE TOTAL (UG/L) 0 0 ND ND 1,2- TRANSDI CHLORO-ETHENE TOTAL (UG/L) 0 | ENE CHLO- RIDE TOTAL (UG/L) 0 0 0.9 1.6 1,3-DI- CHLORO- BENZENE TOTAL (UG/L) 0 | TRI- CHLORO- ETHANE TOTAL (UG/L) 0 0 ND ND 1,4-DI- CHLORO- BENZENE TOTAL (UG/L) 0 | CHLORO-ETHANE TOTAL (UG/L) 0 0 ND ND TETRA-CHLORO-ETHYL-ENE ETTOTAL (UG/L) 0.0 | CHLORO-ETHYL-ENE TOTAL (UG/L) 0 0 ND TRANS-1,3-DI-CHLORO-PROPENE TOTAL (UG/L) 0 | TRI- CHLORO- ETHANE TOTAL (UG/L) 0 0 ND ND TRI- CHLORO- ETHYL- ENE TOTAL (UG/L) 0 | TETRA-CHLORO-ETHANE TOTAL (UG/L) 0 0 ND ND 2- CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) 0 | CHLOROBENZENE TOTAL (UG/L) 0 0 ND ND VINYL CHLORIDE TOTAL (UG/L) 0 | | APR 1988
05
MAY
05
JUN
09
AUG
04
OCTT
04
DATE
APR 1988
05
MAY
05
JUN
09
AUG
04 | CHLORO-BROMO-METHANE TOTAL (UG/L) 0 0 ND 1,2-DI-CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) 0.00 0.00 | BROMIDE TOTAL (UG/L) 0 0 ND ND 1,2-DI-CHLORO-PROPANE TOTAL (UG/L) 0 0 | CHLO-RIDE TOTAL (UG/L) 0 0 ND ND 1,2- TRANSDI CHLORO-ETHENE TOTAL (UG/L) 0 0 | ENE CHLO- RIDE TOTAL (UG/L) 0 0 0.9 1.6 1,3-DI- CHLORO- BENZENE TOTAL (UG/L) 0 0 | TRI- CHLORO- ETHANE TOTAL (UG/L) 0 0 ND ND 1,4-DI- CHLORO- BENZENE TOTAL (UG/L) 0 0 | CHLORO-ETHANE TOTAL (UG/L) 0 0 ND ND TETRA- CHLORO-ETHYL- ENE TOTAL (UG/L) 0.0 0.0 | CHLORO-ETHYL-ENE TOTAL (UG/L) 0 0 ND TRANS-1,3-DI-CHLORO-PROPENE TOTAL (UG/L) 0 0 | TRI- CHLORO- ETHANE TOTAL (UG/L) 0 0 ND ND TRI- CHLORO- ETHYL- ENE TOTAL (UG/L) 0 0 | TETRA-CHLORO-ETHANE TOTAL (UG/L) 0 0 ND ND 2- CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) 0 0 | CHLORO-BENZENE TOTAL (UG/L) 0 0 ND ND VINYL CHLO-RIDE TOTAL (UG/L) 0 0 | | APR 1988 05 MAY 05 JUN 09 AUG 04 OCT 04 DATE APR 1988 05 MAY 05 JUN 09 JUN 09 AUG | CHLORO-BROMO-METHANE TOTAL (UG/L) 0 0 ND ND 1,2-DI-CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) 0.00 0.00 | BROMIDE TOTAL (UG/L) 0 0 ND ND 1,2-DI-CHLORO-PROPANE TOTAL (UG/L) 0 0 | CHLO-RIDE TOTAL (UG/L) 0 0 ND ND 1,2- TRANSDI CHLORO-ETHENE TOTAL (UG/L) 0 0 | ENE CHLO- RIDE TOTAL (UG/L) 0 0 0.9 1.6 1,3-DI- CHLORO- BENZENE TOTAL (UG/L) 0 0 | TRI- CHLORO- ETHANE TOTAL (UG/L) 0 0 ND ND 1,4-DI- CHLORO- BENZENE TOTAL (UG/L) 0 0 | CHLORO-ETHANE TOTAL (UG/L) 0 0 ND ND TETRA-CHLORO-ETHYL-ENE TOTAL (UG/L) 0.0 0.0 | CHLORO-ETHYL-ENE TOTAL (UG/L) 0 0 ND TRANS-1,3-DI-CHLORO-PROPENE TOTAL (UG/L) 0 0 0 0 0 0 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) 0 0 | TRI- CHLORO- ETHANE TOTAL (UG/L) 0 0 ND ND TRI- CHLORO- ETHYL- ENE TOTAL (UG/L) 0 0 | TETRA-CHLORO-ETHANE TOTAL (UG/L) 0 0 ND ND 2- CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) 0 0 | CHLORO-BENZENE TOTAL (UG/L) 0 0 ND ND VINYL CHLO- RIDE TOTAL (UG/L) 0 0 | # SUSPENDED SEDIMENT DISCHARGE | | | DIS- | | SEDI- | |----------|------|---------|--------|---------| | | | CHARGE, | | MENT, | | | | INST. | SEDI- | DIS- | | | | CUBIC | MENT, | CHARGE, | | | | FEET | SUS- | SUS- | | DATE | TIME | PER | PENDED | PENDED | | | | SECOND | (MG/L) | (T/DAY) | | JUN 1988 | | | | | | 09 | 0945 | 2850 | 15 | 115 | ### 01520500 CHEMUNG RIVER AT CHEMUNG, NY LOCATION.--Lat 42 00'08". long 76 38'06", Chemung County, Hydrologic Unit 02050105, on right bank 100 ft upstream from bridge State Highway 427, 0.7 mi southwest of Chemung, and 10.0 mi upstream from mouth. DRAINAGE AREA .-- 2,506 mi2. PERIOD OF RECORD.--Water years 1953-54, 1962, 1970-78, 1988 to current year. CHEMICAL DATA: 1953-54 (a), 1962 (a), 1970-71 (a), 1972 (b), 1974 (b), 1975-77 (d), 1988 (b), 1989 (a). MINOR ELEMENT DATA: 1953-54 (a), 1972 (b), 1973 (a), 1974 (b), 1975-77 (d), 1988 (b), 1989 (a). PESTICIDE DATA: 1972 (a), 1988 (b), 1989 (a). ORGANIC DATA: 1972 (a), 1974 (a), 1975-77 (d). OC--1988 (b), 1989 (a). NUTRIENT DATA: 1953-54 (a), 1970-71 (a), 1972 (b), 1974 (a), 1975-77 (d), 1988 (b), 1989 (a). BIOLOGICAL DATA: Bacterial--1974 (a), 1975-77 (d). Phytoplankton--1974 (a), 1975 (d), 1976-77 (c). SEDIMENT: 1972 (a), 1975 (b), 1976 (a), 1988 (a), 1989 (a). REMARKS.--Water-discharge data obtained from stream-flow gage at this site. | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND | SPE-
CIFIC
CON-
DUCT-
ANCE
LAB
(US/CM) | PH WATER WHOLE FIELD (STAND- ARD UNITS) | TEMPER-
ATURE
WATER
(DEG C) | TUR-
BID-
ITY
(NTU) | OXYGEN,
DIS-
SOLVED
(MG/L) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K) | |----------------|--|--|--|---|--|---|--|--|---|--|---|---| | APR 1988 | | | | | | | | | | | | | | 05
May | 1050 | 7490 | 176 | 8.0 | 12.0 | | 8.5 | 60 | 18 | 3.7 | 7.2 | 1.6 | | 03
NUT | 1145 | 2770 | 229 | 8.9 | 10.5 | | 10.6 | 82 | 24 | 5.3 | 9.1 | 1.5 | | 07 | 1130 | 1120 | 29 9 | 8.1 | 17.5 | 5.2 | 8.2 | 110 | 33 | 7.3 | 13 | 1.8 | | 01
OCT | 1145 | 715 | 384 | 8.7 | 29.0 | | 8.8 | 140 | 41 | 9.4 | 20 | 2.4 | | 05 | 1130 | 228 | 485 | 8.6 | 17.5 | | 9.0 | 180 | 52 | 13 | 27 | 3.2 | | DATE | ALKA-
LINITY
LAB
(MG/L
AS
CACO3) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | SOLIDS,
RESIDUE
AT 105
DEG. C,
TOTAL
(MG/L) | SOLIDS,
VOLA-
TILE ON
IGNI-
TION,
TOTAL
(MG/L) | RESIDUE
TOTAL
FIXED
(MG/L) | NITRO-
GEN,
NITRATE
TOTAL
(MG/L
AS N) | NITRO-
GEN,
NITRITE
TOTAL
(MG/L
AS N) | NITRO-
GEN,
NO2+NO3
TOTAL
(MG/L
AS N) | | APR 1988
05 | 42 | 22 | 12 | 0.10 | | 90 | | | | | ND | 0.490 | | MAY
03 | 56 | 29 | 15 | 0.10 | | 118 | | | | 0.340 | 0.00 | 0.340 | | JUN
07 | 82 | 31 | 19 | 0.20 | 166 | 155 | 185 | 75 | 110 | 0.590 | 0.020 | 0.610 | | AUG | | | | | -~ | | | | | | | | | 01
OCT | 106 | 33 | 34 | 0.20 | | 204 | | | | 0.340 | 0.00 | 0.340 | | 05 | 125 | 43 | 46 | 0.10 | | 259 | ~- | | | 0.910 | 0.020 | 0.930 | | DATE | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS NH4) | NITRO-
GEN,
ORGANIC
TOTAL
(MG/L
AS N) | NITRO-
GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | NITRO-
GEN,
TOTAL
(MG/L
AS N) | NITRO-
GEN,
TOTAL
(MG/L
AS NO3) | PHOS-
PHORUS
TOTAL
(MG/L
AS P) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P) | PHOS-
PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4) | ALUM-
INUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS AL) | CADMIUM
TOTAL
RECOV-
ERABLE
(UG/L
AS CD) | COPPER,
TOTAL
RECOV-
ERABLE
(UG/L
AS CU) | | APR 1988
05 | 0.180 | 0.23 | 0.06 | 0.24 | 0.73 | 3.2 | 0.340 | 0.010 | 0.03 | 6800 | 1 | 15 | | MAY
03 | 0.010 | 0.01 | 0.16 | 0.17 | 0.51 | 2.3 | 0.040 | 0.00 | 0.0 | 320 | 1 | 9 | | JUN
07 | 0.080 | 0.10 | 0.01 | 0.09 | 0.70 | 3.1 | 0.050 | 0.020 | 0.06 | 230 | 1 | 6 | | AUG
01 | 0.020 | 0.03 | 0.30 | 0.32 | 0.66 | 2.9 | 0.090 | 0.030 | 0.09 | 410 | <1 | 9 | | OCT | 0.010 | 0.03 | | | | 4.9 | | 0.070 | 0.21 | 330 | <1 | 6 | | 05 | 0.010 | 0.01 | 0.16 | 0.17 | 1.1 | 4.9 | 0.120 | 0.070 | 0.21 | 330 | <1 | 0 | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). ### 01520500 CHEMUNG RIVER AT CHEMUNG, NY - continued # WATER-QUALITY DATA (continued) | DATE | TOTAL
RECOV-
ERABLE
(UG/L | LEAD, TOTAL CRECOV- ERABLE (UG/L | TOTAL T
RECOV- R
ERABLE E
(UG/L (| OTAL TO
ECOV- R
RABLE E
UG/L (| OTAL TO
ECOV- RI
RABLE E
UG/L (1 | | PHENOL
(C6H-
5OH)
TOTAL
UG/L) | BROMO-
FORM
TOTAL
(UG/L) | CARBON-
TETRA-
CHLO-
RIDE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
DI-
BROMO-
METHANE
TOTAL
(UG/L) | CHLORO
ETHANE
TOTAL
(UG/L) | |---|---|----------------------------------|--|---|---|---|---|------------------------------------|---|--|---
-------------------------------------| | APR 1988
05 | 11000 | 5 | 440 | <0.10 | 1 | 70 | 3.0 | 0 | 0 | 0.0 | 0 | 0 | | MAY | | | | 20.10 | | | | | | | • | - | | 03
JUN | 570 | <5 | 130 | | 5 | <10 | ND | 0 | 0 | 0.0 | 0 | 0 | | 07
AUG | 450 | <5 | 70 | | 6 | 10 | ND | | | ~~ | | | | 01 | 780 | < 5 | 110 | <0.10 | 4 | <10 | 2.0 | ND | ND | ND | ND | ND | | 05 | 350 | < 5 | 70 | | 3 | <10 | ND | ND | ND | ND | ND | ND | | DATE APR 1988 05 MAY 03 JUN 07 AUG 01 OCT 05 | (UG/L) | PROPENI
TOTAL | - BROMO- | METHYL- | METHYL-
CHLO-
RIDE
TOTAL
(UG/L)
0
0 | METHYLI ENE CHLO- RIDE TOTAL (UG/L) 0 0 ND | TRI- | 1,1-1 RO- CHLOI RE ETHAN TOT (UG/I | RO- ETHY NE EN AL TOT L) (UG/ | DRO- TRI L- CHLC E ETHA L TOI L) (UG/ 0 0 NE | CHLC RO- CHLC RO- CHLC CHLC CHLC CHLC CHLC CHLC CHLC CHLC | RA-RO-NE PAL L) 0 | | DATE | 1,2-DI
CHLORO
BENZEN
TOTAL
(UG/L) | - WATER
IE WHOLE
TOTAL | | CHLORO- | 1,3-DI-
CHLORO-
BENZENE
TOTAL
(UG/L) | 1,4-DI
CHLORC
BENZEN
TOTAL
(UG/L) | - ETHYL
E ENE
TOTA | CO- 1,3-1
CHLOI
PROPI | DI- CHLO
RO- ETHY
ENE EN
AL TOT | DRO- ETHY
L- VINY
IE ETH | RO-
L- VIN
L- CHI
ER RIE
AL TOT | O- | | APR 1988
05 | 0 | 0.00 | 0 | 0 | 0 | 0 | |).0 (| 2 | 0 | 0 | 0 | | MAY | | 0.00 | | _ | | - | | | - | - | - | | | 03
JUN | 0 | 0.00 | 0 | 0 | 0 | 0 | O | 0.0 | 0 | 0 | 0 | 0 | | 07
AUG | | | | | | | | | | | | - | | 01 | ND) NE |) NE | , | | 05 | ND | ND | ND | ND | ND | ИD | ND | ND | ND |) ND | NE | 1 | # SUSPENDED SEDIMENT DISCHARGE | EDI- | |--------| | ENT, | | DIS- | | ARGE, | | SUS- | | PENDED | | (YAD\ | | | | 25 | | | | 6.8 | | | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). ### 01520500 CHEMUNG RIVER AT CHEMUNG, NY - continued ### BED MATERIAL ANALYSES | | | | | | BED | MAIDAI | .ALI A | WALISES | | | | | | | | | |------------------------------|---|--|--|--|---|---------------------------------|--------------------------------|---|--|--|----------------------------------|--|---|-----------------------------|---|--| | DATE | TIME | SOLIE
VOLA
TILE
BOTTO
MA-
TERI
(MG/K | A- IN IN RE OM FM TOM IAL TE | UM, RECOV. FM BOT- TOM MA- TE | COV. M
BOT- R
MA- FM
RIAL TO
G/G T | IUM,
ECOV. | FM E
TOM
TER
(UG | COV. RI
BOT- FM
MA- TOI
RIAL TI | ECOV.
BOT- F
M MA- T
ERIAL
UG/G | LEAD, RECOV. M BOT- OM MA- TERIAL (UG/G AS PB) | NES
REC
FM I
TOM
TEI | SE, F
COV. FN
BOT- TO
MA- T
RIAL | RCURY
ECOV.
BOT-
M MA-
PERIAL
UG/G
LS HG) | RE
FM
TOM
TE
(U | | ZINC,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS ZN) | | 00m 1007 | | | | | | | | | | | | | | | | | | OCT 1987
26
AUG 1988 | 1100 | 83 | 160 | | <1 | <10 | | 1 | 3500 | <10 | | 100 | <0.10 | | <10 | 20 | | 15 | 1000 | 108 | 300 | 2100 | <10 | | | <1 | 4900 | <100 | | 180 | 0.02 | | <100 | 20 | | DATE OCT 1987 26 AUG 1988 15 | AROCI
122:
IN
BOTTY
MAC
(UG/) | L A
DM
C. E
(G) (| AROCLOR
1248
PCB
SOT.MAT
(UG/KG) | AROCLOR
1254
PCB
BOT.MAT
(UG/KG) | AROCLOR
1260
PCB
BOT.MAT
(UG/KG) | IN BO | IN,
AL
PT-
IA-
IAL | ALPHA
BHC
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | ATRA-
ZINE,
TOTAL
IN BOT
TOM MA
TERIA
(UG/KG | BENZ
HEX
- CHL
- ID
L BOT. | A-
OR-
E
MAT
KG) | CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAI (UG/KG) | CHLC
PYRI
IN E | FOS
SOT.
'KG) | DELT
BENZE
HEXA
CHLO
IDE
BOT.M
(UG/K | NE

R-
AT | | DATE | DI-
AZINO
TOTA
IN BO
TOM I
TER:
(UG/I | ON, E
AL
OT- I
MA- I
IAL | DI-
ELDRIN,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | ENDO-
SULFAN
ALPHA
BOT.MAT
(UG/KG) | ENDO-
SULFAN
BETA
BOT.MAT
(UG/KG) | ENDO
SULFA
SULFA
BOT.M | AN
TE
AT | ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) | ENDRIN
ALDE-
HYDE
BOT.MA
(UG/KG | IN E
TOM
T TER | AL
OT-
MA-
IAL | HEPTA-
CHLOR,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | CHI
EPOX
TOT.
BOX | IDE
IN
TOM | MALA
THIO
TOTA
IN BO
TOM M
TERI
(UG/K | N,
L
T-
IA-
AL | | OCT 1987 | | | | | | | | | | | | | | | | | | 26
AUG 1988 | | - | | | | | • | | | - | - | | • | | | | | 15 | ND | | ND | ND | ND | ND | | ND | ND | NE |) | ND | NI |) | ND | | | DATE | METI
OXY-
CHLO
TOT.
BOT
MA'
(UG/) | OR,
IN I
IOM T | MIREX,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | P,P' DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) | P, P' DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) | TOM M | T,
L
MT-
IA-
IAL | PARA-
THION,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | TOXA-PHENE TOTAL IN BOT TOM MA TERIA (UG/KG | FA
- DIA
- % FI
L TH | T.
LL
M.
NER | BED
MAT.
SIEVE
DIAM.
% FINEI
THAN
.062 MI | SII
DI/
R & FI | T.
EVE | BED
MAT
SIEV
DIAM
% FIN
THA
2.00 | r.
Te
I.
IER
IN | | OCT 1987 | | - | | | | | - | | | | 0 | ; | 3 | 15 | | 98 | | AUG 1988
15 | ND | | ND | ND | ND | ND | | ND | ND | | 1 | | Į | 100 | | | | | | | | | | | | | • | | - | - | - | | | | #### ALLEGHENY RIVER BASIN #### 03011020 ALLEGHENY RIVER AT SALAMANCA, NY LOCATION.--Lat 42 09'23",long 78 42'56", Cattaraugus County, Hydrologic Unit 05010001, on left bank 230 ft upstream from Main Street bridgein Salamanca,1.3 mi downstream from Great Valley Creek, and 1.6 mi upstream from Little Valley Creek. DRAINAGE AREA. -- 1,608 mi2. PERIOD OF RECORD.-- Water years 1967, 1971-74, 1988 to current year. CHEMICAL DATA: 1967 (a). 1971-72 (a). 1988 (b), 1989 (a). MINOR ELEMENT DATA: 1967 (a), 1971 (a), 1972-74 (a), 1988 (b), 1989 (a). PESTICIDE DATA: 1988 (b), 1989 (a). NUTRIENT DATA: 1967 (a), 1971-72 (a), 1988 (b), 1989 (a). REMARKS. -- Water-discharge data obtained from stream-flow gage at this site. | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND | SPE-
CIFIC
CON-
DUCT-
ANCE
LAB
(US/CM) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS) | TEMPER-
ATURE
WATER
(DEG C) | TUR-
BID-
ITY
(NTU) | BARO-
METRIC
PRES-
SURE
(MM
OF
HG) | OXYGEN,
DIS-
SOLVED
(MG/L) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG) | |--------------------|--|--|--|---|--|--|--|---|--|--|---|--| | APR 1988 | | | | | | | | | | | | | | 12
M A Y | 1115 | 2780 | 129 | 7.2 | 10.0 | 5.8 | | | | | | | | 10
JUL | 1230 | 3120 | 158 | 7.2 | 15.0 | 43 | | 8.0 | | | | | | 21
OCT | 1030 | 349 | 307 | 7.9 | 22.0 | 6.4 | | 6.4 | | 88 | 26 | 5.7 | | 17 | 1030 | 391 | 298 | 8.0 | 11.0 | 5.2 | 764 | 10.0 | 90 | 88 | 26 | 5.7 | | DATE | SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K) | ALKA-
LINITY
LAB
(MG/L
AS
CACO3) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | SOLIDS,
RESIDUE
AT 105
DEG. C,
TOTAL
(MG/L) | SOLIDS,
VOLA-
TILE ON
IGNI-
TION,
TOTAL
(MG/L) | RESIDUE
TOTAL
FIXED
(MG/L) | NITRO-
GEN,
NITRATE
TOTAL
(MG/L
AS N) | | APR 1988 | | | | | | | | | | | | | | 12
MAY | | | 27 | 11 | 10 | 0.40 | 72 | | 86 | 14 | 72 | 0.360 | | 10
JUL | | | 31 | | | | 116 | | 204 | 100 | 104 | 0.320 | | 21 | 24 | 1.8 | 6 6 | 14 | 44 | 0.10 | 188 | 155 | 232 | 76 | 156 | 0.530 | | ост
17 | 25 | 1.8 | 60 | 20 | 40 | 0.10 | 160 | 155 | 172 | 12 | 160 | 0.430 | | DATE | NITRO-
GEN,
NITRITE
TOTAL
(MG/L
AS N) | NITRO-
GEN,
NO2+NO3
TOTAL
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS NH4) | NITRO-
GEN,
ORGANIC
TOTAL
(MG/L
AS N) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | NITRO-
GEN,
TOTAL
(MG/L
AS N) | NITRO-
GEN,
TOTAL
(MG/L
AS NO3) | PHOS-
PHORUS
TOTAL
(MG/L
AS P) |
PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P) | PHOS-
PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4) | ALUM-
INUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS AL) | | APR 1988 | | 0.000 | | | | | | | 0.040 | | | 400 | | 12
May | 0.00 | 0.360 | 0.020 | 0.03 | 0.10 | 0.12 | 0.48 | 2.1 | 0.040 | 0.00 | 0.0 | 180 | | 10
JUL | 0.00 | 0.320 | 0.090 | 0.12 | 0.32 | 0.41 | 0.73 | 3.2 | 0.190 | 0.00 | 0.0 | 1100 | | 21
OCT | 0.010 | 0.540 | 0.050 | 0.06 | 0.38 | 0.43 | 0.97 | 4.3 | 0.050 | ND | | 400 | | 17 | 0.00 | 0.430 | 0.010 | 0.01 | 0.89 | 0.90 | 1.3 | 5.9 | 0.040 | 0.00 | 0.0 | 200 | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). ### ALLEGHENY RIVER BASIN # 03011020 ALLEGHENY RIVER AT SALAMANCA, NY - continued # WATER-QUALITY DATA (continued) | | | | | | | | , , , , , , , , , , , , | | | | | | |-----------------------------------|---|---|---|--|---|---|---|--|---|--|--|---| | DATE | CADMIUM
TOTAL
RECOV-
ERABLE
(UG/L
AS CD) | COPPER,
TOTAL
RECOV-
ERABLE
(UG/L
AS CU) | IRON,
TOTAL
RECOV-
ERABLE
(UG/L
AS FE) | LEAD,
TOTAL
RECOV-
ERABLE
(UG/L
AS PB) | MANGA-
NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | MERCURY
TOTAL
RECOV-
ERABLE
(UG/L
AS HG) | NICKEL,
TOTAL
RECOV-
ERABLE
(UG/L
AS NI) | ZINC,
TOTAL
RECOV-
ERABLE
(UG/L
AS ZN) | BROMO-
FORM
TOTAL
(UG/L) | CARBON-
TETRA-
CHLO-
RIDE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
DI-
BROMO-
METHANE
TOTAL
(UG/L) | | APR 1988 | | | | | | | | | | | | | | 12 | <1 | 3 | 550 | < 5 | 80 | <0.10 | 12 | <10 | ND | ND | ND | ND | | MAY
10 | 1 | 8 | 2400 | < 5 | 180 | | 6 | 20 | ND | ND | ND | ND | | JUL
21 | <1 | 34 | 750 | < 5 | 160 | <0.10 | 4 | 30 | ND | ND | ND | ND | | OCT | | | | | | | | | | | | | | 17 | 1 | 3 | 580 | <5 | 80 | <0.10 | 6 | <10 | ND | ND | ND | ND | | DATE | CHLORO-
ETHANE
TOTAL
(UG/L) | CHLORO-
FORM
TOTAL
(UG/L) | CIS
1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | DI-
CHLORO-
BROMO-
METHANE
TOTAL
(UG/L) | METHYL-
BROMIDE
TOTAL
(UG/L) | METHYL-
CHLO-
RIDE
TOTAL
(UG/L) | METHYL-
ENE
CHLO-
RIDE
TOTAL
(UG/L) | 1,1,1-
TRI-
CHLORO-
ETHANE
TOTAL
(UG/L) | 1,1-DI-
CHLORO-
ETHANE
TOTAL
(UG/L) | 1,1-DI-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 1,1,2-
TRI-
CHLORO-
ETHANE
TOTAL
(UG/L) | 1,1,2,2
TETRA-
CHLORO-
ETHANE
TOTAL
(UG/L) | | APR 1988 | } | | | | | | | | | | | | | 12 | ND | MAY | N.D. | MP | W.D. | ND | ND | ND | N.D. | ND | N.D. | MD | ND | ND | | 10
JUL | ND | ND | ND | מא | ND | ND | ND | מא | ND | ND | NU | ND | | 21
OCT | ND | ND | ИD | ND | ND | ИD | ND | ND | ИD | ND | ND | ND | | 17 | ND | 0.1 | ND | | | | | | | | | | | | | | | DAT | CHLO
BENZ
TE TO | ZENE WHO | ORO-
ANE 1,2-
TER CHLO
OLE PROP
TAL TOT | DI- TRANDRO- CHLO
PANE ETHE | ORO- CHLO
ENE BENI
PAL TO | DRO- CHLO
ZENE BENI
TAL TO | oro- eth
zene eni
ral to: | ORO- 1,3-
YL- CHLO
E PROI
TAL TO | PENE EN
TAL TO | ORO- ETHY
(L- VINY
NE ETH
PAL TO | ORO-
(L- VII
(L- CHI
HER RII
TAL TO | FAL | | | (UG, | /L) (UG, | /L) (UG/ | /L) (UG/ | L) (UG | /L) (UG | /L) (UG | /L) (UG, | /L) (U) | 3/L) (UG, | /L) (U | G/L) | | APR 198
12
MAY
10
JUL | . NI | | | | | | | | | | | | | 21 | . NI | D NI | D NI | D NI |) NI | וא ס | וא ס | D NI | D NI | NI C | o Ni | ס | | OCT | | | - *** | - ••• | | | _ ••• | - ••• | ,, | • ••• | | | | 17 | . NI | D NI | D NI | D NI |) NI | D N | D N | D NI | D | 0.2 N | וא כ | ס | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). ### 04213320 CHAUTAUQUA CREEK AT BARCELONA, NY LOCATION.--Lat 42 20'15", long 79 36'04", Chautauqua County, Hydrologic Unit 04120101, at bridge on State Highway 5, at Barcelona, and about 0.8 mi (1.3 km) down stream from Westfield Sewage Disposal Plant out Fall. DRAINAGE AREA. -- 35.6 mi2. PERIOD OF RECORD.--Water years 1987 to 1989. CHEMICAL DATA: 1987 (b) 1988 (d), 1989 (a). MINOR ELEMENT DATA: 1987 (b), 1988 (d), 1989 (a). PESTICIDE DATA: 1987 (b) 1988 (d), 1989 (a). NUTRIENT DATA: 1987 (b) 1988 (d), 1989 (a). SEDIMENT DATA: 1987 (a), 1988 (b), 1989 (a). | DATE | TIME | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | SPE-
CIFIC
CON-
DUCT-
ANCE
LAB
(US/CM) | PH WATER WHOLE FIELD (STAND- ARD UNITS) | TEMPER-
ATURE
WATER
(DEG C) | TUR-
BID-
ITY
(NTU) | BARO-
METRIC
PRES-
SURE
(MM
OF
HG) | OXYGEN,
DIS-
SOLVED
(MG/L) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | |------------------|--------------|---|--|---|--------------------------------------|------------------------------|--|-------------------------------------|---|--|--|--| | APR 1987 | | | | | | | | | | | | | | 16 | 0715 | | | 7.9 | 7.5 | 9.6 | | 15.5 | 110 | 36 | 5.8 | | | 30 | 0830 | | | 8.0 | 5.0 | 2.2 | | 12.0 | 130 | 42 | 6.7 | | | MAY | | | | | | | | | | | | | | 19 | 1500 | | 327 | 8.7 | 18.0 | 1.1 | | | 150 | 46 | 9.6 | | | JUN | | | | | | | | | | | | | | 23 | 0900 | | | 8.3 | 17.0 | 38 | | | 100 | 32 | 4.8 | | | JUL
21 | 0900 | | | 8.0 | 25.0 | 1.0 | | 7.9 | 180 | 59 | 8.3 | | | OCT | 0900 | | | 8.0 | 25.0 | 1.0 | | 7.9 | 180 | 29 | 8.3 | | | 01 | 0910 | | 224 | 8.5 | 12.0 | 20 | | | | | | | | NOV | 0,10 | | 224 | 0.5 | 12.0 | 20 | | | | | | | | 17 | 1645 | | | 8.0 | 12.0 | 2.5 | | 15.5 | 140 | 44 | 7.3 | | | DEC | _ | | | | | | | | | | | | | 10 | 0945 | | | 8.1 | 4.0 | 64 | | 12.0 | | | | | | MAR 1988 | | | | | | | | | | | | | | 24 | 0930 | | 166 | 7.6 | 3.0 | 100 | | | 62 | 19 | 3.5 | 6.2 | | APR | | | | | | | | | | | | | | 07 | 1230 | | 226 | 8.0 | 10.0 | 40 | | | | | | | | 21 | 0915 | | 255 | 8.2 | 5.0 | 0.0 | | | 110 | 34 | 6.2 | 6.8 | | MAY | 1115 | | 2.50 | | | | | | | | | | | 0 4
19 | 1115
1130 | | 268
237 | 8.3
8.2 | 11.0 | 9.7 | | 11.2 | 98 | 30 |
5.5 | 7.1 | | JUN | 1130 | | 231 | 8.2 | 12.0 | 15 | | 10.2 | 98 | 30 | 5.5 | 7.1 | | 27 | 1815 | 438 | 440 | 8.7 | 24.0 | 0.60 | | 8.7 | 160 | 49 | 9.1 | 20 | | SEP | 1013 | 400 | 440 | 0.7 | 24.0 | 0.60 | | 0.7 | 160 | 4.7 | 9.1 | 20 | | 08 | 1030 | | 406 | 8.1 | 14.5 | 1.7 | | | 180 | 54 | 10 | 11 | | OCT | | | ••• | 0.1 | 2 | _ • • | | | 100 | | | | | 06 | 1015 | | 398 | 8.3 | 10.0 | 4.9 | 772 | 10.4 | 170 | 52 | 9.7 | 15 | | NOV | | | | | | | | | | | | | | 17 | 1130 | | 255 | 7.9 | 5.0 | 2.8 | 760 | 11.6 | 110 | 34 | 6.3 | 6.1 | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). # 04213320 CHAUTAUQUA CREEK AT BARCELONA, NY - continued | DATE | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K) | ALKA-
LINITY
LAB
(MG/L
AS
CACO3) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | SOLIDS,
RESIDUE
AT 105
DEG. C,
TOTAL
(MG/L) | SOLIDS,
VOLA-
TILE ON
IGNI-
TION,
TOTAL
(MG/L) | RESIDUE
TOTAL
FIXED
(MG/L) | NITRO-
GEN,
NITRATE
TOTAL
(MG/L
AS N) | |--|--|--|--|--|--|---|--|--|---|--
---| | APR 1987 | | | | | | | | | | | | | 16 | | | | | | 110 | | 157 | 44 | 102 | | | 30
MAY | | | | | | 146 | | 168 | 32 | 128 | | | 19 | | | | | | 240 | | 260 | 24 | 236 | | | JUN
23
JUL | | | | | | 140 | | 260 | 80 | 132 | 0.830 | | 21
OCT | | | | | | 248 | | 256 | 28 | 228 | | | 01
NOV | | | | | | 164 | | 192 | 28 | 164 | | | 17 | | | | | | 176 | | 196 | 76 | 116 | | | 10
MAR 1988 | ~- | | | | | 124 | | 352 | 76 | 276 | | | 24
APR | 1.1 | 48 | 16 | 11 | 0.10 | 102 | 87 | 410 | 52 | 358 | 0.520 | | 07
21 | 1.2 | 70
82 | 30
29 | 10
12 | 0.10
0.10 | 152
160 |
139 | 228
212 | 60
52 | 168
160 | 0.470
0.530 | | MAY
04 | ~- | 84 | | | | 176 | | 208 | 44 | 164 | | | 19
JUN | 1.5 | 78 | 23 | 10 | 0.20 | 124 | 124 | 232 | 36 | 196 | | | 27
SEP | 7.7 | 108 | 60 | 24 | 0.40 | 265 | 235 | 296 | 101 | 195 | 2.66 | | 08 | 4.3 | 120 | 63 | 14 | 0.10 | 256 | 228 | 264 | 76 | 188 | | | 06 | 4.5 | 125 | 56 | 13 | 0.20 | 264 | 226 | 268 | 44 | 224 | | | 17 | 1.9 | 80 | 33 | 9.4 | 0.10 | 136 | 139 | 140 | 48 | 92 | | | | | | | | | | | | | | | | DATE | NITRO-
GEN,
NITRITE
TOTAL
(MG/L
AS N) | NITRO-
GEN,
NO2+NO3
TOTAL
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS NH4) | NITRO-
GEN,
ORGANIC
TOTAL
(MG/L
AS N) | NITRO-
GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | NITRO-
GEN,
TOTAL
(MG/L
AS N) | NITRO-
GEN,
TOTAL
(MG/L
AS NO3) | PHOS-
PHORUS
TOTAL
(MG/L
AS P) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P) | PHOS-
PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4) | | APR 1987 | GEN, NITRITE TOTAL (MG/L AS N) | GEN,
NO2+NO3
TOTAL
(MG/L
AS N) | GEN,
AMMONIA
TOTAL
(MG/L
AS N) | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4) | GEN,
ORGANIC
TOTAL
(MG/L
AS N) | GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | GEN,
TOTAL
(MG/L
AS N) | GEN,
TOTAL
(MG/L
AS NO3) | PHORUS
TOTAL
(MG/L
AS P) | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P) | PHATE,
ORTHO,
DIS-
SOLVED
(MG/L | | APR 1987
16
30 | GEN,
NITRITE
TOTAL
(MG/L | GEN,
NO2+NO3
TOTAL
(MG/L | GEN,
AMMONIA
TOTAL
(MG/L | GEN,
AMMONIA
TOTAL
(MG/L | GEN,
ORGANIC
TOTAL
(MG/L | GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L | GEN,
TOTAL
(MG/L | GEN,
TOTAL
(MG/L | PHORUS
TOTAL
(MG/L | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L | PHATE,
ORTHO,
DIS-
SOLVED
(MG/L | | APR 1987
16
30
MAY
19 | GEN,
NITRITE
TOTAL
(MG/L
AS N) | GEN,
NO2+NO3
TOTAL
(MG/L
AS N) | GEN,
AMMONIA
TOTAL
(MG/L
AS N) | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4) | GEN,
ORGANIC
TOTAL
(MG/L
AS N) | GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | GEN,
TOTAL
(MG/L
AS N) | GEN,
TOTAL
(MG/L
AS NO3) | PHORUS
TOTAL
(MG/L
AS P) | PHORUS ORTHO, DIS- SOLVED (MG/L AS P) | PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4) | | APR 1987
16
30
MAY
19
JUN
23 | GEN,
NITRITE
TOTAL
(MG/L
AS N)
ND
ND | GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
0.560
0.390 | GEN,
AMMONIA
TOTAL
(MG/L
AS N)
0.030
0.020 | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4)
0.04 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.11
0.12 | GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
0.14 | GEN,
TOTAL
(MG/L
AS N)
0.70
0.53 | GEN,
TOTAL
(MG/L
AS NO3)
3.1
2.3 | PHORUS
TOTAL
(MG/L
AS P)
0.020
0.010 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
ND
0.00 | PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4) | | APR 1987 16 30 MAY 19 JUN 23 JUL 21 | GEN, NITRITE TOTAL (MG/L AS N) ND ND | GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
0.560
0.390 | GEN,
AMMONIA
TOTAL
(MG/L
AS N)
0.030
0.020 | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4)
0.04
0.03 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.11
0.12 | GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
0.14
0.14 | GEN,
TOTAL
(MG/L
AS N)
0.70
0.53 | GEN,
TOTAL
(MG/L
AS NO3)
3.1
2.3 | PHORUS
TOTAL
(MG/L
AS P)
0.020
0.010 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
ND
0.00 | PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4) | | APR 1987 16 30 MAY 19 JUN 23 JUL 21 OCT 01 | GEN, NITRITE TOTAL (MG/L AS N) ND ND ND ND O.00 | GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
0.560
0.390
0.600 | GEN,
AMMONIA
TOTAL
(MG/L
AS N)
0.030
0.020
0.020 | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4)
0.04
0.03
0.03 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.11
0.12
0.08 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.14 0.14 0.10 0.29 | GEN,
TOTAL
(MG/L
AS N)
0.70
0.53
0.70 | GEN,
TOTAL
(MG/L
AS NO3)
3.1
2.3
3.1
5.0 | PHORUS
TOTAL
(MG/L
AS P)
0.020
0.010
0.030 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
ND
0.00
0.020 | PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4) | | APR 1987 16 30 MAY 19 JUN 23 JUL 21 OCT 01 NOV 17 | GEN, NITRITE TOTAL (MG/L AS N) ND ND ND ND | GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
0.560
0.390
0.600
0.830
1.49 | GEN,
AMMONIA
TOTAL
(MG/L
AS N)
0.020
0.020
0.020
0.080
0.010 | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4)
0.04
0.03
0.03
0.10 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.11
0.12
0.08
0.21 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.14 0.14 0.10 0.29 | GEN,
TOTAL
(MG/L
AS N)
0.70
0.53
0.70
1.1 | GEN,
TOTAL
(MG/L
AS NO3)
3.1
2.3
3.1
5.0 | PHORUS
TOTAL
(MG/L
AS P)
0.020
0.010
0.030
0.100
0.00 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
ND
0.00
0.020
0.00 | PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4) | | APR 1987 16 30 MAY 19 JUN 23 JUL 21 OCT 01 NOV 17 DEC 10 | GEN, NITRITE TOTAL (MG/L AS N) ND | GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
0.560
0.390
0.600
0.830
1.49 | GEN,
AMMONIA
TOTAL
(MG/L
AS N)
0.030
0.020
0.020
0.080
0.010 | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4)
0.04
0.03
0.03
0.10
0.01 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.11
0.12
0.08
0.21
0.14 | GEN, AM- MONIA + ORGANIC TOTTAL (MG/L AS N) 0.14 0.14 0.10 0.29 0.15 | GEN,
TOTAL
(MG/L
AS N)
0.70
0.53
0.70
1.1
1.6 | GEN,
TOTAL
(MG/L
AS NO3)
3.1
2.3
3.1
5.0
7.3 | PHORUS
TOTAL
(MG/L
AS P)
0.020
0.010
0.030
0.100
0.00
0.050 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
ND
0.00
0.020
0.00 | PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4) | | APR 1987 16 30 MAY 19 JUN 23 JUL 21 OCT 01 NOV 17 DEC 10 MAR 1988 24 | GEN, NITRITE TOTAL (MG/L AS N) ND | GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
0.560
0.390
0.600
0.830
1.49
0.060
0.130 | GEN,
AMMONIA
TOTAL
(MG/L
AS N)
0.020
0.020
0.020
0.080
0.010 | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4)
0.04
0.03
0.03
0.10
0.01 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.11
0.12
0.08
0.21
0.14 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.14 0.14 0.10 0.29 0.15 0.28 0.14 | GEN,
TOTAL
(MG/L
AS N)
0.70
0.53
0.70
1.1
1.6
0.34 | GEN,
TOTAL
(MG/L
AS NO3)
3.1
2.3
3.1
5.0
7.3
1.5 | PHORUS
TOTAL
(MG/L
AS P)
0.020
0.010
0.030
0.100
0.050
0.050 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
ND
0.00
0.020
0.00
0.00 | PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4) | | APR 1987 16 30 MAY 19 JUN 23 JUL 21 OCT 01 NOV 17 DEC 10 MAR 1988 | GEN, NITRITE TOTAL (MG/L AS N) ND | GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
0.560
0.390
0.600
0.830
1.49
0.060
0.130 | GEN, AMMONIA TOTAL (MG/L AS N) 0.030 0.020 0.020 0.080 0.010 0.030 ND | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4)
0.04
0.03
0.10
0.01
0.04
 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.11
0.12
0.08
0.21
0.14
0.25 | GEN, AM- MONIA + ORGANIC (MG/L AS N) 0.14 0.14 0.10 0.29 0.15 0.28 0.14 | GEN,
TOTAL
(MG/L
AS N)
0.70
0.53
0.70
1.1
1.6
0.34
0.27
0.69 | GEN,
TOTAL
(MG/L
AS NO3)
3.1
2.3
3.1
5.0
7.3
1.5
1.2 | PHORUS
TOTAL
(MG/L
AS P)
0.020
0.010
0.030
0.100
0.00
0.050
0.010 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
ND
0.00
0.020
0.00
0.00
0.00
ND | PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4)

0.0
0.0
0.0
0.0 | | APR 1987 16 30 MAY 19 JUN 23 OCT 01 NOV 17 DEC 10 MAR 1988 24 APR 07 21 MAY | GEN, NITRITE TOTAL (MG/L AS N) ND ND ND ND ND ND O.000 ND | GEN, NO2+NO3 TOTAL (MG/L AS N) 0.560 0.390 0.600 0.830 1.49 0.060 0.130 0.310 0.520 0.470 0.530 | GEN, AMMONIA TOTAL (MG/L AS N) 0.030 0.020 0.020 0.080 0.010 0.030 ND 0.120 0.310 0.070 0.080 | GEN, AMMONIA TOTAL (MG/L AS NH4) 0.04 0.03 0.10 0.01 0.04 0.15 0.40 0.09 0.10 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.11
0.12
0.08
0.21
0.14
0.25

0.26
0.25
0.18
0.16 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.14 0.14 0.10 0.29 0.15 0.28 0.14 0.38 0.56 0.25 0.24 | GEN,
TOTAL
(MG/L
AS N)
0.70
0.53
0.70
1.1
1.6
0.34
0.27
0.69
1.1 | GEN,
TOTAL
(MG/L
AS
NO3)
3.1
2.3
3.1
5.0
7.3
1.5
1.2
3.1
4.8 | PHORUS
TOTAL
(MG/L
AS P)
0.020
0.010
0.030
0.100
0.050
0.010
0.190
0.230
0.040
0.070 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
ND
0.00
0.020
0.00
ND
0.00
0.00
0.00 | PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4)

0.0
0.06
0.0
0.0

0.0
0.06 | | APR 1987 16 30 MAY 19 JUN 23 JUL 21 OCT 01 NOV 17 DEC 10 MAR 1988 24 APR 07 21 MAY 04 19 | GEN, NITRITE TOTAL (MG/L AS N) ND ND ND ND ND ND O.000 ND | GEN, NO2+NO3 TOTAL (MG/L AS N) 0.560 0.390 0.600 0.830 1.49 0.060 0.130 0.310 0.520 0.470 | GEN, AMMONIA TOTAL (MG/L AS N) 0.030 0.020 0.020 0.080 0.010 0.030 ND 0.120 0.310 0.070 | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4)
0.03
0.03
0.10
0.01
0.04

0.15
0.40 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.11
0.12
0.08
0.21
0.14
0.25

0.26
0.25 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.14 0.14 0.10 0.29 0.15 0.28 0.14 0.38 0.56 | GEN,
TOTAL
(MG/L
AS N)
0.70
0.53
0.70
1.1
1.6
0.34
0.27
0.69
1.1 | GEN,
TOTAL
(MG/L
AS NO3)
3.1
2.3
3.1
5.0
7.3
1.5
1.2
3.1
4.8 | PHORUS
TOTAL
(MG/L
AS P)
0.020
0.010
0.030
0.100
0.050
0.010
0.190
0.230
0.040 | PHORUS ORTHO, DIS-SOLVED (MG/L AS P) ND 0.00 0.020 0.00 ND 0.00 0.00 0.00 0.00 | PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4)

0.0
0.06
0.0
0.0 | | APR 1987 16 30 MAY 19 JUN 23 OCT 01 NOV 17 DEC 10 MAR 1988 24 APR 07 21 MAY 04 19 JUN 27 | GEN, NITRITE TOTAL (MG/L AS N) ND ND ND ND ND O.000 ND | GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
0.560
0.390
0.600
0.830
1.49
0.060
0.130
0.310
0.520
0.470
0.530 | GEN, AMMONIA TOTAL (MG/L AS N) 0.030 0.020 0.080 0.010 0.030 ND 0.120 0.310 0.070 0.080 0.010 | GEN, AMMONIA TOTAL (MG/L AS NH4) 0.04 0.03 0.10 0.01 0.04 0.15 0.40 0.09 0.10 0.01 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.11
0.12
0.08
0.21
0.14
0.25

0.26
0.25
0.18
0.16 | GEN, AM- MONIA + ORGANIC TOTTAL (MG/L AS N) 0.14 0.10 0.29 0.15 0.28 0.14 0.38 0.56 0.25 0.24 0.13 | GEN,
TOTAL
(MG/L
AS N)
0.70
0.53
0.70
1.1
1.6
0.34
0.27
0.69
1.1 | GEN,
TOTAL
(MG/L
AS NO3)
3.1
2.3
3.1
5.0
7.3
1.5
1.2
3.1
4.8
3.2
3.4 | PHORUS TOTAL (MG/L AS P) 0.020 0.010 0.030 0.100 0.050 0.010 0.190 0.230 0.040 0.070 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
ND
0.00
0.020
0.00
0.00
ND
0.020
0.00
0.00
0.00 | PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4)

0.0
0.06
0.0
0.0
0.0
0.06 | | APR 1987 16 30 MAY 19 JUN 23 OCT 01 NOV 17 DEC 10 MAR 1988 24 APR 07 21 MAY 04 19 JUN | GEN, NITRITE TOTAL (MG/L AS N) ND | GEN, NO2+NO3 TOTAL (MG/L AS N) 0.560 0.390 0.600 0.830 1.49 0.060 0.130 0.310 0.520 0.470 0.530 0.820 0.380 | GEN, AMMONIA TOTAL (MG/L AS N) 0.030 0.020 0.020 0.080 0.010 0.030 ND 0.120 0.310 0.070 0.080 0.010 0.080 | GEN, AMMONIA TOTAL (MG/L AS NH4) 0.04 0.03 0.10 0.01 0.04 0.15 0.40 0.09 0.10 0.01 0.05 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.11
0.12
0.08
0.21
0.14
0.25

0.26
0.25
0.18
0.16 | GEN, AM- MONIA + ORGANIC TOTTAL (MG/L AS N) 0.14 0.14 0.10 0.29 0.15 0.28 0.14 0.38 0.56 0.25 0.24 0.13 0.34 | GEN,
TOTAL
(MG/L
AS N)
0.70
0.53
0.70
1.1
1.6
0.34
0.27
0.69
1.1
0.72
0.77 | GEN,
TOTAL
(MG/L
AS NO3)
3.1
2.3
3.1
5.0
7.3
1.5
1.2
3.1
4.8
3.2
3.4 | PHORUS TOTAL (MG/L AS P) 0.020 0.010 0.030 0.100 0.050 0.010 0.230 0.230 0.040 0.070 0.040 0.050 | PHORUS ORTHO, DIS-SOLVED (MG/L AS P) ND 0.00 0.020 0.00 0.00 ND 0.020 0.00 0.00 0.00 0.00 | PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4)

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0 | | APR 1987 16 30 MAY 19 JUN 23 JUL 21 OCT 01 NOV 17 DEC 10 MAR 1988 24 APR 07 21 MAY 04 19 JUN 27 SEP 08 | GEN, NITRITE TOTAL (MG/L AS N) ND ND ND ND ND O.00 ND | GEN, NO2+NO3 TOTAL (MG/L AS N) 0.560 0.390 0.600 0.830 1.49 0.060 0.130 0.310 0.520 0.470 0.530 0.820 0.380 2.66 | GEN, AMMONIA TOTAL (MG/L AS N) 0.030 0.020 0.020 0.080 0.010 0.030 ND 0.120 0.310 0.070 0.080 0.010 0.040 0.040 | GEN, AMMONIA TOTAL (MG/L AS NH4) 0.04 0.03 0.01 0.04 0.15 0.40 0.09 0.10 0.01 0.05 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.11
0.12
0.08
0.21
0.14
0.25

0.26
0.25
0.18
0.16
0.12 | GEN, AM- MONIA + ORGANIC TOTTAL (MG/L AS N) 0.14 0.10 0.29 0.15 0.28 0.14 0.38 0.56 0.25 0.24 0.13 0.34 0.07 | GEN,
TOTAL
(MG/L
AS N)
0.70
0.53
0.70
1.1
1.6
0.34
0.27
0.69
1.1
0.72
0.77 | GEN,
TOTAL
(MG/L
AS NO3)
3.1
2.3
3.1
5.0
7.3
1.5
1.2
3.1
4.8
3.2
3.4 | PHORUS TOTAL (MG/L AS P) 0.020 0.010 0.030 0.100 0.050 0.010 0.190 0.230 0.040 0.070 0.040 0.050 0.020 | PHORUS ORTHO, DIS-SOLVED (MG/L AS P) ND 0.00 0.020 0.00 0.00 ND 0.020 0.00 0.00 0.00 0.00 0.00 0.00 0. | PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4)

0.0
0.06
0.0
0.0
0.0
0.06
0.0
0.0
0.0 | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). ### 04213320 CHAUTAUQUA CREEK AT BARCELONA, NY - continued | DATE | ALUM-
INUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS AL) | ALUM-
INUM,
DIS-
SOLVED
(UG/L
AS AL) | CADMIUM
TOTAL
RECOV-
ERABLE
(UG/L
AS CD) | CADMIUM
DIS~
SOLVED
(UG/L
AS CD) | COPPER,
TOTAL
RECOV-
ERABLE
(UG/L
AS CU) | COPPER,
DIS-
SOLVED
(UG/L
AS CU) | IRON,
TOTAL
RECOV-
ERABLE
(UG/L
AS FE) | IRON,
DIS-
SOLVED
(UG/L
AS FE) | LEAD,
TOTAL
RECOV-
ERABLE
(UG/L
AS PB) | LEAD,
DIS-
SOLVED
(UG/L
AS PB) | MANGA-
NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | |--|--|---|---|--|--|--|---|---|--|---|---| | APR 1987 | | | | | | | | | | | | | 16 | | | <10 | | <10 | | 460 | | <100 | | 10
10 | | 30
MAY | | ~~ | <10 | | <10 | | 100 | | 11 | | 10 | | 19 | | | <10 | 1.0 | <10 | 2 | 70 | | <5 | <5 | <10 | | JUN
23 | | | <10 | | <10 | | 2100 | | | | 60 | | JUL | | | | | | | | | _ | | | | 21
OCT | | | <10 | | 20 | | 270 | | <5 | | 10 | | 01 | | | <10 | | 10 | | 1600 | | <100 | | 40 | | NOV
17 | | | <1 | | 5 | | 130 | | <5 | | 10 | | DEC | | | | | _ | | | | _ | | 450 | | 10
MAR 1988 | | | <1 | | 9 | | 7400 | | 6 | | 150 | | 24 | 6000 | 90 | <1 | <1.0 | 10 | 1 | 11000 | 790 | <5 | <5 | 230 | | APR
07 | 1700 | | <1 | | 6 | | 2600 | | <5 | | 50 | | 21 | 1700 | 30 | 2 | <1.0 | 4 | <1 | 2500 | 33 | <5 | <5 | 40 | | MAY
04 | 260 | | <1 | | 4 | | 640 | | <5 | | 20 | | 19 | 610 | 80 | 5 | <1.0 | 10 | 2 | 720 | 56 | < 5 | <5 | 20 | | JUN
27 | 120 | | <1 | | 6 | | 50 | | <5 | | 40 | | SEP | 440 | | | | 4 | | 100 | | .e | | .10 | | 08
OCT | 110 | | <1 | | 4 | | 120 | | <5 | | <10 | | 06
NOV | 360 | 160 | <1 | <1.0 | 9 | 2 | 300 | 41 | <5 | <5 | 20 | | 17 | 100 | | 1 | | 37 | | 180 | | 10 | | 20 | | | | | | | | | | | | | | | DATE | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN) | MERCURY
TOTAL
RECOV-
ERABLE
(UG/L
AS HG) | NICKEL,
TOTAL
RECOV-
ERABLE
(UG/L
AS NI) | NICKEL,
DIS-
SOLVED
(UG/L
AS NI) | ZINC,
TOTAL
RECOV-
ERABLE
(UG/L
AS ZN) | ZINC,
DIS-
SOLVED
(UG/L
AS ZN) | BROMO-
FORM
TOTAL
(UG/L) | CARBON-
TETRA-
CHLO-
RIDE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
DI-
BROMO-
METHANE
TOTAL
(UG/L) | CHLORO-
ETHANE
TOTAL
(UG/L) | | DATE
APR 1987 | NESE,
DIS-
SOLVED
(UG/L | TOTAL
RECOV-
ERABLE
(UG/L | TOTAL
RECOV-
ERABLE
(UG/L | DIS-
SOLVED
(UG/L | TOTAL
RECOV-
ERABLE
(UG/L | DIS-
SOLVED
(UG/L | FORM
TOTAL | TETRA-
CHLO-
RIDE
TOTAL | BENZENE
TOTAL | DI-
BROMO-
METHANE
TOTAL | ETHANE
TOTAL | | APR 1987
16 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL
RECOV-
ERABLE
(UG/L
AS HG) | TOTAL
RECOV-
ERABLE
(UG/L
AS NI) | DIS-
SOLVED
(UG/L
AS NI) | TOTAL
RECOV-
ERABLE
(UG/L
AS ZN) | DIS-
SOLVED
(UG/L
AS ZN) | FORM TOTAL (UG/L) | TETRA-
CHLO-
RIDE
TOTAL
(UG/L) | BENZENE
TOTAL
(UG/L)
ND | DI-
BROMO-
METHANE
TOTAL
(UG/L) | ETHANE
TOTAL
(UG/L)
ND | | APR 1987 | NESE,
DIS-
SOLVED
(UG/L | TOTAL
RECOV-
ERABLE
(UG/L
AS HG) | TOTAL
RECOV-
ERABLE
(UG/L
AS NI) | DIS-
SOLVED
(UG/L | TOTAL
RECOV-
ERABLE
(UG/L
AS ZN) | DIS-
SOLVED
(UG/L | FORM
TOTAL
(UG/L) | TETRA-
CHLO-
RIDE
TOTAL
(UG/L) | BENZENE
TOTAL
(UG/L) | DI-
BROMO-
METHANE
TOTAL
(UG/L) | ETHANE
TOTAL
(UG/L) | | APR 1987
16
30
MAY
19 | NESE,
DIS-
SOLVED
(UG/L
AS MN) |
TOTAL
RECOV-
ERABLE
(UG/L
AS HG) | TOTAL
RECOV-
ERABLE
(UG/L
AS NI) | DIS-
SOLVED
(UG/L
AS NI) | TOTAL
RECOV-
ERABLE
(UG/L
AS ZN) | DIS-
SOLVED
(UG/L
AS ZN) | FORM TOTAL (UG/L) | TETRA-
CHLO-
RIDE
TOTAL
(UG/L) | BENZENE
TOTAL
(UG/L)
ND | DI-
BROMO-
METHANE
TOTAL
(UG/L) | ETHANE
TOTAL
(UG/L)
ND | | APR 1987
16
30
MAY
19
JUN
23 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV- ERABLE (UG/L AS HG) <0.10 0.10 | TOTAL RECOV- ERABLE (UG/L AS NI) <100 <1 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV- ERABLE (UG/L AS ZN) <10 <10 | DIS-
SOLVED
(UG/L
AS ZN) | FORM TOTAL (UG/L) ND ND | TETRA-
CHLO-
RIDE
TOTAL
(UG/L)
ND
ND | BENZENE
TOTAL
(UG/L)
ND
ND | DI-
BROMO-
METHANE
TOTAL
(UG/L)
ND | ETHANE
TOTAL
(UG/L)
ND
ND | | APR 1987
16
30
MAY
19
JUN
23 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL
RECOV-
ERABLE
(UG/L
AS HG)
<0.10
<0.10
<0.10 | TOTAL RECOV- ERABLE (UG/L AS NI) <100 <1 <1 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV- ERABLE (UG/L AS ZN) <10 <10 <10 <10 | DIS-
SOLVED
(UG/L
AS ZN) | FORM
TOTAL
(UG/L)
ND
ND
ND | TETRA-
CHLO-
RIDE
TOTAL
(UG/L)
ND
ND
ND | BENZENE
TOTAL
(UG/L)
ND
ND
ND | DI-
BROMO-
METHANE
TOTAL
(UG/L)
ND
ND
ND | ETHANE
TOTAL
(UG/L)
ND
ND
ND | | APR 1987 16 30 MAY 19 JUN 23 JUL 21 CCT | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV- ERABLE (UG/L AS HG) <0.10 0.10 <0.10 <0.10 0.20 | TOTAL RECOV- ERABLE (UG/L AS NI) <100 <1 <1 <1 2 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV- ERABLE (UG/L AS ZN) <10 <10 <10 <20 | DIS-
SOLVED
(UG/L
AS ZN) | FORM
TOTAL
(UG/L)
ND
ND
ND
ND | TETRA-CHLO-RIDE TOTAL (UG/L) ND ND ND ND ND ND | BENZENE
TOTAL
(UG/L)
ND
ND
ND
ND | DI-
BROMO-
METHANE
TOTAL
(UG/L)
ND
ND
ND | ETHANE TOTAL (UG/L) ND ND ND ND | | APR 1987 16 30 MAY 19 JUN 23 JUL 21 CCT 01 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL
RECOV-
ERABLE
(UG/L
AS HG)
<0.10
<0.10
<0.10 | TOTAL RECOV- ERABLE (UG/L AS NI) <100 <1 <1 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV- ERABLE (UG/L AS ZN) <10 <10 <10 <10 | DIS-
SOLVED
(UG/L
AS ZN) | FORM
TOTAL
(UG/L)
ND
ND
ND | TETRA-
CHLO-
RIDE
TOTAL
(UG/L)
ND
ND
ND | BENZENE
TOTAL
(UG/L)
ND
ND
ND | DI-
BROMO-
METHANE
TOTAL
(UG/L)
ND
ND
ND | ETHANE
TOTAL
(UG/L)
ND
ND
ND | | APR 1987 16 30 MAY 19 JUN 23 JUL 21 OCT 01 NOV 17 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV- ERABLE (UG/L AS HG) <0.10 0.10 <0.10 <0.10 0.20 | TOTAL RECOV- ERABLE (UG/L AS NI) <100 <1 <1 <1 2 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV- ERABLE (UG/L AS ZN) <10 <10 <10 <20 | DIS-
SOLVED
(UG/L
AS ZN) | FORM
TOTAL
(UG/L)
ND
ND
ND
ND | TETRA-CHLO-RIDE TOTAL (UG/L) ND ND ND ND ND ND | BENZENE
TOTAL
(UG/L)
ND
ND
ND
ND | DI-
BROMO-
METHANE
TOTAL
(UG/L)
ND
ND
ND | ETHANE TOTAL (UG/L) ND ND ND ND | | APR 1987 16 30 MAY 19 JUN 23 JUL 21 OCT 01 NOV 17 DEC | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV-ERABLE (UG/L AS HG) <0.10 0.10 <0.10 <0.10 <0.10 <0.10 | TOTAL RECOV- ERABLE (UG/L AS NI) <100 <1 <1 2 <100 <1 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV-ERABLE (UG/L AS ZN) <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 | DIS-
SOLVED
(UG/L
AS ZN) | FORM TOTAL (UG/L) ND | TETRA-CHLO-RIDE TOTAL (UG/L) ND ND ND ND ND ND | BENZENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND | DI-
BROMO-
METHANE
TOTAL
(UG/L)
ND
ND
ND
ND | ETHANE TOTAL (UG/L) ND | | APR 1987 16 30 MAY 19 JUN 23 JUL 21 OCT 01 NOV 17 DEC 10 MAR 1988 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV- ERABLE (UG/L AS HG) <0.10 0.10 <0.10 <0.10 <0.10 <0.10 | TOTAL RECOV- ERABLE (UG/L AS NI) <100 <1 <1 2 <100 <1 8 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV-ERABLE (UG/L AS ZN) <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 | DIS-
SOLVED
(UG/L
AS ZN) | FORM TOTAL (UG/L) ND | TETRA- CHLO- RIDE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND | BENZENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND
ND | DI- BROMO- METHANE TOTAL (UG/L) ND | ETHANE TOTAL (UG/L) ND | | APR 1987 16 30 MAY 19 JUN 23 JUL 21 OCT 01 NOV 17 DEC 10 MAR 1988 24 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV-ERABLE (UG/L AS HG) <0.10 0.10 <0.10 <0.10 <0.10 <0.10 | TOTAL RECOV- ERABLE (UG/L AS NI) <100 <1 <1 2 <100 <1 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV-ERABLE (UG/L AS ZN) <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 | DIS-
SOLVED
(UG/L
AS ZN) | FORM TOTAL (UG/L) ND | TETRA-CHLO-RIDE TOTAL (UG/L) ND ND ND ND ND ND | BENZENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND | DI-
BROMO-
METHANE
TOTAL
(UG/L)
ND
ND
ND
ND | ETHANE TOTAL (UG/L) ND | | APR 1987 16 30 MAY 19 JUN 23 JUL 21 OCT 01 NOV 17 DEC 10 MAR 1988 24 APR 07 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV- ERABLE (UG/L AS HG) <0.10 | TOTAL RECOV-ERABLE (UG/L AS NI) <100 <1 <1 2 <100 <1 1 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV-ERABLE (UG/L AS ZN) <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 | DIS-SOLVED (UG/L AS ZN) | FORM TOTAL (UG/L) ND | TETRA-CHLO-RIDE TOTAL (UG/L) ND N | BENZENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND
ND
ND | DI- BROMO- METHANE TOTAL (UG/L) ND | ETHANE TOTAL (UG/L) ND | | APR 1987 16 30 MAY 19 JUN 23 JUL 21 OCT 01 NOV 17 DEC 10 MAR 1988 24 APR | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV-ERABLE (UG/L AS HG) <0.10 | TOTAL RECOV- ERABLE (UG/L AS NI) <100 <1 <1 2 <100 <1 8 17 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV-ERABLE (UG/L AS ZN) <10 <10 <10 <10 <10 <10 <40 <40 <40 <40 <40 <40 <40 <40 <40 <4 | DIS-
SOLVED
(UG/L
AS ZN) | FORM TOTAL (UG/L) ND | TETRA-CHLO-RIDE TOTAL (UG/L) ND | BENZENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND
ND | DI- BROMO- METHANE TOTAL (UG/L) ND | ETHANE TOTAL (UG/L) ND | | APR 1987 16 30 MAY 19 JUN 23 JUL 21 OCT 01 NOV 17 DEC 10 MAR 1988 24 APR 07 21 MAY 04 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV-ERABLE (UG/L AS HG) <0.10 | TOTAL RECOVERABLE (UG/L AS NI) <100 <1 <1 2 <100 <1 | DIS- SOLVED (UG/L AS NI) 3 4 2 | TOTAL RECOV-ERABLE (UG/L AS ZN) <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 | DIS-
SOLVED
(UG/L
AS ZN) 1 10 <3 8 | FORM TOTAL (UG/L) ND | TETRA-CHLO-RIDE TOTAL (UG/L) ND N | BENZENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND
ND
ND
ND | DI- BROMO- METHANE TOTAL (UG/L) ND | ETHANE TOTAL (UG/L) ND | | APR 1987 16 30 MAY 19 JUN 23 JUL 21 OCT 01 NOV 17 DEC 10 MAR 1988 24 APR 07 APR 07 MAY | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV- ERABLE (UG/L AS HG) <0.10 | TOTAL RECOV-ERABLE (UG/L AS NI) <100 <1 <1 2 <100 <1 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV-ERABLE (UG/L AS ZN) <10 <10 <10 <10 <10 <10 <10 <10 <10 <1 | DIS-SOLVED (UG/L AS ZN) | FORM TOTAL (UG/L) ND | TETRA-CHLO-RIDE TOTAL (UG/L) ND | BENZENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND
ND
ND | DI- BROMO- METHANE TOTAL (UG/L) ND | ETHANE TOTAL (UG/L) ND | | APR 1987 16 30 MAY 19 JUN 23 JUL 21 OCT 01 NOV 17 DEC 10 MAR 1988 24 APR 07 21 MAY 04 19 JUN 27 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV-ERABLE (UG/L AS HG) <0.10 | TOTAL RECOVERABLE (UG/L AS NI) <100 <1 <1 2 <100 <1 | DIS- SOLVED (UG/L AS NI) 3 4 2 | TOTAL RECOV-ERABLE (UG/L AS ZN) <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 | DIS-
SOLVED
(UG/L
AS ZN) 1 10 <3 8 | FORM TOTAL (UG/L) ND | TETRA-CHLO-RIDE TOTAL (UG/L) ND N | BENZENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND
ND
ND
ND | DI- BROMO- METHANE TOTAL (UG/L) ND | ETHANE TOTAL (UG/L) ND | | APR 1987 16 30 MAY 19 JUN 23 JUL 21 OCT 01 NOV 17 DEC 10 MAR 1988 24 APR 07 21 MAY 04 19 JUN 27 SEP 08 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV- ERABLE (UG/L AS HG) <0.10 | TOTAL RECOV-ERABLE (UG/L AS NI) <100 <1 | DIS-
SOLVED
(UG/L
AS NI) 3 4 2 <1 | TOTAL RECOV-ERABLE (UG/L AS ZN) <10 <10 <10 210 210 410 20 10 20 40 210 20 210 210 210 210 210 210 | DIS-
SOLVED
(UG/L
AS ZN) 10 <3 8 5 | FORM TOTAL (UG/L) ND | TETRA-CHLO-RIDE TOTTAL (UG/L) ND N | BENZENE TOTAL (UG/L) ND | DI- BROMO- METHANE TOTAL (UG/L) ND | ETHANE TOTAL (UG/L) ND | | APR 1987 16 30 MAY 19 JUN 23 OCT 01 NOV 17 DEC 10 MAR 1988 24 APR 07 21 MAY 04 19 JUN 27 SEP 08 OCT | NESE,
DIS-
SOLVED
(UG/L
AS MN) 40 29 6 7 | TOTAL RECOV- ERABLE (UG/L AS HG) <0.10 | TOTAL RECOVERABLE (UG/L AS NI) <100 <1 <1 | DIS- SOLVED (UG/L AS NI) 3 | TOTAL RECOV-ERABLE (UG/L AS ZN) <10 <10 <10 <10 <10 <10 <10 <10 <10 <1 | DIS-SOLVED (UG/L AS ZN) | FORM TOTAL (UG/L) ND | TETRA-CHLO-RIDE TOTAL (UG/L) ND N | BENZENE TOTAL (UG/L) ND N | DI- BROMO- METHANE TOTAL (UG/L) ND | ETHANE TOTAL (UG/L) ND | | APR 1987 16 30 MAY 19 JUN 23 JUL 21 OCT 01 NOV 17 DEC 10 MAR 1988 24 APR 07 21 MAY 04 19 JUN 27 SEP 08 | NESE,
DIS-
SOLVED
(UG/L
AS MN) 40 29 6 7 | TOTAL RECOV- ERABLE (UG/L AS HG) <0.10 | TOTAL RECOVERABLE (UG/L AS NI) <100 <1 <1 | DIS- SOLVED (UG/L AS NI) 3 4 2 <1 | TOTAL RECOVERABLE (UG/L AS ZN) <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 | DIS-
SOLVED
(UG/L
AS ZN) 10 <3 8 5 | FORM TOTAL (UG/L) ND | TETRA-CHLO-RIDE TOTAL (UG/L) ND N | BENZENE TOTAL (UG/L) ND | DI- BROMO- METHANE TOTAL (UG/L) ND | ETHANE TOTAL (UG/L) ND | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). # 04213320 CHAUTAUQUA CREEK AT BARCELONA, NY - continued | DATE | CHLORO-
FORM
TOTAL
(UG/L) | CIS
1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | DI-
CHLORO-
BROMO-
METHANE
TOTAL
(UG/L) | METHYL-
BROMIDE
TOTAL
(UG/L) | METHYL-
CHLO-
RIDE
TOTAL
(UG/L) |
METHYL-
ENE
CHLO-
RIDE
TOTAL
(UG/L) | 1,1,1-
TRI-
CHLORO-
ETHANE
TOTAL
(UG/L) | 1,1-DI-
CHLORO-
ETHANE
TOTAL
(UG/L) | 1,1-DI-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 1,1,2-
TRI-
CHLORO-
ETHANE
TOTAL
(UG/L) | 1,1,2,2
TETRA-
CHLORO-
ETHANE
TOTAL
(UG/L) | |--|---|--|---|---|---|---|---|--|---|---|--| | APR 1987
16
30 | ND
2.0 | ND
ND | MAY
19 | 1.0 | ND | JUN
23 | ND | JUL
21 | ND | ND | ND | ND | ИĎ | ND | ND | ND | ND | ND | ND | | OCT
01 | ND | NOV
17 | 2.0 | ND | DEC
10 | ND | MAR 1988
24 | 0.2 | ND | ND | ND | ND | 0.5 | ND | ND | ND | ND | ND | | APR
07 | ND | 21
May | ND | 04
19 | 0
ND | 0
ND | 0
Ди | ND
ND | N D
0 | ND
0 | 0
ND | 0
ND | 0
ND | 0
ND | 0
ND | | JUN
27 | ND | SEP
08 | 0.6 | ND | OCT
06 | 3.2 | ND | 0.2 | ND | NOV
17 | 1.3 | ND | 0.2 | ND | | | | | | | | | | | | | | DATE | 1,2-DI-
CHLORO-
BENZENE
TOTAL
(UG/L) | 1,2-DI-
CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L) | 1,2-DI-
CHLORO-
PROPANE
TOTAL
(UG/L) | 1,2-
TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L) | 1,3-DI-
CHLORO-
BENZENE
TOTAL
(UG/L) | 1,4-DI-
CHLORO-
BENZENE
TOTAL
(UG/L) | TETRA-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | TRANS-
1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | TRI-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 2-
CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L) | VINYL
CHLO-
RIDE
TOTAL
(UG/L) | | APR 1987
16 | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L) | CHLORO-
PROPANE
TOTAL
(UG/L) | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L) | CHLO-
RIDE
TOTAL
(UG/L) | | APR 1987
16
30
MAY | CHLORO-
BENZENE
TOTAL
(UG/L)
ND
ND | CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L)
ND | CHLORO-
PROPANE
TOTAL
(UG/L)
ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND | CHLORO-
BENZENE
TOTAL
(UG/L)
ND
ND | CHLORO-
BENZENE
TOTAL
(UG/L)
ND
ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND | CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L)
ND | CHLO-
RIDE
TOTAL
(UG/L)
ND | | APR 1987
16
30
MAY
19
JUN | CHLORO-
BENZENE
TOTAL
(UG/L)
ND
ND
ND | CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L)
ND
ND | CHLORO-
PROPANE
TOTAL
(UG/L)
ND
ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L) | CHLO-
RIDE
TOTAL
(UG/L) | | APR 1987
16
30
MAY
19
JUN
23
JUL | CHLORO-
BENZENE
TOTAL
(UG/L)
ND
ND
ND | CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L)
ND
ND
ND | CHLORO-
PROPANE
TOTAL
(UG/L)
ND
ND
ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND | CHLORO-
BENZENE
TOTAL
(UG/L)
ND
ND
ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND
ND | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
ND
ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND
ND | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND ND ND | CHLO-
RIDE
TOTAL
(UG/L)
ND
ND
ND | | APR 1987 16 30 MAY 19 JUN 23 JUL 21 OCT | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND ND ND ND | CHLORO-
PROPANE
TOTAL
(UG/L)
ND
ND
ND | TRANSDI
CHLORO-
ETHENE TOTAL
(UG/L)
ND
ND
ND | CHLORO-BENZEME TOTAL (UG/L) ND ND ND ND ND ND ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND ND ND ND ND ND ND ND | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
ND
ND
ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND ND ND ND ND ND | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND ND ND ND | CHLO-
RIDE
TOTAL
(UG/L)
ND
ND
ND | | APR 1987 16 30 MAY 19 JUN 23 JUL 21 OCT 01 NOV | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND ND ND ND ND | CHLORO-PROPANE TOTAL (UG/L) ND ND ND ND ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND
ND
ND
ND | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
ND
ND
ND
ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND
ND | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND ND ND ND ND ND | CHLO-
RIDE
TOTAL
(UG/L)
ND
ND
ND
ND | | APR 1987 16 30 MAY 19 JUN 23 JUL 21 OCT 01 NOV 17 DEC | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND | CHLORO-PROPANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND N | CHLORO-BENZENE TOTAL (UG/L) ND N | CHLORO-ETHYL-ENE TOTAL (UG/L) ND N | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
ND
ND
ND
ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND N | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND | CHLO-RIDE TOTAL (UG/L) ND ND ND ND ND ND ND ND | | APR 1987 16 30 MAY 19 JUN 23 JUL 21 OCT 01 NOV 17 DEC 10 MAR 1988 | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND | CHLORO-PROPANE TOTAL (UG/L) ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND N | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND N | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND | CHLO-RIDE TOTAL (UG/L) ND | | APR 1987 16 30 MAY 19 JUN 23 JUL 21 OCT 01 NOV 17 DEC 10 MAR 1988 24 APR | CHLORO-BENZENE TOTAL (UG/L) ND N | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND | CHLORO-PROPANE TOTAL (UG/L) ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND N | CHLORO-BENZENE TOTAL (UG/L) ND N | CHLORO-ETHYL-ENE TOTAL (UG/L) ND N | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND N | CHLORO-ETHYL-ENE TOTAL (UG/L) ND N | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND | CHLO-RIDE TOTAL (UG/L) ND | | APR 1987 16 30 MAY 19 JUN 23 JUL 21 OCT 01 NOV 17 DEC 10 MAR 1988 24 APR 07 21 | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND | CHLORO-PROPANE TOTAL (UG/L) ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND N | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND N | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND | CHLO-RIDE TOTAL (UG/L) ND | | APR 1987 16 30 MAY 19 JUN 23 JUL 21 OCT 01 NOV 17 DEC 10 MAR 1988 24 APR 07 | CHLORO-BENZENE TOTAL (UG/L) ND N | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND | CHLORO-PROPANE TOTAL (UG/L) ND N | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND N | CHLORO-BENZENE TOTAL (UG/L) ND N | CHLORO-ETHYL-ENE TOTAL (UG/L) ND N | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND N | CHLORO-ETHYL-ENE TOTAL (UG/L) ND N | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND | CHLO-RIDE TOTAL (UG/L) ND | | APR 1987 16 30 MAY 19 JUN 23 JUL 21 OCT 01 NOV 17 DEC 10 MAR 1988 24 APR 07 21 MAY | CHLORO-BENZENE TOTAL (UG/L) ND N | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND | CHLORO-PROPANE TOTAL (UG/L) ND N | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND N | CHLOROBENZENE TOTAL (UG/L) ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND N | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND N | CHLORO-ETHYL-ENE TOTAL (UG/L) ND N | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND | CHLO-RIDE TOTAL (UG/L) ND | | APR 1987 16 30 MAY 19 JUN 23 JUL 21 OCT 01 NOV 17 DEC 10 MAR 1988 24 APR 07 21 MAY 04 19 JUN 27 | CHLORO-BENZENE TOTAL (UG/L) ND N | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND | CHLORO-PROPANE TOTAL (UG/L) ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND
ND
ND
ND
ND | CHLOROBENZEME TOTAL (UG/L) ND | CHLOROBENZENE TOTAL
(UG/L) ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND N | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND N | CHLORO-ETHYL-ENE TOTAL (UG/L) ND N | CHLORO-ETHYL-VINYL-ETHER TOTAL (UG/L) ND N | CHLO-RIDE TOTAL (UG/L) ND | | APR 1987 16 30 MAY 19 JUN 23 JUL 21 OCT 01 NOV 17 DEC 10 MAR 1988 24 APR 07 21 MAY 04 19 JUN 27 SEP 08 | CHLORO-BENZENE TOTAL (UG/L) ND N | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND | CHLORO-PROPANE TOTAL (UG/L) ND N | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND
ND
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND N | CHLOROBENZENE TOTAL (UG/L) ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND N | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND N | CHLORO-ETHYL-ENE TOTAL (UG/L) ND N | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND | CHLO-RIDE TOTAL (UG/L) ND | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). # 04213320 CHAUTAUQUA CREEK AT BARCELONA, NY - continued # SUSPENDED SEDIMENT DISCHARGE | DATE | TIME | SEDI-
MENT,
SUS-
PENDED
(MG/L) | |----------|------|--| | APR 1987 | | | | 16 | 0715 | 21 | | 30 | 0830 | 3 | | OCT | | | | 01 | 0910 | 60 | | DEC | | | | 10 | 0945 | 246 | | MAY 1988 | | | | 19 | 1130 | 25 | | JUN | | | | 27 | 1815 | 3 | | SEP | | | | 08 | 1030 | 4 | | OCT | | _ | | 06 | 1015 | 8 | | NOV | | | | 17 | 1130 | 4 | # BED MATERIAL ANALYSES | D ATE | T
E
TIME | OLIDS,
VOLA-
ILE IN
OTTOM
MA-
TERIAL
MG/KG) | CADMIUM
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS CD) | CHRO-
MIUM,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G) | COPPER,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS CU) | RECOV
FM BOT
TOM MA
TERIA
(UG/G | - FM BOT-
- TOM MA-
L TERIAL
(UG/G | • | |----------------|--|---|--|--|--|---|---|--| | JUL 1987 | | | | | | | | | | 21 | 0900 | 22000 | <1 | 140 | 10 | 820 | 0 20 | 300 | | DATE | MERCUR
RECOV
FM BOT
TOM MA
TERIA
(UG/G
AS HG | RECO
FM BC
TOM I
TERI | OV. REC
OT- FM
MA- TOM
IAL TEI
/G (UC | COV. MA
BOT- FA
MA- DIA
RIAL % FA | AT. M
ALL SI
AM. DI
INER & F
HAN T | AT.
EVE S
AM. D
INER % | MAT. M
IEVE SI
IAM. DI
FINER % F
THAN T | ED
AT.
EVE
AM.
INER
HAN
O MM | | JUL 1987
21 | <0.1 | 0 - | <10 | 50 | 0 | 6 | 23 | 100 | # Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). #### STREAMS TRIBUTARY TO LAKE ERIE #### 04213378 CANADA CREEK AT DUNKIRK, NY LOCATION.--Lat 42 28'32", long 79 21'56", Chautauqua County, Hydrologic Unit 04120101, at bridge on State Highway 5, 0.6 mi (.01 km) west of city line of Dunkirk. DRAINAGE AREA. -- 39.9 mi2. PERIOD OF RECORD.--Water years 1987 to 1989. CHEMICAL DATA: 1987 (b), 1988 (d), 1989 (a). MINOR ELEMENT DATA: 1987 (b), 1988 (d), 1989 (a). PESTICIDE DATA: 1987 (b), 1988 (d), 1989 (a). ORGANIC DATA: PCB--1988 (a). NUTRIENT DATA: 1987 (b), 1988 (c), 1989 (a). SEDIMENT DATA: 1987-88 (b), 1989 (a). REMARKS--Water-discharge data from gage and height measurements and rating developed for 04213376 Canada Creek at Fredonia. | DATE | TIME | DIS-
CHARGE,
IN
CUBIC
FEET
PER
SECOND | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | SPE-
CIFIC
CON-
DUCT-
ANCE
LAB
(US/CM) | PH WATER WHOLE FIELD (STAND- ARD UNITS) | TEMPER-
ATURE
WATER
(DEG C) | TUR-
BID-
ITY
(NTU) | BARO-
METRIC
PRES-
SURE
(MM
OF
HG) | OXYGEN,
DIS-
SOLVED
(MG/L) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG) | |-----------|------|---|---|--|---|--------------------------------------|------------------------------|--|-------------------------------------|---|--|--| | APR 1987 | | | | | | | | | | | | | | 16 | 0815 | | | | 8.0 | 8.0 | 6.2 | | 14.8 | 120 | 39 | 6.2 | | 30 | 0945 | | | | 8.2 | 6.0 | 1.3 | | 12.0 | 120 | 39 | 6.7 | | MAY | | | | | | | | | | | | | | 19 | 1400 | | | 386 | 8.5 | 19.0 | 1.0 | | | 170 | 53 | 8.5 | | JUN | | | | | | | | | | | | | | 23 | 0945 | | | | 8.0 | 18.0 | 42 | | | 150 | 49 | 7.8 | | JUL | | | | | | | | | | | | | | 21 | 1000 | | | | 8.2 | 25.5 | 0.90 | | 8.7 | 190 | 62 | 9.1 | | OCT | | | | 24.7 | | 22.2 | | | | | | | | 01
NOV | 1100 | 110 | | 317 | 8.3 | 22.0 | 23 | | | | | | | 18 | 0845 | | | | 8.0 | 7.0 | 96 | | 15.5 | 110 | 33 | 5.7 | | DEC | 0043 | | | | 0.0 | 7.0 | 30 | | 15.5 | 110 | 33 | 3.7 | | 10 | 1030 | 23 | | | 8.0 | 5.0 | 48 | | 12.2 | | | | | MAR 1988 | 1030 | 23 | | | 0.0 | 3.0 | 40 | | 10.0 | | | | | 24 | 1015 | 360 | | 198 | 7.6 | 4.0 | 96 | | | 71 | 22 | 3.8 | | APR | | | | | | | | | | | | | | 07 | 1345 | 136 | | 264 | 7.8 | 10.0 | 40 | | | | | | | 21 | 1000 | 55 | | 326 | 8.2 | 6.0 | 0.0 | | | 120 | 38 | 6.8 | | MAY | | | | | | | | | | | | | | 04 | 1030 | 43 | | 284 | 8.3 | 10.0 | 3.6 | | 11.2 | | | | | 19 | 1020 | 102 | | 264 | 8.3 | 11.5 | 3 3 | | 9.8 | 100 | 32 | 5 .5 | | JUN | | | | | | | | | | | | | | 27 | 2000 | 10 | 454 | 454 | 8.2 | 23.5 | 1.2 | | 7.6 | 180 | 56 | 10 | | SEP | | | | 4.00 | | | | | | | | | | 08 | 1050 | | | 463 | 8.3 | 14.0 | 0.85 | | | 190 | 58 | 12 | | OCT | 1100 | | | 400 | 7.0 | | 2.0 | | 10.4 | 100 | •• | 0.7 | | 06
NOV | 1100 | | | 423 | 7.9 | 9.0 | 3.8 | 772 | 10.4 | 180 | 55 | 9.7 | | 17 | 1215 | | | 311 | 7.7 | 5.0 | 4.5 | 760 | 11.8 | 130 | 40 | 7.3 | | | | | | | | 0 | | . 50 | | | | | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). # 04213378 CANADA CREEK AT DUNKIRK, NY - continued | DATE | SODIUM, DIS- SOLVED S (MG/L | POTAS-
SIUM, I
DIS-
SOLVED
(MG/L
AS K) | LAB
(MG/L
AS | SULFATE
DIS-
SOLVED
(MG/L
AS SO4) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | FLUO- R
RIDE, A'
DIS-
SOLVED
(MG/L | OLIDS,
ESIDUE
T 180
DEG. C
DIS-
SOLVED
(MG/L) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | SOLIDS,
RESIDUE
AT 105
DEG. C,
TOTAL
(MG/L) | TION, | RESIDUE
TOTAL
FIXED
(MG/L) | NITRO-
GEN,
NITRATE
TOTAL
(MG/L
AS N) | |---|--|---|--
--|--|--|--|---
---|--|--|--| | APR 1987 | | | | | | | | | | | | | | 16
30 | | | | | | | 162
168 | | 18 9
91 | 76
4 0 | 106
142 | | | MAY | | | | | | | | | | | | 0 510 | | 19
JUN | | | | | | | 220 | | 234 | 20 | 208 | 0.510 | | 23
JUL | | | | | | | 244 | | 376 | 108 | 228 | 1.22 | | 21
OCT | | | | | | | 280 | | 292 | 32 | 260 | | | 01
NOV | | | | | | | 228 | | 244 | 40 | 20 4 | | | 18
DEC | | | | | | | 168 | | 272 | 68 | 20 0 | 0.320 | | 10
MAR 1988 | | | | | | | 172 | | 26 4 | 68 | 196 | | | 2 4
APR | 9.0 | 1.1 | 51 | 22 | 15 | 0.10 | 128 | 104 | 344 | 46 | 298 | 0.680 | | 07
21 | 14 | 1.3 | 68
8 4 | 33
37 | 19
2 4 | 0.1 0
0.20 | 152
200 | 172 | 22 4
216 | 1 0 0
60 | 12 4
156 | 0.680
0.800 | | MAY
04 | | | 87 | | | | 184 | | 216 | 32 | 184 | | | 19
JUN | 11 | 1.3 | 75 | 25 | 18 | 0.20 | 172 | 138 | 240 | 4 8
125 | 192
200 | 0.400 | | 27
SEP
08 | 18
17 | | 126
119 | 56
71 | 29
29 | 0.20 | 320 | 247
260 | 325
316 | 76 | 240 | 0.100 | | OCT
06 | 16 | | 104 | 62 | 29 | 0.10 | 312
284 | 236 | 292 | 68 | 224 | 0.100 | | NOA | | | | | | | | | | | | | | 17 | 10 | 1.5 | 81 | 42 | 17 | 0.10 | 180 | 166 | 192 | 88 | 104 | | | | | | | | | | | | | | | _ | | DATE | NITRO-
GEN,
NITRITE
TOTAL
(MG/L
AS N) | GEN | GEN AMMON TOTA (MG/ | I, GEN,
IIA AMMONI
L TOTAI
L (MG/I | , GEN,
IA ORGANI
L TOTAL
L (MG/I | , MONIA
IC ORGANI
L TOTAL
L (MG/L | -
+ NITE
C GEN
TOTA | N, GE
AL TOT.
/L (MG | N, PHORU
AL TOTA
/L (MG/ | JS DIS-
AL SOLVE
/L (MG/L | S PHA O, ORT DI D SOL | TE,
HO,
S-
VED
S/L | | APR 1987 | GEN,
NITRITE
TOTAL
(MG/L
AS N) | GEN,
E NO2+NO
TOTAI
(MG/I
AS N | GEN AMMON TOTA (MG/ AS N | I, GEN, IIA AMMONI L TOTAI L (MG/I I) AS NH | GEN, GEN, GEN, GEN, GEN, GEN, GEN, GEN, | O- GEN, AM , MONIA IC ORGANI L TOTAL L (MG/L) AS N) | - NITH
C GEN
TOTA
(MG/
AS N | N, GE
AL TOT
/L (MG
N) AS N | N, PHORU
AL TOTA
/L (MG/
O3) AS E | PHORUS S- ORTH JS DIS- AL SOLVE /L (MG/L P) AS P) | S PHA O, ORT DI D SOL (MG AS P | TE,
HO,
S-
VED
S/L
O4) | | APR 1987
16
30 | GEN,
NITRITE
TOTAL
(MG/L
AS N) | GEN,
E NO2+NO
TOTAL
(MG/I | GEN GEN GEN GEN GEN GEN GEN GEN | I, GEN IIA AMMONI L TOTAL IL (MG/I I) AS NH | GEN, GEN, TA ORGANI TOTAL (MG/I AS N) | O- GEN, AM MONIA IC ORGANI L TOTAL L (MG/L) AS N) | + NITEC GENTOTA (MG/AS N | N, GEI AL TOT. /L (MG N) AS No | N, PHORU
AL TOTA
/L (MG/ | PHORUS S- ORTHO JS DIS- AL SOLVE /L (MG/L P) AS P) | S PHA O, ORT DI D SOL (MG AS P | TE,
HO,
S-
VED
S/L
O4) | | APR 1987
16
30
MAY
19 | GEN, NITRITE TOTAL (MG/L AS N) ND | GEN, NO2+NO TOTAL (MG/I AS N | GEN 3 AMMON TOTA (MG/ AS N 7 0.0 | GEN, GEN, IIA AMMONI L TOTAL L (MG/I I) AS NH | GEN, GEN, TOTAL GMG/I AS N | GEN, AM MONIA COGANIC TOTAL CMG/L AS N) 11 0.1 09 0.1 | + NITF C GEN TOTH (MG, AS N | N, GE
AL TOT.
/L (MG
N) AS No
.2 5
.84 3 | N, PHORU AL TOTA /L (MG/ 03) AS E | PHORUS ORTHO SOLVE /L (MG/L P) AS P) 010 ND 00 ND | S PHA O, ORT DI D SOL (MG AS P | TE,
HO,
S-
VED
I/L
O4) | | APR 1987
16
30
MAY
19
JUN
23 | GEN, NITRITE TOTAL (MG/L AS N) ND ND | GEN,
E NO2+NO
TOTAL
(MG/I
AS N)
1.0°
0.76 | GEN 33 AMMON TOTA C (MG/) AS N 7 0.0 10 0.0 | I, GEN, AMMON: L. TOTAL L. (MG/I I) AS NH4 | GEN, IA ORGAN: TOTAL (MG/I 4) AS N 01 0.0 | D- GEN, AM MONIA ORGANIL TOTAL (MG/L) AS N) 11 0.1 0.9 0.1 0.6 0.0 | + NITF C GEN TOTA (MG) AS 1 | N, GEI AL TOT. /L (MG N) AS No .2 5 .84 3 | N, PHORU AL TOTA (MG/03) AS E | PHORU ORTH DIS-
AL SOLVE //L (MG/L P) AS P) D10 ND D0 ND | S PHA O, ORT DI D SOL (MG AS P | TE,
HO,
S-
VED
I/L
O4) | | APR 1987
16
30
MAY
19
JUN
23
JUL
21 | GEN, NITRITE TOTAL (MG/L AS N) ND ND 0.00 | GEN,
E NO2+NO
TOTAL
(MG/I
AS N)
1.0°
0.76 | GEN AMMON TOTA AS N 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 | GEN, GEN, AMMON: TOTAL TOTAL (MG/I) AS NH4 | GEN, GEN, GEN, GRAN: TOTAL TOTAL C. (MG/I AS N) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 | O- GEN, AM MONIA (ORGANI) TOTAL (MG/L) AS N) 11 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0 | + NITE C GEN TOTE (MG/AS N 2 1.0 0.9 0.6 1.0 | N, GEI AL TOT. /L (MG N) AS N .2 5 .84 3 .60 2 | N, PHORUAL TOTA /L (MG/ 03) AS E .3 0.0 .7 0.0 | PHORU: ORTH- US DIS- AL SOLVE VL (MG/L AS P) D10 ND D10 ND D10 ND D10 ND D10 ND | S PHA O, ORT DI D SOLL (MG AS P | TE, HO, S- VED I/L O4) | | APR 1987
16
30
MAY
19
JUN
23 | GEN, NITRITE TOTAL (MG/L AS N) ND ND ND 0.00 | GEN, TOTAL (MG/I AS N) 1.0' 0.7' 0.52 | GEN AMMON TOTA (MG/ AS N | I, GEN, AMMONI. II A AMMONI. II (MG/I) AS NH4 | GEN, ORGAN: TOTAL TOTAL (MG/I) AS NO 101 0.001 0 | D- GEN, AM MONIA ORGANI TOTAL (MG/L AS N) 11 0.1 0.9 0.1 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1 | -+ NITH C GEN TOTI (MG, AS N 2 1.0 0 0.0 9 0.6 1.2 | N, GEI AL TOT. V/L (MG N) AS N .2 5 .84 3 .60 2 .6 7 | N, PHORUAL TOTAL (MG/N) AS E | PHORU: ORTH- US DIS- AL SOLVE VL (MG/L AS P) D10 ND D10 ND D10 ND D10 ND D10 ND | S PHA O, ORT DI D SOL (MG AS P | TE, HO, S- VED I/L O4) | | APR 1987 16 30 MAY 19 JUN 23 JUL 21 OCT 01 | GEN, NITRITE TOTAL (MG/L AS N) ND ND 0.00 | GEN, TOTAL (MG/I AS N) 1.07 0.74 0.55 0.33 | GEN AMMON TOTAL (MG/AS N 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 | I, GEN, AMMONI TOTAL L (MG/I) AS NH4 110 0.6 110 0.6 120 0.6 120 0.6 | GEN, GEN, ORGAN: TOTAL (MG/I | D- GEN, AM MONIA CORGANI TOTAL (MG/L AS N) 11 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0 | -+ NITTE C GEN TOTY (MG, AS 1 0 0. 9 0. 6 1. 2 0. | N, GEI AL TOT. (/L (MG N) AS No .2 5 .84 3 .60 2 .66 7 .45 2 | N, PHORUAL TOTAL (MG/N) AS E | PHORU ORTH- JIS DIS- AL SOLVE (/L (MG/L AS P) D10 ND N | S PHA O, ORT DI D SOL (MG AS P 10 0 | TE, HO, S- VED V/L O4) | | APR 1987 16 30 MAY 19 JUN 23 JUL 21 OCT 01 NOV 18 DEC 10 | GEN, NITRITE TOTAL (MG/L AS N) ND ND 0.00 ND | GEN, 102+NC TOTAI (MG/I AS N) 1.00 0.74 0.52 0.33 | GEN AMMON TOTA (MG/A) AS N (MG/A) (MG | GEN AMMONI TOTAL TOTAL MG/I AS NH4 MG/I MG | GEN, ORGAN: TOTAL TOTAL (MG/I) AS N 101 0.0 0.0 0.1 0. | D- GEN, AM MONIA ORGANII TOTAL (MG/L AS N) 11 0.1 0.9 0.1 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1 | -+ NITTH NIT | N, GEI AL TOT. (/L (MG N) AS N -2 5 .84 3 -60 2 -6 7 -45 2 -78 3 -74 3 | N, PHORUAL TOTAL (MG) AS E | PHORU ORTH- DIS- AL SOLVE (/L (MG/L P) AS P) 00 ND | S PHA O, ORT DI D SOLL (MG AS P 10 0 0 0 | TE, HO, S- VED I/L O4)03 | | APR 1987 16 30 MAY 19 JUN 23 JUL 21 OCT 01 NOV 18 DEC 10 MAR 1988 | GEN, NITRITE TOTAL (MG/L AS N) ND ND 0.00 ND | GEN, TOTAL (MG/I AS N) 1.07 0.74 0.55 0.33 0.46 0.32 | GEN AMMON TOTAL (MG/AS N 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 | I, GEN, AMMONI TOTAL (MG/I) AS NH4 | GEN, GEN, ORGANIA ORGANIA TOTAL (MG/I4) AS NO 101 0.00 0.00 0.00 0.00 0.00 0.00 0.00 | D- GEN, AM MONIA CORGANI TOTAL (MG/L AS N) 11 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0 | -+ NITTE C GEN TOTY (MG, AS 1 0 0. 9 0. 6 1. 2 0. 2 0. | N, GEI AL TOT. (/L (MG N) AS No -2 5 .84 3 .660 2 .66 7 .45 2 .78 3 .74 3 | N, PHORUAL TOTE (MG) AS E | PHORU ORTH- DIS- AL SOLVE (/L (MG/L P) AS P) 00 ND | S PHA O, ORT DI D SOL (MG AS P 10 0 0 - | TE, HO, S- VED I/L O4)03 | | APR 1987 16 30 MAY 19 JUN 23 JUL 21 OCT 01 NOV 18 DEC 10 MAR 1988 24 APR 07 | GEN, NITRITE TOTAL (MG/L AS N) ND ND 0.00 0.010 ND 0.00 0.00 0.00 0.00 | GEN, 102+NC TOTAI (MG/I AS N) 1.0' 0.74 0.52 0.33 0.46 0.32 | GEN AMMON TOTAL (MG/AS N 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 | GEN GEN AMMONT TOTAL L | GEN, GEN, ORGAN: TOTAL (MG/I | D- GEN, AM MONIA (MG/L) AS N) 11 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0 | -+ NITTE C GEN TOTY (MG, AS t 2 1. 0 0. 9 0. 6 1. 2 0. 2 0. 3 1. 1 0. | N, GEI AL TOT. (/L (MG N) AS N .2 5 .84 3 .60 2 .66 7 .45 2 .78 3 .74 3 .74 3 | N, PHORUAL TOTE (MG/) AS E | PHORUS ORTH- US DIS- ALL SOLVE (MG/L AS P) D10 ND | S PHA O, ORT DI D SOL (MG AS P 10 0 0 0 0 0 | TE, HO, S-, VED (/L) O4) | | APR 1987 16 30 MAY 19 JUN 23 JUL 21 OCT 01 NOV 18 DEC 10 MAR 1988 24 APR | GEN, NITRITE TOTAL (MG/L AS N) ND ND 0.00 ND 0.000 0.000 | GEN, TOTAL (MG/I AS N) 1.07 0.74 0.52 0.33 0.46 0.32 | GEN AMMON TOTAL (MG/AS N 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 | GEN GEN AMMONT TOTAL L | GEN, GEN, ORGAN: TOTAL (MG/I | D- GEN, AM MONIA (MG/L) AS N) 11 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0 | -+ NITTE C GEN TOTY (MG, AS t 2 1. 0 0. 9 0. 6 1. 2 0. 2 0. 3 1. 1 0. | N, GEI AL TOT. (/L (MG N) AS N .2 5 .84 3 .60 2 .66 7 .45 2 .78 3 .74 3 .74 3 | N, PHORUAL TOTH (MG/N) AS E | PHORU: ORTH- DIS- S- AL SOLVE (/L (MG/L AS P) D10 ND N | S PHA O, ORT DI D SOL (MG AS P 10 0 0 0 0 0 - 0 0 | TE, HO, S-, VED (/L O4) | | APR 1987 16 30 MAY 19 JUN 23 OCT 01 NOV 18 DEC 10 MAR 1988 24 APR 07 21 | GEN, NITRITE TOTAL (MG/L AS N) ND ND 0.00 0.010 ND 0.00 0.00 0.00 0.00 | GEN, 102+NC TOTAI (MG/I AS N) 1.0' 0.74 0.52 0.33 0.46 0.32 | GEN AMMON TOTA AS N 10 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00
1.00 1.0 | GEN AMMONI TOTAL TOTAL MG/I AS NH4 MG/I MG | GEN, GEN, ORGAN: TOTAL TOTAL (MG/I) AS N; O1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0. | D- GEN, AM MONIA (MG/L) | -+ NITTE C GEN C GEN TOTY (MG/AS N 2 1. 0 0. 9 0. 6 1. 2 0. 2 0. 2 0. 3 1. 1 0. 9 0. 0 0. | N, GEI AL TOT. (/L (MG N) AS N -2 5 .84 3 .60 2 .66 7 .45 2 .78 3 .74 3 -2 5 .89 3 .99 4 | N, PHORUAL TOTE (MG) AS E | PHORUS ORTH- JUS DIS- | S PHA O, ORT DI D SOL (MG AS P 10 0 0 0 0 0 - 0 0 0 | TE, HO, S-, VED (/L) O4) | | APR 1987 16 30 MAY 19 JUN 23 OCT 01 NOV 18 DEC 10 MAR 1988 24 APR 07 21 MAY 04 19 JUN 27 | GEN, NITRITE TOTAL (MG/L AS N) ND ND 0.00 ND 0.00 ND 0.00 0.00 ND ND | GEN, TOTAL (MG/I AS N) 1.07 0.74 0.52 0.33 0.46 0.32 0.66 0.80 0.76 | GEN AMMON TOTA (MG/AS N) AS N | GEN AMMONI TOTAL CMG / I AS NH4 CMG / I CM | GEN, GEN, ORGANIA ORGANIA TOTAL TOTAL (MG/I4) AS N | D- GEN, AM MONIA (MG/L) (MG/L) (AS N) 11 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0 | -+ NITTE C GEN TOTY (MG, AS 1 0 0. 9 0. 6 1. 2 0. 2 0. 3 1. 1 0.0 9 0. 5 0. | N, GEI AL TOT. (/L GR N) AS N -2 5 -84 3 -60 2 -6 7 -45 2 -78 3 -74 32 5 -89 3 -89 3 -89 3 -88 3 -88 3 | N, PHORUAL TOTE (MG/N) AS E | PHORU: ORTH- DIS- S- AL SOLVE (/L (MG/L AS P) D10 | S PHA O, ORT DI D SOL (MG AS P 10 0 0 - 0 0 0 0 0 0 0 0 0 0 | TE, HO, S-, VED (/L) (O4) | | APR 1987 16 30 MAY 19 JUN 23 OCT 01 NOV 18 DEC 10 MAR 1988 24 APR 07 21 MAY 04 19 JUN 27 SEP 08 | GEN, NITRITE TOTAL (MG/L AS N) ND ND 0.00 0.010 ND 0.00 0.00 0.00 0.00 0.00 ND 0.00 | GEN, TOTAL MG/I AS N; 1.07 0.77 0.52 0.33 0.46 0.32 0.68 0.86 0.76 0.40 | GEN AMMON TOTAL (MG/AS N) AS N | GEN AMMONT TOTAL MAGNITUS | GEN, ORGAN: TOTAL TOTAL (MG/I) AS N' 01 0.0 04 0.0 21 0.2 05 0.5 06 0.2 15 0.3 07 0.5 08 0.3 08 0.3 09 0.3 00 0.3 00 0.3 | D- GEN, AM MONIA (MG/L) AS N) 11 0.1 0.9 0.1 10 0.3 0.3 10 0.1 27 0.3 30 0.4 30 0.5 15 0.2 18 0.1 19 0.1 10 0.1 | -+ NITTE C GEN C GEN TOTY (MG, AS 1 0 0. 9 0. 6 1. 2 0. 2 0. 2 0. 3 1. 1 0. 9 0. 5 0. 8 0. | N, GEI AL TOT. (MG N) AS N .2 5 .84 3 .60 2 .6 7 .45 2 .78 3 .74 3 .74 3 .79 4 .86 3 .85 3 .23 1 | N, PHORUAL TOTH (MG/) AS I | PHORUS ORTHOLOGY ON THE DISSENSE OF DISSEN | S PHA O, ORT DI D SOL (MG AS P 10 0 0 - 0 0 0 0 - 0 0 0 - 0 0 0 - 0 0 0 - 0 0 0 0 | TE, HO, S-VED (/L) O4) | | APR 1987 16 30 MAY 19 JUN 23 OCT 01 NOV 18 DEC 10 MAR 1988 24 APR 07 21 MAY 04 19 JUN 27 SEP | GEN, NITRITE TOTAL (MG/L AS N) ND ND 0.000 0.010 ND 0.000 0.000 0.000 ND 0.000 ND | GEN, 102+NC TOTAI (MG/I AS N) 1.00 0.74 0.52 0.33 0.44 0.33 0.68 0.86 0.86 0.76 0.46 0.19 | GEN AMMON TOTA (MG/AS N) AS N | GEN AMMONI TOTAL CMG / I | GEN, GEN, ORGANIA ORGA | D- GEN, AM MONIA (MG/L) AS N) 11 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0 | -+ NITTE C GEN TOTY (MG, AS 1 0 0. 9 0. 6 1. 2 0. 2 0. 2 0. 3 1. 1 0. 9 0. 5 0. 8 0. | N, GEI AL TOT. (MG N) AS N .2 5 .84 3 .60 2 .6 7 .45 2 .78 3 .74 3 .74 3 .79 4 .86 3 .85 3 .85 3 .23 1 .29 1 | N, PHORUAL TOTE (MG) AS E | PHORUS ORTH- DIS- S- AL SOLVE (/L (MG/L AS P) D10 | S PHA O, ORT DI D SOL (MG AS P 10 0 0 0 - 0 0 0 0 - 0 0 - 0 0 | TE, HO, S-, VED (/L) (7L) (04) (1.00) | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). ## 04213378 CANADA CREEK AT DUNKIRK, NY - continued | DATE | ALUM-
INUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS AL) | ALUM-
INUM,
DIS-
SOLVED
(UG/L
AS AL) | CADMIUM
TOTAL
RECOV-
ERABLE
(UG/L
AS CD) | CADMIUM
DIS-
SOLVED
(UG/L
AS CD) | COPPER,
TOTAL
RECOV-
ERABLE
(UG/L
AS CU) | COPPER,
DIS-
SOLVED
(UG/L
AS CU) | IRON,
TOTAL
RECOV-
ERABLE
(UG/L
AS FE) | IRON,
DIS-
SOLVED
(UG/L
AS FE) | LEAD,
TOTAL
RECOV-
ERABLE
(UG/L
AS PB) | LEAD,
DIS-
SOLVED
(UG/L
AS PB) | MANGA-
NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | |--|--|---|---|--|--|--|---|--|--|---|---| | APR 1987 | | | | | | | | | | | | | 16 | | | <10 | | <10 | | 270 | | <100 | | 10 | | 30
MAY | | | <10 | | <10 | | 80 | | 15 | | 20 | | 19 | | | <10 | | <10 | | 140 | | < 5 | | 20 | | JUN
23 | | | <10 | | <10 | | 2900 | | < 5 | | 100 | | JUL
21 | | | <10 | 1.0 | 20 | 1 | 100 | | <5 | <5 | 20 | | OCT
01 | | | <10 | | 10 | | 1300 | | <100 | | 40 | | NOV
18 | | | <1 | | 9 | | 4800 | | 7 | | 110 | | DEC 10 | | | <1 | | 8 | | 3300 | | <5 | | 80 | | MAR 1988
24 | 9800 | 30 | <1 | <1.0 | 8 | 1 | 8000 | 39 | <5 | <5 | 160 | | APR 07 | 1600 | | <1 | | 8 | | 2500 | | <5 | | 50 | | 21 | 150 | 10 | 2 | <1.0 | 2 | 5 | 410 | 34 | <5 | <5 | 20 | | MAY | 220 | | 2 | | _ | | | | _ | | | | 04
19 | 230
1100 | <10 | <1 |
<1.0 | 7
14 | 2 | 560
2300 | 33 | 6
< 5 |
<5 | 20
50 | | JUN | | | | | | | | | | | | | 27
SEP | 40 | | <1 | | 3 | | 90 | | <5 | | 50 | | 08
OCT | 30 | | <1 | | 3 | | 110 | | <5 | | 20 | | 06
NOV | 110 | 20 | 1 | <1.0 | 6 | 2 | 190 | 10 | <5 | <5 | 20 | | 17 | 90 | | <1 | | 2 | | 240 | | <5 | | 30 | | | | | | | | | | | | | | | DATE | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN) | MERCURY
TOTAL
RECOV-
ERABLE
(UG/L
AS HG) | NICKEL,
TOTAL
RECOV-
ERABLE
(UG/L
AS NI) | NICKEL,
DIS-
SOLVED
(UG/L
AS NI) | ZINC,
TOTAL
RECOV-
ERABLE
(UG/L
AS ZN) | ZINC,
DIS-
SOLVED
(UG/L
AS ZN) | BROMO-
FORM
TOTAL
(UG/L) | CARBON-
TETRA-
CHLO-
RIDE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
DI -
BROMO-
METHANE
TOTAL
(UG/L) | CHLORO-
ETHANE
TOTAL
(UG/L) | | | NESE,
DIS-
SOLVED
(UG/L | TOTAL
RECOV-
ERABLE
(UG/L | TOTAL
RECOV-
ERABLE
(UG/L | DIS-
SOLVED
(UG/L | TOTAL
RECOV-
ERABLE
(UG/L | DIS-
SOLVED
(UG/L | FORM
TOTAL | TETRA-
CHLO-
RIDE
TOTAL
 BENZENE
TOTAL | DI-
BROMO-
METHANE
TOTAL | ETHANE
TOTAL | | APR 1987
16 | NESE,
DIS-
SOLVED
(UG/L | TOTAL
RECOV-
ERABLE
(UG/L | TOTAL
RECOV-
ERABLE
(UG/L | DIS-
SOLVED
(UG/L | TOTAL
RECOV-
ERABLE
(UG/L | DIS-
SOLVED
(UG/L | FORM
TOTAL | TETRA-
CHLO-
RIDE
TOTAL | BENZENE
TOTAL | DI-
BROMO-
METHANE
TOTAL | ETHANE
TOTAL | | APR 1987
16
30 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL
RECOV-
ERABLE
(UG/L
AS HG) | TOTAL
RECOV-
ERABLE
(UG/L
AS NI) | DIS-
SOLVED
(UG/L
AS NI) | TOTAL
RECOV-
ERABLE
(UG/L
AS ZN) | DIS-
SOLVED
(UG/L
AS ZN) | FORM
TOTAL
(UG/L) | TETRA-
CHLO-
RIDE
TOTAL
(UG/L) | BENZENE
TOTAL
(UG/L) | DI-
BROMO-
METHANE
TOTAL
(UG/L) | ETHANE
TOTAL
(UG/L) | | APR 1987
16
30
MAY
19 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL
RECOV-
ERABLE
(UG/L
AS HG) | TOTAL
RECOV-
ERABLE
(UG/L
AS NI) | DIS-
SOLVED
(UG/L
AS NI) | TOTAL
RECOV-
ERABLE
(UG/L
AS ZN) | DIS-
SOLVED
(UG/L
AS ZN) | FORM TOTAL (UG/L) | TETRA-
CHLO-
RIDE
TOTAL
(UG/L) | BENZENE
TOTAL
(UG/L)
ND | DI-
BROMO-
METHANE
TOTAL
(UG/L) | ETHANE
TOTAL
(UG/L) | | APR 1987
16
30
MAY
19
JUN
23 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV- ERABLE (UG/L AS HG) <0.10 0.10 | TOTAL
RECOV-
ERABLE
(UG/L
AS NI)
<100 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL
RECOV-
ERABLE
(UG/L
AS 2N)
<10
<10 | DIS-
SOLVED
(UG/L
AS ZN) | FORM TOTAL (UG/L) ND ND | TETRA-
CHLO-
RIDE
TOTAL
(UG/L)
ND
ND | BENZENE
TOTAL
(UG/L)
ND
ND | DI-
BROMO-
METHANE
TOTAL
(UG/L)
ND | ETHANE
TOTAL
(UG/L)
ND
ND | | APR 1987
16
30
MAY
19
JUN
23
JUL
21 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL
RECOV-
ERABLE
(UG/L
AS HG)
<0.10
0.10 | TOTAL
RECOV-
ERABLE
(UG/L
AS NI)
<100
9 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL
RECOV-
ERABLE
(UG/L
AS ZN)
<10
<10 | DIS-
SOLVED
(UG/L
AS ZN) | FORM TOTAL (UG/L) ND ND | TETRA-CHLO-RIDE TOTAL (UG/L) ND ND | BENZENE
TOTAL
(UG/L)
ND
ND | DI-
BROMO-
METHANE
TOTAL
(UG/L)
ND
ND | ETHANE
TOTAL
(UG/L)
ND
ND | | APR 1987 16 30 MAY 19 JUN 23 JUL 21 OCT 01 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL
RECOV-
ERABLE
(UG/L
AS HG)
<0.10
0.10
<0.10 | TOTAL
RECOV-
ERABLE
(UG/L
AS NI)
<100
9
<1 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV- ERABLE (UG/L AS ZN) <10 <10 <10 20 | DIS-
SOLVED
(UG/L
AS ZN) | FORM
TOTAL
(UG/L)
ND
ND
ND | TETRA-CHLO-RIDE TOTAL (UG/L) ND ND ND | BENZENE
TOTAL
(UG/L)
ND
ND
ND | DI-
BROMO-
METHANE
TOTAL
(UG/L)
ND
ND | ETHANE TOTAL (UG/L) ND ND ND ND | | APR 1987 16 30 MAY 19 JUN 23 JUL 21 OCT 01 NOV 18 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV-ERABLE (UG/L AS HG) <0.10 0.10 <0.10 0.20 | TOTAL RECOV- ERABLE (UG/L AS NI) <100 9 <1 <1 <1 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV- ERABLE (UG/L AS ZN) <10 <10 <10 <10 <10 | DIS-
SOLVED
(UG/L
AS ZN) | FORM
TOTAL
(UG/L)
ND
ND
ND | TETRA-CHLO-RIDE TOTAL (UG/L) ND ND ND ND ND | BENZENE
TOTAL
(UG/L)
ND
ND
ND
ND | DI- BROMO- METHANE TOTAL (UG/L) ND ND ND ND | ETHANE TOTAL (UG/L) ND ND ND ND ND ND | | APR 1987 16 30 MAY 19 JUN 23 JUL 21 OCT 01 NOV 18 DEC 10 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL
RECOV-
ERABLE
(UG/L
AS HG)
<0.10
0.10
0.20
0.20
<0.10 | TOTAL RECOV- ERABLE (UG/L AS NI) <100 9 <1 <1 <1 <100 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV- ERABLE (UG/L AS ZN) <10 <10 <20 <10 10 | DIS-
SOLVED
(UG/L
AS ZN) | FORM TOTAL (UG/L) ND ND ND ND ND | TETRA-CHLO-RIDE TOTAL (UG/L) ND ND ND ND ND | BENZENE TOTAL (UG/L) ND ND ND ND ND ND | DI-
BROMO-
METHANE
TOTAL
(UG/L)
ND
ND
ND
ND | ETHANE TOTAL (UG/L) ND ND ND ND ND ND ND | | APR 1987 16 30 MAY 19 JUN 23 JUL 21 OCT 01 NOV 18 DEC 10 MAR 1988 24 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV-ERABLE (UG/L AS HG) <0.10 0.10 <0.10 0.20 0.20 <0.10 | TOTAL RECOV- ERABLE (UG/L AS NI) <100 9 <1 <1 <1 <100 8 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV-ERABLE (UG/L AS 2N) <10 <10 <10 <10 <20 <10 <20 <10 <10 <10 <10 <10 <10 <10 <10 <10 <1 | DIS-
SOLVED
(UG/L
AS ZN) | FORM TOTAL (UG/L) ND ND ND ND ND ND ND ND | TETRA-CHLO-RIDE TOTAL (UG/L) ND N | BENZENE TOTAL (UG/L) ND | DI- BROMO- METHANE TOTAL (UG/L) ND ND ND ND ND ND ND | ETHANE TOTAL (UG/L) ND | | APR 1987 16 30 MAY 19 JUN 23 JUL 21 OCT 01 NOV 18 DEC 10 MAR 1988 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV-ERABLE (UG/L AS HG) <0.10 0.10 0.20 0.20 <0.10 <0.10 | TOTAL RECOV-ERABLE (UG/L AS NI) <100 9 <1 <1 <1 <1 <100 8 14 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV-ERABLE (UG/L AS ZN) <10 <10 <10 20 20 20 | DIS-
SOLVED
(UG/L
AS ZN) | FORM TOTAL (UG/L) ND | TETRA-CHLO-RIDE TOTAL (UG/L) ND N | BENZENE TOTAL (UG/L) ND | DI- BROMO- METHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND | ETHANE TOTAL (UG/L) ND | | APR 1987 16 30 MAY 19 JUN 23 JUL 21 OCT 01 NOV 18 DEC 10 MAR 1988 24 APR | NESE, DIS- SOLVED (UG/L AS MN) 40 14 | TOTAL RECOV-ERABLE (UG/L AS HG) <0.10 0.10 <0.10 0.20 <0.10 <0.10 <0.10 <0.10 <0.10 | TOTAL RECOV-ERABLE (UG/L AS NI) <100 9 <1 <1 <100 8 14 11 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOVERABLE (UG/L AS ZN) <10 <10 <10 20 10 20 20 30 10 <10 | DIS-
SOLVED
(UG/L
AS ZN) | FORM TOTAL (UG/L) ND | TETRA-CHLO-RIDE TOTAL (UG/L) ND N | BENZENE TOTAL (UG/L) ND | DI- BROMO- METHANE TOTAL (UG/L) ND | ETHANE TOTAL (UG/L) ND | | APR 1987 16 30 MAY 19 JUN 23 JUL 21 OCT 01 NOV 18 DEC 10 MAR 1988 24 APR 07 21 MAY 04 | NESE, DIS- SOLVED (UG/L AS MN) 40 14 15 | TOTAL RECOVERABLE (UG/L AS HG) <0.10 0.10 <0.10 0.20 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 | TOTAL RECOV-ERABLE (UG/L AS NI) <100 9 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 < | DIS- SOLVED (UG/L AS NI) <1 4 1 | TOTAL RECOVERABLE (UG/L AS 2N) <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 | DIS-
SOLVED
(UG/L
AS ZN) 10 <3 7 | FORM TOTAL (UG/L) ND | TETRA-CHLO-RIDE TOTAL (UG/L) ND N | BENZENE TOTAL (UG/L) ND | DI- BROMO- METHANE TOTAL (UG/L) ND | ETHANE TOTAL (UG/L) ND | | APR 1987 16 30 MAY 19 JUN 23 JUL 21 OCT 01 NOV 18 DEC 10 MAR 1988 24 APR 07 21 MAY 04 19 JUN | NESE, DIS- SOLVED (UG/L AS MN) 40 14 15 13 | TOTAL RECOV-ERABLE (UG/L AS HG) <0.10 0.10 0.20 0.20 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 | TOTAL RECOV-ERABLE (UG/L AS NI) <100 9 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 < | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV-ERABLE (UG/L AS ZN) <10 <10 <10 <10 20 <10 20 30 10 <10 11 10 10 10 10 10 10 10 10 | DIS-
SOLVED
(UG/L
AS ZN) | FORM TOTAL (UG/L) ND | TETRA-CHLO-RIDE TOTAL (UG/L) ND N | BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | DI- BROMO- METHANE TOTAL (UG/L) ND | ETHANE TOTAL (UG/L) ND | | APR 1987 16 30 MAY 19 JUN 23 OCT 01 NOV 18 DEC 10 MAR 1988 24 APR 07 21 MAY 04 19 JUN 27 | NESE, DIS- SOLVED (UG/L AS MN) 40 14 15 | TOTAL RECOVERABLE (UG/L AS HG) <0.10 0.10 <0.10 0.20 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 | TOTAL RECOV-ERABLE (UG/L AS NI) <100 9 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 < | DIS- SOLVED (UG/L AS NI) <1 4 1 | TOTAL RECOVERABLE (UG/L AS 2N) <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 | DIS-
SOLVED
(UG/L
AS ZN) 10 <3 7 | FORM TOTAL (UG/L) ND | TETRA-CHLO-RIDE TOTAL (UG/L) ND N | BENZENE TOTAL (UG/L) ND | DI- BROMO- METHANE TOTAL (UG/L) ND | ETHANE TOTAL (UG/L) ND | | APR 1987 16 30 MAY 19 JUN 23 JUL 21 OCT 01 NOV 18 DEC 10 MAR 1988 24 APR 07 21 MAY 04 19 JUN | NESE, DIS- SOLVED (UG/L AS MN) 40 14 15 13 | TOTAL RECOV-ERABLE (UG/L AS HG) <0.10 0.10 0.20 0.20 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 | TOTAL RECOV-ERABLE (UG/L AS NI) <100 9 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 < | DIS- SOLVED (UG/L AS NI) <1 4 1 | TOTAL RECOV-ERABLE (UG/L AS ZN) <10 <10 <10 <10 20 <10 20 30 10 <10 11 10 10 10 10 10 10 10 10 | DIS-
SOLVED
(UG/L
AS ZN) 10 <3 7 | FORM TOTAL (UG/L) ND | TETRA-CHLO-RIDE TOTAL (UG/L) ND N | BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | DI- BROMO- METHANE TOTAL (UG/L) ND | ETHANE TOTAL (UG/L) ND | | APR 1987 16 30 MAY 19 JUN 23 JUL 21 OCT 01 NOV 18 DEC 10 MAR 1988 24 APR 07 21 MAY 04 19 JUN 27 SEP 08 | NESE, DIS- SOLVED (UG/L AS MN) 40 14 15 13 | TOTAL RECOV-ERABLE (UG/L AS HG) <0.10 0.10 0.20 0.20 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 | TOTAL RECOV-ERABLE (UG/L AS NI) <100 9 <1 <1 <1 <100 8 14 11 15 4 10 14 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOVERABLE (UG/L AS ZN) <10 <10 <10 20 20 20 30 10 <10 10 <10 <10 410 410 410 410 410 410 410 4 | DIS-SOLVED (UG/L AS ZN) | FORM TOTAL (UG/L) ND | TETRA-CHLO-RIDE TOTAL (UG/L) ND N | BENZENE TOTAL (UG/L) ND | DI- BROMO- METHANE TOTAL (UG/L) ND | ETHANE TOTAL (UG/L) ND | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). # 04213378 CANADA CREEK AT DUNKIRK, NY - continued | DATE | CHLORO-
FORM
TOTAL
(UG/L) | CIS
1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | DI-
CHLORO-
BROMO-
METHANE
TOTAL
(UG/L) | METHYL-
BROMIDE
TOTAL
(UG/L) | METHYL-
CHLO-
RIDE
TOTAL
(UG/L) | METHYL-
ENE
CHLO-
RIDE
TOTAL
(UG/L) | 1,1,1-
TRI-
CHLORO-
ETHANE
TOTAL
(UG/L) | 1,1-DI-
CHLORO-
ETHANE
TOTAL
(UG/L) | 1,1-DI-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 1,1,2-
TRI-
CHLORO-
ETHANE
TOTAL
(UG/L) | 1,1,2,2
TETRA-
CHLORO-
ETHANE
TOTAL
(UG/L) |
--|---|--|---|---|---|---|---|--|---|---|--| | APR 1987
16
30 | nd
nd | MAY
19 | ND | JUN
23 | ND | JUL 21 | ND
ND | ND | ND | ND
ND | ND | OCT 01 | ND
ND | ND | ND | ND
ND | ND | NOV
18 | | | | | ND | DEC | ND | ND | ND | ND | | | | | | | ND | | 10
MAR 1988 | ND | N D | ND | | 24
APR | ND | ND | ND | ND | ND | 0.5 | ND | ND | ND | ND | ND | | 07
21 | ND
ND | MAY
04 | 0 | o | 0 | 0 | o | 0 | 0 | 0 | 0 | 0 | 0 | | 19
JUN | ND | 27
SEP | ND | 08
OCT | 0.2 | ND | 06
NOV | 0.1 | ND | 17 | 0.2 | ND | ND | ND | N D | ND | ND | ND | ND | ND | ND | | | | | | | | | | | | | | | DATE | 1,2-DI-
CHLORO-
BENZENE
TOTAL
(UG/L) | 1,2-DI-
CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L) | 1,2-DI-
CHLORO-
PROPANE
TOTAL
(UG/L) | 1,2-
TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L) | 1,3-DI-
CHLORO-
BENZENE
TOTAL
(UG/L) | 1,4-DI-
CHLORO-
BENZENE
TOTAL
(UG/L) | TETRA-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | TRANS-
1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | TRI-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 2-
CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L) | VINYL
CHLO-
RIDE
TOTAL
(UG/L) | | APR 1987 | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L) | CHLORO-
PROPANE
TOTAL
(UG/L) | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L) | CHLO-
RIDE
TOTAL
(UG/L) | | APR 1987
16
30 | CHLORO-
BENZENE
TOTAL | CHLORO-
ETHANE
WATER
WHOLE
TOTAL | CHLORO-
PROPANE
TOTAL | TRANSDI
CHLORO-
ETHENE
TOTAL | CHLORO-
BENZENE
TOTAL | CHLORO-
BENZENE
TOTAL | CHLORO-
ETHYL-
ENE
TOTAL | 1,3-DI-
CHLORO-
PROPENE
TOTAL | CHLORO-
ETHYL-
ENE
TOTAL | CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL | CHLO-
RIDE
TOTAL | | APR 1987
16
30
MAY
19 | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L) | CHLORO-
PROPANE
TOTAL
(UG/L) | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L) | CHLO-
RIDE
TOTAL
(UG/L) | | APR 1987
16
30
MAY
19
JUN
23 | CHLORO-
BENZENE
TOTAL
(UG/L)
ND
ND | CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L)
ND | CHLORO-
PROPANE
TOTAL
(UG/L)
ND
ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND | CHLORO-
BENZENE
TOTAL
(UG/L)
ND
ND | CHLORO-
BENZENE
TOTAL
(UG/L)
ND
ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND | CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L)
ND
ND | CHLO-
RIDE
TOTAL
(UG/L)
ND
ND | | APR 1987 16 30 MAY 19 JUN 23 JUL 21 | CHLORO-
BENZENE
TOTAL
(UG/L)
ND
ND | CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L)
ND
ND | CHLORO-
PROPANE
TOTAL
(UG/L)
ND
ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND | CHLORO-
BENZENE
TOTAL
(UG/L)
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND
ND | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
ND
ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND
ND | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND ND ND | CHLO-
RIDE
TOTAL
(UG/L)
ND
ND | | APR 1987 16 30 MAY 19 JUN 23 JUL 21 OCT 01 | CHLORO-
BENZENE
TOTAL
(UG/L)
ND
ND
ND | CHLORO-ETHANE WATER WATER WHOLE TOTAL (UG/L) ND ND ND | CHLORO-
PROPANE
TOTAL
(UG/L)
ND
ND
ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND | CHLORO-
BENZENE
TOTAL
(UG/L)
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND
ND
ND | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
ND
ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND ND ND | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND ND ND | CHLO-
RIDE
TOTAL
(UG/L)
ND
ND
ND | | APR 1987 16 30 MAY 19 JUN 23 JUL 21 OCT | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND ND ND ND | CHLORO-PROPANE TOTAL (UG/L) ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
ND
ND
ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND ND ND ND ND | CHLO-
RIDE
TOTAL
(UG/L)
ND
ND
ND
ND | | APR 1987 16 30 MAY 19 JUN 23 JUL 21 OCT 01 NOV | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND | CHLORO-ETHANE WATER WATER WHOLE TOTAL (UG/L) ND ND ND ND ND | CHLORO-PROPANE TOTAL (UG/L) ND ND ND ND ND ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND | CHLORO-ETHYL-ENE ENE TOTAL (UG/L) ND ND ND ND ND ND ND ND | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND ND ND ND ND ND ND | CHLORO-ETHYL-ENE ENE TOTAL (UG/L) ND | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND ND ND ND ND | CHLO-
RIDE
TOTAL
(UG/L)
ND
ND
ND
ND | | APR 1987 16 30 MAY 19 JUN 23 JUL 21 OCT 01 NOV 18 DEC | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND ND ND ND ND ND ND ND | CHLORO-PROPANE TOTAL (UG/L) ND N | TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-BENZENE TOTAL (UG/L) ND N | CHLORO-ETHYL-ENE TOTAL (UG/L) ND N | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
ND
ND
ND
ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND N | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND ND ND ND ND ND ND ND ND | CHLO-
RIDE
TOTAL
(UG/L)
ND
ND
ND
ND
ND | | APR 1987 16 30 MAY 19 JUN 23 JUL 21 OCT 01 NOV 18 DEC 10 MAR 1988 24 APR | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-ETHANE WATER WATER WHOLE TOTAL (UG/L) ND | CHLORO-PROPANE TOTAL (UG/L) ND N | TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-ETHYL-ENE ENE TOTAL (UG/L) ND N | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND N | CHLORO-ETHYL-ENE ENE TOTAL (UG/L) ND N | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND ND ND ND ND ND ND ND ND | CHLO- RIDE TOTAL (UG/L) ND | | APR 1987 16 30 MAY 19 JUN 23 JUL 21 OCT 01 NOV 18 DEC 10 MAR 1988 24 APR 07 21 | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-ETHANE WATER WATER WHOLE TOTAL (UG/L) ND | CHLORO-PROPANE TOTAL (UG/L) ND N | TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-BENZENE TOTAL (UG/L) ND N | CHLORO-ETHYL-ENE TOTAL (UG/L) ND N | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND N | CHLORO-ETHYL-ENE TOTAL (UG/L) ND N | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND | CHLO-
RIDE
TOTAL
(UG/L)
ND
ND
ND
ND
ND
ND
ND | | APR 1987 16 30 MAY 19 JUN 23 JUL 21 OCT 01 NOV 18 DEC 10 MAR 1988 24 APR 07 21 MAY 04 19 | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-ETHANE WATER WATER WHOLE TOTAL (UG/L) ND | CHLORO-PROPANE TOTAL (UG/L) ND | TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-BENZENE TOTAL (UG/L) ND N | CHLORO-ETHYL-ENE ENE TOTAL (UG/L) ND N | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND N | CHLORO-ETHYL-ENE ENE TOTAL (UG/L) ND N | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND | CHLO- RIDE TOTAL (UG/L) ND | | APR 1987 16 30 MAY 19 JUN 23 JUL 21 OCT 01 NOV 18 DEC 10 MAR 1988 24 APR 07 21 MAY 04 19 JUN 27 | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-ETHANE WATER WATER WHOLE TOTAL (UG/L) ND | CHLORO-PROPANE TOTAL (UG/L) ND N | TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND | CHLORO-BENZENE TOTAL (UG/L) ND N | CHLORO-BENZENE TOTAL (UG/L) ND N | CHLORO-ETHYL-ENE TOTAL (UG/L) ND N | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND N | CHLORO-ETHYL-ENE TOTAL (UG/L) ND N | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND | CHLO- RIDE TOTAL (UG/L) ND | | APR 1987 16 30 MAY 19 JUN 23 JUL 21 OCT 01 NOV 18 DEC 10 MAR 1988 24 APR 07 21 MAY 04 19 JUN 27 SEP 08 | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-ETHANE WATER WATER WHOLE TOTAL (UG/L) ND | CHLORO-PROPANE TOTAL (UG/L) ND N | TRANSDI CHLORO- CHLORO- ETHENE TOTAL (UG/L) ND | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-BENZENE TOTAL (UG/L) ND N | CHLORO-ETHYL-ENE ENE TOTAL (UG/L) ND N | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND N |
CHLORO-ETHYL-ENE TOTAL (UG/L) ND N | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND | CHLO- RIDE TOTAL (UG/L) ND | | APR 1987 16 30 MAY 19 JUN 23 JUL 21 OCT 01 NOV 18 DEC 10 MAR 1988 24 APR 07 21 MAY 19 JUN 21 MAY 19 JUN 27 SEP | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-ETHANE WATER WATER WHOLE TOTAL (UG/L) ND | CHLORO-PROPANE TOTAL (UG/L) ND N | TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-BENZENE TOTAL (UG/L) ND N | CHLORO-ETHYL-ENE ENE TOTAL (UG/L) ND N | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND N | CHLORO-ETHYL-ENE TOTAL (UG/L) ND N | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND | CHLO- RIDE TOTAL (UG/L) ND | # 04213378 CANADA CREEK AT DUNKIRK, NY - continued ## SUSPENDED SEDIMENT DISCHARGE | | | DIS- | | SEDI- | |----------|------|---------|--------|---------| | | | CHARGE, | | MENT, | | | | IN | SEDI- | DIS- | | | | CUBIC | MENT, | CHARGE, | | | | FEET | SUS- | SUS- | | DATE | TIME | PER | PENDED | PENDED | | | | SECOND | (MG/L) | (T/DAY) | | APR 1987 | | | | | | 16 | 0815 | | 11 | | | 30 | 0945 | | 2 | | | JUN | | | | | | 23 | 0945 | | 81 | | | OCT | | | | | | 01 | 1100 | 110 | 41 | 12 | | DEC | | | | | | 10 | 1030 | 23 | 99 | 6.1 | | MAY 1988 | | | | | | 19 | 1020 | 102 | 49 | 13 | | SEP | | | | | | 08 | 1050 | | 1 | | | NOV | | | | | | 17 | 1215 | | 3 | | | | | | | | ## BED MATERIAL ANALYSES | DATE JUL 1987 21 JUN 1988 27 | TIME
1000
2000 | SOLIDS,
VOLA-
TILE IN
BOTTOM
MA-
TERIAL
(MG/KG)
55800 | FM B
TOM
TER
(UG | JM, REGOV. FM 1
BOT- TOM
MA- TEI
RIAL (UG | COV.
BOT-
MA- F
RIAL T | CHRO-
MIUM,
RECOV.
TM BOT-
TOM MA-
TERIAL
(UG/G) | REC
FM I
TOM
TEI
(UC | COV. RIBOT- FM MA- TOI RIAL TI G/G (I | ECOV. BOT- FI M MA- TO ERIAL UG/G | LEAD,
RECOV.
M BOT-
DM MA-
TERIAL
(UG/G
AS PB) | (UG | E, REOV. FM OT- TON MA- TE IAL (U/G) AS | CCURY
CCOV.
BOT-
I MA-
ERIAL
JG/G
S HG) | REC
FM I
TOM
TEI
(UC | COV.
BOT- F
MA- T
RIAL
G/G | ZINC,
RECOV.
M BOT-
OM MA-
TERIAL
(UG/G
AS ZN) | |----------------------------------|--|--|---------------------------|--|---|--|----------------------------------|---|--|--|--------------------------------|--|---|----------------------------------|--|--| | DATE JUL 1987 21 JUN 1988 27 | AROCI
1221
IN
BOTTO
MAT
(UG/F | ARO 1 M P BOT | 248
CB
MAT
KG) | AROCLOR
1254
PCB
BOT.MAT
(UG/KG) | AROCLC
1260
PCB
BOT.MA
(UG/KG | IN B
TOM
TER | PAL
HOT-
MA-
IAL
KG) | ALPHA
BHC
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | ATRA-
ZINE,
TOTAL
IN BOT
TOM MA
TERIA
(UG/KG | BENZ
HEX
- CHL
- ID
L BOT. | A-
OR-
E
MAT
KG) | CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) ND | CHLOI
PYRII
IN BO
MAT
(UG/I | FOS
OT. | DELTA
BENZEN
HEXA-
CHLOR
IDE
BOT.MA
(UG/KG | Е
-
Т | | DATE JUL 1987 21 JUN 1988 27 | DI- AZINC TOTA IN BC TOM M TERI (UG/M | ON, ELD NT TO TO IN NA- TOM (AL TE KG) (UG | MA- | ENDO-
SULFAN
ALPHA
BOT.MAT
(UG/KG) | ENDO-
SULFAN
BETA
BOT.MA
(UG/KG | SULF
SULF
T BOT. | FAN
ATE
MAT
KG) | ENDRIN,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | ENDRIN ALDE- HYDE BOT.MA' (UG/KG |) (UG/ | AL
OT-
MA-
IAL
KG) | HEPTA-
CHLOR,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | HEP.
CHLA
EPOX:
TOT.
BOT.
MA.
(UG/I | OR
IDE
IN
IOM
IL. | MALA-
THION
TOTAL
IN BOT
TOM MA
TERIA
(UG/KG | -
L | | DATE | METHOXY-CHLCTOT. BOTH | MIOR, TO IN IN TOM TOM TL. TE | | P,P' DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) | P, P'DDE,
TOTAL
IN BOT
TOM MA
TERIA
(UG/KO | DD TOT IN B TOM TER | T,
PAL
POT-
MA-
NAL | PARA-
THION,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | TOXA-
PHENE
TOTAL
IN BOT
TOM MA
TERIA
(UG/KG | FA
- DIA
- % FI
L TH | T.
LL
M.
NER | BED
MAT.
SIEVE
DIAM.
% FINER
THAN
.062 MM | BEI
MAT
SIEV
DIAN
* FIN
THA | T.
VE
M.
NER
AN | BED
MAT.
SIEVE
DIAM.
% FINE
THAN
2.00 M | R | | JUL 1987
21
JUN 1988
27 | ND | N | ~-
D | nd | nd | nd | - | ND | ND | - | 5 | 28
 | | 36
- | 10 | 0 | #### 04213500 CATTARAUGUS CREEK AT GOWANDA. NY LOCATION.--Lat 42 27'50", long 78 56'07", Erie County, Hydrological Unit 04120102, on right bank 380 ft downstream from bridge on State Highways 39 and 62 at Gowanda, 4.2 mi downstream from South Branch, and 17.8 mi upstream from mouth. Water-quality DRATNAGE AREA. -- 436 mi2. PERIOD OF RECORD.--Water years 1959,1963-64, 1972 to current year. CHEMICAL DATA: 1959 (e), 1963 (b), 1972 (a), 1975 (b), 1976-78 (c), 1979-80 (d), 1981-82 (c), 1983-86 (b), 1987-1988 (d), 1989 (b). MINOR ELEMENTS DATA: 1972-74 (a), 1975 (b), 1976-77 (c), 1978-86 (b), 1987-88 (d), 1989 (b). PESTICIDE DATA: 1987-88 (d), 1989 (a). ORGANIC DATA: OC--1975 (b), 1976-77 (c), 1978-80 (d), 1981 (c). PCB--1988 (a). NUTRIENT DATA: 1975 (b), 1976-77 (c), 1978-80 (d), 1981-82 (c), 1983-86 (b), 1987-88 (d), 1989 (b). RIOLOGICAL DATA: Bacterial--1978-80 (d), 1981-82 (c), 1983-88 (b), 1989 (a). Phytoplankton--1978 (b), 1979-80 (c), 1981 (b). SEDIMENT DATA: 1964 (b), 1978-82 (c), 1983-86 (b), 1987-88 (c), 1989 (b). ### PERIOD OF DAILY RECORD .-- SPECIFIC CONDUCTANCE: October 1958 to September 1959, unpublished; January 1978 to September 1981. pH: October 1958 to September 1959, unpublished. Water Temperatures: October 1958 to September 1959, January 1978 to September 1981. ### EXTREMES FOR PERIOD DAILY RECORD. -- SPECIFIC CONDUCTANCE: Maximum daily, 952 microsiemens Oct. 7, 1958; minimum daily, 150 microsiemens Feb. 19, 1981. WATER TEMPERATURES: Maximum daily, 29.0 C Aug. 19, 1978; minimum daily, 0.0 C on many days during winter periods. REMARKS .-- Water-discharge data obtained from stream-flow gage at this site. | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND | SPE-
CIFIC
CON-
DUCT-
ANCE
LAB
(US/CM) | PH WATER WHOLE FIELD (STAND- ARD UNITS) | TEMPER-
ATURE
WATER
(DEG C) | TUR-
BID-
ITY
(NTU) | BARO-
METRIC
PRES-
SURE
(MM
OF
HG) | OXYGEN,
DIS-
SOLVED
(MG/L) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | |-------------------|-------|--|--|---|--------------------------------------|------------------------------|--|-------------------------------------|---|--|--|--| | APR 1987 | | | | | | | | | | | | | | 16 | 1030 | 792 | | 8.2 | 9.5 | 23 | | 14.8 | 130 | 42 | 6.7 | | | 30 | 1115 | 629 | | 8.3 | 6.0 | 16 | | 11.4 | 120 | 37 | 6.1 | | | MAY | | | | | | | | | | | | | | 19 | 1045 | 269 | 410 | 8.2 | 15.0 | 6.4 | | | 180 | 55 | 9.2 | | | JUN | 4055 | 201 | | | | | | | | | | | | 23 | 1055 | 986 | | 8.2 | 11.0 | | | 8.8 | | | | | | JUL
20 | 1830 | 272 | | 8.4 | 32.0 | 2.0 | | 10.3 | 150 | 47 | 8.9 | | | SEP | 1030 | 212 | | 8.4 | 32.0 | 2.0 | | 10.3 | 150 | 4 / | 8.9 | | | 29 | 0915 | 234 | 403 | 8.1 | 22.0 | 4.4 | | | 170 | 54 | 9.5 | | | NOV | ***** | 204 | •00 | 0.1 | 22.0 | | | | 1,0 | ٠. | 3.3 | | | 02 | 1105 | 411 | | 8.1 | 22.0 | 9.3 | | 11.6 | 170 | 53 | 8.6 | | | DEC | | | | | | | | | | | | | | 09 | 0930 | 1360 | | 8.2 | 5.0 | 100 | | 12.2 | | | | | | MAR 1988 | | | | | | | | | | | | | | 23 | 1045 | 550 | 349 | 7.8 | 4.5 | 20 | | | 150 | 46 | 8.0 | 11 | | APR
07 | 1115 | 1050 | 279 | 7.5 | 12.0 | 47 | | | | | | | | 21 | 1200 | 516 | 345 | 8.3 | 6.0 | 0.0 | | | 150 | 47 | 8.5 | 8.8 | | MAY | 1200 | 310 | 343 | 0.3 | 0.0 | 0.0 | | | 130 | 4, | 0.5 | 0.0 | | 04 | 1300 | 522 | 318 | 8.4 | 12.0 | 8.8 | | 10.8 | | | | | | 19 | 1300 | 2060 | 250 | 8.0 | 12.5 | 230 | | 10.0 | 100 | 31 | 5.4 | 6.2 | | JUN | | | | | | | | | | | | | | 28 | 0915 | 144 | 458 | | | 2.9 | | | 190 | 59 | 11 | 19 | | SEP | | | | | | | | | | | | | | 08 | 0845 | 174 | 457 | 8.2 | 13.0 | 7.1 | | | 190 | 57 | 12 | 21 | | ост
0 6 | 0900 | 1.61 | 425 | 0.4 | 10.0 | 15 | 772 | 11 0 | 100 | 59 | 10 | 16 | | NOV | 0900 | 161 | 435 | 8.4 | 10.0 | 15 | //2 | 11.0 | 190 | 39 | 10 | 10 | | 17 | 0945 | 406 | 346 | 8.0 | 6.0 | 13 | 760 | 11.8 | 150 | 47 | 8.4 | 9.9 | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). # 04213500 CATTARAUGUS CREEK AT GOWANDA, NY - continued | | | | | | _ | | | , | | | | | |--|---|--
---|---|--|--|---|---|---|---|--|---| | DATE | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K) | ALKA-
LINITY
LAB
(MG/L
AS
CACO3) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | SOLIDS,
RESIDUE
AT 105
DEG. C,
TOTAL
(MG/L) | SOLIDS,
VOLA-
TILE ON
IGNI-
TION,
TOTAL
(MG/L) | RESIDUE
TOTAL
FIXED
(MG/L) | NITRO-
GEN,
NITRATE
TOTAL
(MG/L
AS N) | NITRO-
GEN,
NITRATE
DIS-
SOLVEI
(MG/L
AS N) | | APR 1987 | | | | | | | | | | | | | | 16 | | | | | | 156 | | 212 | 60 | 158 | 1.36 | | | 30
MAY | | | | | | 146 | | 187 | 32 | 128 | 0.920 | | | 19 | | ~- | | | | 224 | | 241 | 16 | 252 | 1.26 | | | JUN | | | | | | | | | | | | 0.000 | | 23
JUL | | | | | | | | 606 | | | | 0.970 | | 20 | | | | | | 197 | | 234 | 88 | 152 | 0.630 | | | SEP
29 | | | | | | 220 | | 288 | 100 | 188 | 1.15 | | | NOV | | | | | | 220 | | 200 | 100 | 100 | 1.13 | | | 02
DEC | | | | | | 204 | | 211 | 64 | 174 | 0.810 | | | 09 | | | | | ~- | 208 | | 404 | 96 | 308 | | | | MAR 1988
23 | 1.3 | 115 | 28 | 17 | 0.10 | 188 | 180 | 224 | 48 | 176 | 1 62 | | | APR | 1.3 | | 20 | 17 | 0.10 | 100 | 180 | 224 | 40 | 176 | 1.63 | | | 07
21 | 1.3 | 98
125 | 28
28 | 11
14 | 0.10
0.10 | 172
20 4 | 102 | 256 | 52 | 204 | 1.11 | | | MAY | 1.3 | 123 | 28 | 14 | 0.10 | 204 | 183 | 216 | 52 | 164 | 1.34 | | | 04 | | 114 | | | | 204 | | 208 | 80 | 128 | 0.660 | | | 19
JUN | 1.3 | 91 | 19 | 9.3 | 0.30 | 128 | 127 | 600 | 68 | 532 | 0.530 | | | 28 | 1.8 | 150 | 34 | 28 | 0.30 | 298 | 243 | 302 | 107 | 195 | 1.26 | | | SEP
08 | 1.9 | 141 | 47 | 29 | 0.10 | 284 | 253 | 312 | 76 | 236 | 0.630 | | | ост
06 | 1.9 | 148 | 45 | 20 | 0.10 | 280 | 241 | 292 | 68 | 224 | 0.710 | | | NOV | | | | 20 | 0.10 | | 241 | 232 | 00 | 224 | 0.710 | | | 17 | 1.7 | 115 | 36 | 14 | 0.10 | 200 | 186 | 204 | 80 | 124 | 0.760 | ~- | | | | | | | | | | | | | | | | DATE | NITRO-
GEN,
NITRATE
DIS-
SOLVED
(MG/L
AS NO3) | NITRO-
GEN,
NITRITE
TOTAL
(MG/L
AS N) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS NO2) | NITRO-
GEN,
NO2+NO3
TOTAL
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS NH4) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS NH4) | NITRO-
GEN,
ORGANIC
TOTAL
(MG/L
AS N) | NITRO-
GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | NITRO-
GEN,
TOTAL
(MG/L
AS N) | NITRO-
GEN,
TOTAL
(MG/L
AS NO3) | PHOS-
PHORUS
TOTAL
(MG/L
AS P) | | DATE
APR 1987 | GEN,
NITRATE
DIS-
SOLVED
(MG/L
AS NO3) | GEN,
NITRITE
TOTAL
(MG/L | GEN,
NITRITE
DIS-
SOLVED
(MG/L | GEN,
NO2+NO3
TOTAL
(MG/L | GEN,
AMMONIA
TOTAL
(MG/L | GEN,
AMMONIA
TOTAL
(MG/L | GEN,
AMMONIA
DIS-
SOLVED
(MG/L | GEN,
ORGANIC
TOTAL
(MG/L | GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L | GEN,
TOTAL
(MG/L | GEN,
TOTAL
(MG/L | PHORUS
TOTAL
(MG/L | | APR 1987
16 | GEN,
NITRATE
DIS-
SOLVED
(MG/L
AS NO3) | GEN,
NITRITE
TOTAL
(MG/L
AS N) | GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS NO2) | GEN,
NO2+NO3
TOTAL
(MG/L
AS N) | GEN,
AMMONIA
TOTAL
(MG/L
AS N) | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4) | GEN, AMMONIA DIS- SOLVED (MG/L AS NH4) | GEN,
ORGANIC
TOTAL
(MG/L
AS N) | GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | GEN,
TOTAL
(MG/L
AS N) | GEN,
TOTAL
(MG/L
AS NO3) | PHORUS
TOTAL
(MG/L
AS P) | | APR 1987 | GEN,
NITRATE
DIS-
SOLVED
(MG/L
AS NO3) | GEN,
NITRITE
TOTAL
(MG/L
AS N) | GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS NO2) | GEN,
NO2+NO3
TOTAL
(MG/L
AS N) | GEN,
AMMONIA
TOTAL
(MG/L
AS N) | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4) | GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS NH4) | GEN,
ORGANIC
TOTAL
(MG/L
AS N) | GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | GEN,
TOTAL
(MG/L
AS N) | GEN,
TOTAL
(MG/L
AS NO3) | PHORUS
TOTAL
(MG/L
AS P) | | APR 1987
16
30
MAY
19 | GEN,
NITRATE
DIS-
SOLVED
(MG/L
AS NO3) | GEN,
NITRITE
TOTAL
(MG/L
AS N) | GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS NO2) | GEN,
NO2+NO3
TOTAL
(MG/L
AS N) | GEN,
AMMONIA
TOTAL
(MG/L
AS N) | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4) | GEN, AMMONIA DIS- SOLVED (MG/L AS NH4) | GEN,
ORGANIC
TOTAL
(MG/L
AS N) | GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | GEN,
TOTAL
(MG/L
AS N) | GEN,
TOTAL
(MG/L
AS NO3) | PHORUS
TOTAL
(MG/L
AS P) | | APR 1987
16
30
MAY
19
JUN
23 | GEN,
NITRATE
DIS-
SOLVED
(MG/L
AS NO3) | GEN,
NITRITE
TOTAL
(MG/L
AS N)
0.00
0.00 | GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS NO2) | GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
1.36
0.920 | GEN,
AMMONIA
TOTAL
(MG/L
AS N)
0.080
0.090 | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4)
0.10
0.12 | GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS NH4) | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.11 | GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
0.19
0.24 | GEN,
TOTAL
(MG/L
AS N)
1.5 | GEN,
TOTAL
(MG/L
AS NO3)
6.9
5.1 | PHORUS
TOTAL
(MG/L
AS P)
0.03(
0.02(| | APR 1987
16
30
MAY
19
JUN
23
JUL | GEN,
NITRATE
DIS-
SOLVED
(MG/L
AS NO3) | GEN,
NITRITE
TOTAL
(MG/L
AS N)
0.00
0.00 | GEN, NITRITE DIS- SOLVED (MG/L AS NO2) 0.07 | GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
1.36
0.920
1.27 | GEN,
AMMONIA
TOTAL
(MG/L
AS N)
0.080
0.090
0.160
0.150 | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4)
0.10
0.12
0.21 | GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS NH4) | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.11
0.15
0.06 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.19 0.24 0.22 | GEN,
TOTAL
(MG/L
AS N)
1.5
1.2 | GEN,
TOTAL
(MG/L
AS NO3)
6.9
5.1
6.6 | PHORUS
TOTAL
(MG/L
AS P)
0.03(
0.02(
0.01(
0.19(| | APR 1987 16 30 MAY 19 JUN 23 JUL 20 SEP | GEN, NITRATE DIS- SOLVED (MG/L AS NO3) 4.3 | GEN, NITRITE TOTAL (MG/L AS N) 0.00 0.00 0.010 0.00 | GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS NO2) | GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
1.36
0.920
1.27
 | GEN,
AMMONIA
TOTAL
(MG/L
AS N)
0.080
0.090
0.160
0.150 | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4)
0.10
0.12
0.21
0.19 | GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS NH4) | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.11
0.15
0.06
1.4 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.19 0.24 0.22 1.6 0.16 | GEN,
TOTAL
(MG/L
AS N)
1.5
1.2
1.5 | GEN,
TOTAL
(MG/L)
AS NO3)
6.9
5.1
6.6 | PHORUS
TOTAL
(MG/L
AS P)
0.03(
0.02(
0.01(
0.19(
0.00 | | APR 1987 16 30 MAY 19 JUN 23 JUL 20 SEP 29 | GEN, NITRATE DIS- SOLVED (MG/L AS NO3) | GEN,
NITRITE
TOTAL
(MG/L
AS N)
0.00
0.00 | GEN, NITRITE DIS- SOLVED (MG/L AS NO2) 0.07 | GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
1.36
0.920
1.27 | GEN,
AMMONIA
TOTAL
(MG/L
AS N)
0.080
0.090
0.160
0.150 | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4)
0.10
0.12
0.21 | GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS NH4) | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.11
0.15
0.06 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.19 0.24 0.22 | GEN,
TOTAL
(MG/L
AS N)
1.5
1.2 | GEN,
TOTAL
(MG/L
AS NO3)
6.9
5.1
6.6 | PHORUS
TOTAL
(MG/L
AS P)
0.03(
0.02(
0.01(
0.19(| | APR 1987 16 30 MAY 19 JUN 23 JUL 20 SEP 29 NOV 02 | GEN, NITRATE DIS- SOLVED (MG/L AS NO3) 4.3 | GEN, NITRITE TOTAL (MG/L AS N) 0.00 0.00 0.010 0.00 | GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS NO2) | GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
1.36
0.920
1.27
 | GEN,
AMMONIA
TOTAL
(MG/L
AS N)
0.080
0.090
0.160
0.150 | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4)
0.10
0.12
0.21
0.19 | GEN, AMMONIA DIS- SOLVED (MG/L AS NH4) 0.13 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.11
0.15
0.06
1.4 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.19 0.24 0.22 1.6 0.16 |
GEN,
TOTAL
(MG/L
AS N)
1.5
1.2
1.5 | GEN,
TOTAL
(MG/L)
AS NO3)
6.9
5.1
6.6 | PHORUS
TOTAL
(MG/L
AS P)
0.03(
0.02(
0.01(
0.19(
0.00 | | APR 1987 16 30 MAY 19 JUN 23 JUL 20 SEP 29 NOV 02 DEC | GEN, NITRATE DIS- SOLVED (MG/L AS NO3) 4.3 | GEN, NITRITE TOTAL (MG/L AS N) 0.00 0.00 0.010 0.00 0.00 | GEN, NITRITE DIS- SOLVED (MG/L AS NO2) 0.07 | GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
1.36
0.920
1.27

0.630
1.15
0.810 | GEN,
AMMONIA
TOTAL
(MG/L
AS N)
0.080
0.090
0.160
0.150
0.070
0.130 | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4)
0.10
0.12
0.21
0.19
0.09
0.17 | GEN, AMMONIA DIS- SOLVED (MG/L AS NH4) 0.13 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.11
0.15
0.06
1.4
0.09
0.18 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.19 0.24 0.22 1.6 0.16 0.31 0.21 | GEN,
TOTAL
(MG/L
AS N)
1.5
1.2
1.5

0.79
1.5 | GEN,
TOTAL
(MG/L)
AS NO3)
6.9
5.1
6.6

3.5
6.5 | PHORUS
TOTAL
(MG/L
AS P)
0.03(
0.02(
0.01(
0.19(
0.00
0.00 | | APR 1987 16 30 MAY 19 JUN 23 JUL 20 SEP 29 NOV 02 DEC 09 MAR 1988 | GEN, NITRATE DIS- SOLVED (MG/L AS NO3) | GEN, NITRITE TOTAL (MG/L AS N) 0.00 0.00 0.010 0.00 0.00 0.00 | GEN, NITRITE DIS- SOLVED (MG/L AS NO2) 0.07 | GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
1.36
0.920
1.27

0.630
1.15
0.810 | GEN,
AMMONIA
TOTAL
(MG/L
AS N)
0.080
0.090
0.160
0.150
0.070
0.130 | GEN, AMMONIA TOTAL (MG/L AS NH4) 0.10 0.12 0.21 0.19 0.09 0.17 0.06 | GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS NH4) | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.11
0.15
0.06
1.4
0.09
0.18 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.19 0.24 0.22 1.6 0.16 0.31 0.21 | GEN,
TOTAL
(MG/L
AS N)
1.5
1.2
1.5

0.79
1.5 | GEN,
TOTAL
(MG/L
AS NO3)
6.9
5.1
6.6

3.5
6.5 | PHORUS
TOTAL
(MG/L
AS P)
0.03(
0.02(
0.01(
0.19(
0.00
0.00 | | APR 1987 16 30 MAY 19 JUN 23 JUL 20 SEP 29 NOV 02 DEC 09 MAR 1988 23 | GEN, NITRATE DIS- SOLVED (MG/L AS NO3) 4.3 | GEN, NITRITE TOTAL (MG/L AS N) 0.00 0.00 0.010 0.00 0.00 | GEN, NITRITE DIS- SOLVED (MG/L AS NO2) 0.07 | GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
1.36
0.920
1.27

0.630
1.15
0.810 | GEN,
AMMONIA
TOTAL
(MG/L
AS N)
0.080
0.090
0.160
0.150
0.070
0.130 | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4)
0.10
0.12
0.21
0.19
0.09
0.17 | GEN, AMMONIA DIS- SOLVED (MG/L AS NH4) 0.13 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.11
0.15
0.06
1.4
0.09
0.18 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.19 0.24 0.22 1.6 0.16 0.31 0.21 | GEN,
TOTAL
(MG/L
AS N)
1.5
1.2
1.5

0.79
1.5 | GEN,
TOTAL
(MG/L)
AS NO3)
6.9
5.1
6.6

3.5
6.5 | PHORUS
TOTAL
(MG/L
AS P)
0.03(
0.02(
0.01(
0.19(
0.00
0.00 | | APR 1987 16 30 MAY 19 JUN 23 JUL 20 SEP 29 NOV 02 DEC 09 MAR 1988 23 APR 07 | GEN, NITRATE DIS- SOLVED (MG/L AS NO3) 4.3 | GEN, NITRITE TOTAL (MG/L AS N) 0.00 0.00 0.010 0.00 0.00 0.00 0.00 0.00 | GEN, NITRITE DIS- SOLVED (MG/L AS NO2) 0.07 | GEN, NO2+NO3 TOTAL (MG/L AS N) 1.36 0.920 1.27 0.630 1.15 0.810 1.63 1.11 | GEN, AMMONIA TOTAL (MG/L AS N) 0.080 0.090 0.160 0.150 0.070 0.130 0.050 0.080 0.120 | GEN, AMMONIA TOTAL (MG/L AS NH4) 0.10 0.12 0.21 0.19 0.09 0.17 0.06 0.10 0.15 | GEN, AMMONIA DIS- SOLVED (MG/L AS NH4) 0.13 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.11
0.15
0.06
1.4
0.09
0.18
0.16 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.19 0.24 0.22 1.6 0.16 0.31 0.21 0.21 0.26 | GEN,
TOTAL
(MG/L
AS N)
1.5
1.2
1.5

0.79
1.5
1.0 | GEN,
TOTAL
(MG/L
AS NO3)
6.9
5.1
6.6

3.5
6.5
4.5 | PHORUS
TOTAL
(MG/L
AS P)
0.03(
0.02(
0.01(
0.19(
0.00
0.00
0.01(

0.05(
0.11(| | APR 1987 16 30 MAY 19 JUN 23 JUL 20 SEP 29 NOV 02 DEC 09 MAR 1988 23 APR 07 21 | GEN, NITRATE DIS- SOLVED (MG/L AS NO3) 4.3 | GEN, NITRITE TOTAL (MG/L AS N) 0.00 0.00 0.010 0.00 0.00 0.00 | GEN, NITRITE DIS- SOLVED (MG/L AS NO2) 0.07 | GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
1.36
0.920
1.27

0.630
1.15
0.810

1.63 | GEN,
AMMONIA
TOTAL
(MG/L
AS N)
0.080
0.090
0.160
0.150
0.070
0.130
0.050 | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4)
0.10
0.12
0.21
0.19
0.09
0.17 | GEN, AMMONIA DIS- SOLVED (MG/L AS NH4) 0.13 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.11
0.15
0.06
1.4
0.09
0.18
0.16 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.19 0.24 0.22 1.6 0.16 0.31 0.21 | GEN,
TOTAL
(MG/L
AS N)
1.5
1.2
1.5

0.79
1.5
1.0 | GEN,
TOTAL
(MG/L
AS NO3)
6.9
5.1
6.6

3.5
6.5
4.5 | PHORUS
TOTAL
(MG/L
AS P)
0.03(
0.02(
0.01(
0.19(
0.00
0.00
0.01(
 | | APR 1987 16 30 MAY 19 JUN 23 JUL 20 SEP 29 NOV 02 DEC 09 MAR 1988 23 APR 07 21 MAY | GEN, NITRATE DIS- SOLVED (MG/L AS NO3) 4.3 | GEN, NITRITE TOTAL (MG/L AS N) 0.00 0.00 0.010 0.00 0.00 0.00 0.00 | GEN, NITRITE DIS- SOLVED (MG/L AS NO2) 0.07 | GEN, NO2+NO3 TOTAL (MG/L AS N) 1.36 0.920 1.27 0.630 1.15 0.810 1.63 1.11 1.34 0.660 | GEN,
AMMONIA
TOTAL
(MG/L
AS N)
0.080
0.090
0.160
0.150
0.070
0.130
0.050

0.080
0.120
0.040 | GEN, AMMONIA TOTAL (MG/L AS NH4) 0.10 0.12 0.21 0.19 0.09 0.17 0.06 0.10 0.15 0.05 | GEN, AMMONIA DIS- SOLVED (MG/L AS NH4) 0.13 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.11
0.15
0.06
1.4
0.09
0.18
0.16

0.13
0.14
0.10 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.19 0.24 0.22 1.6 0.16 0.31 0.21 0.21 0.26 0.14 0.16 | GEN,
TOTAL
(MG/L
AS N)
1.5
1.2
1.5

0.79
1.5
1.0

1.8
1.4
1.5 | GEN,
TOTAL
(MG/L
AS NO3)
6.9
5.1
6.6

3.5
6.5
4.5

8.1
6.1
6.6
3.6 | PHORUS
TOTAL
(MG/L
AS P)
0.03(
0.02(
0.01(
0.19(
0.00
0.00
0.01(

0.05(
0.11(
0.02(
0.01(| | APR 1987 16 30 MAY 19 JUN 23 JUL 20 SEP 29 NOV 02 DEC 09 MAR 1988 23 APR 07 21 MAY 04 19 | GEN, NITRATE DIS- SOLVED (MG/L AS NO3) 4.3 4.3 | GEN, NITRITE TOTAL (MG/L AS N) 0.00 0.00 0.010 0.00 0.00 0.00 0.00 | GEN, NITRITE DIS- SOLVED (MG/L AS NO2) 0.07 | GEN, NO2+NO3 TOTAL (MG/L AS N) 1.36 0.920 1.27 0.630 1.15 0.810 1.63 1.11 1.34 | GEN, AMMONIA TOTAL (MG/L AS N) 0.080 0.090 0.160 0.150 0.070 0.130 0.050 0.080 0.120 0.040 | GEN, AMMONIA TOTAL (MG/L AS NH4) 0.10 0.12 0.21 0.19 0.09 0.17 0.06 0.10 0.15 0.05 | GEN, AMMONIA DIS- SOLVED (MG/L AS NH4) 0.13 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.11
0.15
0.06
1.4
0.09
0.18
0.16 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.19 0.24 0.22 1.6 0.16 0.31 0.21 0.21 0.26 0.14 | GEN,
TOTAL
(MG/L
AS N)
1.5
1.2
1.5

0.79
1.5
1.0

1.8
1.4
1.5 | GEN,
TOTAL
(MG/L
AS NO3)
6.9
5.1
6.6

3.5
6.5
4.5

8.1
6.1
6.6 | PHORUS
TOTAL
(MG/L
AS P)
0.03(
0.02(
0.01(
0.19(
0.00
0.00
0.01(

0.05(
0.11(
0.02(| | APR 1987 16 30 MAY 19 JUN 23 SEP 29 NOV 02 DEC 09 MAR 1988 23 APR 07 21 MAY 19 JUN 28 | GEN, NITRATE DIS- SOLVED (MG/L AS NO3) 4.3 | GEN, NITRITE TOTAL (MG/L AS N) 0.00 0.00 0.010 0.00 0.00 0.00 0.00 | GEN, NITRITE DIS- SOLVED (MG/L AS NO2) 0.07 | GEN, NO2+NO3 TOTAL (MG/L AS N) 1.36 0.920 1.27 0.630 1.15 0.810 1.63 1.11 1.34 0.660 | GEN,
AMMONIA
TOTAL
(MG/L
AS N)
0.080
0.090
0.160
0.150
0.070
0.130
0.050

0.080
0.120
0.040 | GEN, AMMONIA TOTAL (MG/L AS NH4) 0.10 0.12 0.21 0.19 0.09 0.17 0.06 0.10 0.15 0.05 | GEN, AMMONIA DIS- SOLVED (MG/L AS NH4) 0.13 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.11
0.15
0.06
1.4
0.09
0.18
0.16

0.13
0.14
0.10 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.19 0.24 0.22 1.6 0.16 0.31 0.21 0.21 0.26 0.14 0.16 | GEN,
TOTAL
(MG/L
AS N)
1.5
1.2
1.5

0.79
1.5
1.0

1.8
1.4
1.5 | GEN,
TOTAL
(MG/L
AS NO3)
6.9
5.1
6.6

3.5
6.5
4.5

8.1
6.1
6.6
3.6 | PHORUS
TOTAL
(MG/L
AS P)
0.03(
0.02(
0.01(
0.19(
0.00
0.00
0.01(

0.05(
0.11(
0.02(
0.01(| | APR 1987 16 30 MAY 19 JUN 23 JUL 20 SEP 29 NOV 02 DEC 09 MAR 1988 23 APR 07 21 MAY 19 JUN 28 SEP | GEN, NITRATE DIS- SOLVED (MG/L AS NO3) 4.3 4.3 | GEN, NITRITE TOTAL (MG/L AS N) 0.00 0.00 0.010 0.00 0.00 0.00 0.00 | GEN, NITRITE DIS- SOLVED (MG/L AS NO2) 0.07 | GEN, NO2+NO3 TOTAL (MG/L AS N) 1.36 0.920 1.27 0.630 1.15 0.810 1.63 1.11 1.34 0.660 0.530 1.27 | GEN, AMMONIA TOTAL (MG/L AS N) 0.080 0.090 0.160 0.150 0.070 0.130 0.050 0.080 0.120 0.040 0.070 0.310 0.330 | GEN, AMMONIA TOTAL (MG/L AS NH4) 0.10 0.12 0.21 0.19 0.09 0.17 0.06 0.10 0.15 0.05 0.09 0.40 0.42 | GEN, AMMONIA DIS- SOLVED (MG/L AS NH4) 0.13 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.11
0.15
0.06
1.4
0.09
0.18
0.16

0.13
0.14
0.10 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.19 0.24 0.22 1.6 0.16 0.31 0.21 0.21 0.26 0.14 0.16 1.2 0.57 | GEN,
TOTAL
(MG/L
AS N)
1.5
1.2
1.5

0.79
1.5
1.0

1.8
1.4
1.5
0.82
1.7 | GEN,
TOTAL
(MG/L
AS NO3)
6.9
5.1
6.6

3.5
6.5
4.5

8.1
6.1
6.6
3.6
7.7 | PHORUS
TOTAL
(MG/L
AS P)
0.03(
0.02(
0.01(
0.19(
0.00
0.01(

0.05(
0.11(
0.02(
0.57(
0.01(| | APR 1987 16 30 MAY 19 JUN 23 JUL 20 SEP 29 NOV 02 DEC 09 MAR 1988 23 APR 07 21 MAY 04 19 JUN 28 SEP 08 OCT | GEN, NITRATE DIS- SOLVED (MG/L AS NO3) 4.3 4.3 | GEN,
NITRITE TOTAL (MG/L AS N) 0.00 0.00 0.010 0.00 0.00 0.00 0.00 | GEN, NITRITE DIS- SOLVED (MG/L AS NO2) 0.07 | GEN, NO2+NO3 TOTAL (MG/L AS N) 1.36 0.920 1.27 0.630 1.15 0.810 1.63 1.11 1.34 0.660 0.530 1.27 0.630 | GEN, AMMONIA TOTAL (MG/L AS N) 0.080 0.090 0.160 0.150 0.070 0.130 0.050 0.080 0.120 0.040 0.070 0.310 0.330 0.270 | GEN, AMMONIA TOTAL (MG/L AS NH4) 0.10 0.12 0.21 0.19 0.09 0.17 0.06 0.10 0.15 0.05 0.09 0.40 0.42 0.35 | GEN, AMMONIA DIS- SOLVED (MG/L AS NH4) 0.13 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.11
0.15
0.06
1.4
0.09
0.18
0.16

0.13
0.14
0.10
0.89
0.89 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.19 0.24 0.22 1.6 0.16 0.31 0.21 0.21 0.26 0.14 0.16 1.2 0.57 | GEN,
TOTAL
(MG/L
AS N)
1.5
1.2
1.5

0.79
1.5
1.0

1.8
1.4
1.5
0.82
1.7
1.8 | GEN,
TOTAL
(MG/L
AS NO3)
6.9
5.1
6.6

3.5
6.5
4.5

8.1
6.6
7.7
8.1
5.1 | PHORUS
TOTAL
(MG/L
AS P)
0.03(
0.02(
0.01(
0.19(
0.00
0.01(

0.05(
0.11(
0.02(
0.01(
0.57(
0.01(
0.01(| | APR 1987 16 30 MAY 19 JUN 23 JUL 20 SEP 29 NOV 02 DEC 09 MAR 1988 23 APR 07 21 MAY 04 19 JUN 28 SEP 08 | GEN, NITRATE DIS- SOLVED (MG/L AS NO3) 4.3 | GEN, NITRITE TOTAL (MG/L AS N) 0.00 0.00 0.010 0.00 0.00 0.00 0.00 | GEN, NITRITE DIS- SOLVED (MG/L AS NO2) 0.07 | GEN, NO2+NO3 TOTAL (MG/L AS N) 1.36 0.920 1.27 0.630 1.15 0.810 1.63 1.11 1.34 0.660 0.530 1.27 | GEN, AMMONIA TOTAL (MG/L AS N) 0.080 0.090 0.160 0.150 0.070 0.130 0.050 0.080 0.120 0.040 0.070 0.310 0.330 | GEN, AMMONIA TOTAL (MG/L AS NH4) 0.10 0.12 0.21 0.19 0.09 0.17 0.06 0.10 0.15 0.05 0.09 0.40 0.42 | GEN, AMMONIA DIS- SOLVED (MG/L AS NH4) 0.13 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.11
0.15
0.06
1.4
0.09
0.18
0.16

0.13
0.14
0.10 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.19 0.24 0.22 1.6 0.16 0.31 0.21 0.21 0.26 0.14 0.16 1.2 0.57 | GEN,
TOTAL
(MG/L
AS N)
1.5
1.2
1.5

0.79
1.5
1.0

1.8
1.4
1.5
0.82
1.7 | GEN,
TOTAL
(MG/L
AS NO3)
6.9
5.1
6.6

3.5
6.5
4.5

8.1
6.1
6.6
3.6
7.7 | PHORUS
TOTAL
(MG/L
AS P)
0.03(
0.02(
0.01(
0.19(
0.00
0.01(

0.05(
0.11(
0.02(
0.57(
0.01(| Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). # 04213500 CATTARAUGUS CREEK AT GOWANDA, NY - continued | DATE | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P) | PHOS-
PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4) | ALUM-
INUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS AL) | ALUM-
INUM,
DIS-
SOLVED
(UG/L
AS AL) | CADMIUM
TOTAL
RECOV-
ERABLE
(UG/L
AS CD) | CADMIUM
DIS-
SOLVED
(UG/L
AS CD) | COPPER,
TOTAL
RECOV-
ERABLE
(UG/L
AS CU) | COPPER,
DIS-
SOLVED
(UG/L
AS CU) | IRON,
TOTAL
RECOV-
ERABLE
(UG/L
AS FE) | IRON,
DIS-
SOLVED
(UG/L
AS FE) | LEAD,
TOTAL
RECOV-
ERABLE
(UG/L
AS PB) | LEAD,
DIS-
SOLVED
(UG/L
AS PB) | |---|--|---|--|---|---|--|---|---|---|--|---|---| | APR 1987 | | | | | | | | | | | | | | 16 | ND | | | | <10 | | <10 | | 1400 | | <100 | | | 30
MAY | 0.00 | 0.0 | | | <10 | | <10 | | 640 | | <5 | | | 19 | ND | | | | <10 | | 10 | | 490 | | <5 | | | JUN
23 | 0.020 | 0.06 | | | <10 | | 20 | | 7900 | | | | | JUL
20 | 0.00 | 0.0 | | | <10 | | 20 | | 660 | | < 5 | | | SEP 29 | ND | | | | <10 | <1.0 | 10 | 1 | 240 | | <100 | < 5 | | NOV
02 | ND | | | | 1 | | 2 | | 660 | | < 5 | | | DEC 09 | | | | | <1 | | 10 | | 7400 | | 8 | | | MAR 1988
23 | 0.00 | 0.0 | 1200 | <10 | <1 | <1.0 | 4 | 1 | 1800 | 6 | <5 | <5 | | APR
07 | 0.00 | 0.0 | 1700 | | <1 | | 7 | | 3000 | | < 5 | | | 21 | 0.00 | 0.0 | 220 | <10 | 2 | <1.0 | 3 | 3 | 520 | 10 | < 5 | < 5 | | MAY
04
19 | 0.00 | 0.0 | 270
6500 |
40 | <1
<1 |
<1.0 | 7
15 | 3 | 610
1300 |
46 | <5
5 |
<5 | | JUN
28 | ND | | 310 | | <1 | | 4 | | 280 | | < 5 | | | SEP
08 | ND | | 190 | | 1 | | 4 | | 480 | | < 5 | | | ост
06 | ИД | | 340 | 20 | 1 | <1.0 | 3 | <1 | 640 | 14 | < 5 | < 5 | | NOV
17 | ND | | 410 | | 1 | | 3 | | 760 | | < 5 | | | | | | | | | | | | | | | | | DATE | MANGA-
NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN) | MERCURY
TOTAL
RECOV-
ERABLE
(UG/L
AS HG) | NICKEL,
TOTAL
RECOV-
ERABLE
(UG/L
AS NI) | NICKEL,
DIS-
SOLVED
(UG/L
AS NI) | ZINC,
TOTAL
RECOV-
ERABLE
(UG/L
AS ZN) | ZINC,
DIS-
SOLVED
(UG/L
AS ZN) | BROMO-
FORM
TOTAL
(UG/L) | CARBON-
TETRA-
CHLO-
RIDE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
DI-
BROMO-
METHANE
TOTAL
(UG/L) | CHLORO-
ETHANE
TOTAL
(UG/L) | | | NESE,
TOTAL
RECOV-
ERABLE
(UG/L | NESE,
DIS-
SOLVED
(UG/L | TOTAL
RECOV-
ERABLE
(UG/L | TOTAL
RECOV-
ERABLE
(UG/L | DIS-
SOLVED
(UG/L | TOTAL
RECOV-
ERABLE
(UG/L | DIS-
SOLVED
(UG/L | FORM
TOTAL | TETRA-
CHLO-
RIDE
TOTAL | BENZENE
TOTAL | DI-
BROMO-
METHANE
TOTAL | ETHANE
TOTAL | | APR 1987
16 | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL
RECOV-
ERABLE
(UG/L
AS HG) | TOTAL
RECOV-
ERABLE
(UG/L
AS NI) | DIS-
SOLVED
(UG/L
AS NI) | TOTAL
RECOV-
ERABLE
(UG/L
AS ZN) | DIS-
SOLVED
(UG/L
AS ZN) | FORM TOTAL (UG/L) | TETRA-
CHLO-
RIDE
TOTAL
(UG/L) | BENZENE
TOTAL
(UG/L)
ND | DI-
BROMO-
METHANE
TOTAL
(UG/L) | ETHANE
TOTAL
(UG/L)
ND | | APR 1987
16
30
MAY | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV- ERABLE (UG/L AS HG) <0.10 0.10 | TOTAL RECOV- ERABLE (UG/L AS NI) <100 <1 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV- ERABLE (UG/L AS ZN) <10 <10 | DIS-
SOLVED
(UG/L
AS ZN) | FORM TOTAL (UG/L) ND ND | TETRA-
CHLO-
RIDE
TOTAL
(UG/L)
ND | BENZENE
TOTAL
(UG/L)
ND
ND | DI-
BROMO-
METHANE
TOTAL
(UG/L)
ND | ETHANE
TOTAL
(UG/L)
ND
ND | | APR 1987
16
30
MAY
19
JUN | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN)
20
20 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL
RECOV-
ERABLE
(UG/L
AS HG) | TOTAL
RECOV-
ERABLE
(UG/L
AS NI) | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV- ERABLE (UG/L AS ZN) <10 <10 <10 | DIS-
SOLVED
(UG/L
AS ZN) | FORM TOTAL (UG/L) | TETRA-
CHLO-
RIDE
TOTAL
(UG/L) | BENZENE
TOTAL
(UG/L)
ND | DI-
BROMO-
METHANE
TOTAL
(UG/L) | ETHANE
TOTAL
(UG/L)
ND | | APR 1987
16
30
MAY
19 | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV- ERABLE (UG/L AS HG) <0.10 0.10 | TOTAL RECOV- ERABLE (UG/L AS NI) <100 <1 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV- ERABLE (UG/L AS ZN) <10 <10 | DIS-
SOLVED
(UG/L
AS ZN) | FORM TOTAL (UG/L) ND ND | TETRA-
CHLO-
RIDE
TOTAL
(UG/L)
ND | BENZENE
TOTAL
(UG/L)
ND
ND | DI-
BROMO-
METHANE
TOTAL
(UG/L)
ND | ETHANE
TOTAL
(UG/L)
ND
ND | | APR 1987
16
30
MAY
19
JUN
23 | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN)
20
20 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV- ERABLE (UG/L AS HG) <0.10 <0.10 | TOTAL RECOV- ERABLE (UG/L AS NI) <100 <1 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV- ERABLE (UG/L AS ZN) <10 <10 <10 | DIS-
SOLVED
(UG/L
AS ZN) | FORM TOTAL (UG/L) ND ND | TETRA-
CHLO-
RIDE
TOTAL
(UG/L)
ND | BENZENE
TOTAL
(UG/L)
ND
ND | DI-
BROMO-
METHANE
TOTAL
(UG/L)
ND | ETHANE
TOTAL
(UG/L)
ND
ND | | APR 1987 16 30 MAY 19 JUN 23 JUL 20 SEP 29 | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN)
20
20
20 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV- ERABLE (UG/L AS HG) <0.10 0.10 <0.10 <0.10 | TOTAL RECOV- ERABLE (UG/L AS NI) <100 <1 <1 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV- ERABLE (UG/L AS ZN) <10 <10 <10 <40 | DIS-
SOLVED
(UG/L
AS ZN) | FORM TOTAL (UG/L) ND ND | TETRA-
CHLO-
RIDE
TOTAL
(UG/L)
ND | BENZENE
TOTAL
(UG/L)
ND
ND | DI-
BROMO-
METHANE
TOTAL
(UG/L)
ND | ETHANE
TOTAL
(UG/L)
ND
ND | | APR 1987 16 30 MAY 19 JUN 23 JUL 20 SEP 29 NOV 02 | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN)
20
20
20
270
40 | NESE,
DIS-
SOLVED
(UG/L
AS MN) |
TOTAL RECOV- ERABLE (UG/L AS HG) <0.10 0.10 <0.10 <0.10 0.20 | TOTAL RECOV- ERABLE (UG/L AS NI) <100 <1 <1 <1 < <1 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV- ERABLE (UG/L AS ZN) <10 <10 <10 <10 <10 | DIS-
SOLVED
(UG/L
AS ZN) | FORM TOTAL (UG/L) ND ND ND | TETRA-
CHLO-
RIDE
TOTAL
(UG/L)
ND
ND
ND | BENZENE
TOTAL
(UG/L)
ND
ND
ND | DI-
BROMO-
METHANE
TOTAL
(UG/L)
ND
ND
ND | ETHANE
TOTAL
(UG/L)
ND
ND | | APR 1987 16 30 MAY 19 JUN 23 JUL 20 SEP 29 NOV 02 DEC 09 | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN)
20
20
20
270
40 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV- ERABLE (UG/L AS HG) <0.10 0.10 <0.10 <0.10 <0.10 <0.10 | TOTAL RECOV- ERABLE (UG/L AS NI) <100 <1 <1 <1 <100 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV- ERABLE (UG/L AS ZN) <10 <10 <10 <10 <10 <10 <10 | DIS-
SOLVED
(UG/L
AS ZN) | FORM TOTAL (UG/L) ND ND ND | TETRA- CHLO- RIDE TOTAL (UG/L) ND ND ND ND | BENZENE
TOTAL
(UG/L)
ND
ND
ND | DI- BROMO- METHANE TOTAL (UG/L) ND ND ND ND ND | ETHANE TOTAL (UG/L) ND ND ND ND ND | | APR 1987 16 30 MAY 19 JUN 23 SEP 29 NOV 02 DEC 09 MAR 1988 23 | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN)
20
20
270
40
10 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV- ERABLE (UG/L AS HG) <0.10 0.10 <0.10 <0.10 <0.10 <0.10 <0.10 | TOTAL RECOV- ERABLE (UG/L AS NI) <100 <1 <1 <1 <100 <1 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV- ERABLE (UG/L AS ZN) <10 <10 <10 <10 <10 <10 <10 <10 <10 | DIS-
SOLVED
(UG/L
AS ZN) | FORM TOTAL (UG/L) ND ND ND ND ND | TETRA- CHLO- RIDE TOTAL (UG/L) ND ND ND ND ND ND | BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND | DI- BROMO- METHANE TOTAL (UG/L) ND ND ND ND ND ND | ETHANE TOTAL (UG/L) ND ND ND ND ND ND | | APR 1987 16 30 MAY 19 JUN 23 JUL 20 SEP 29 NOV 02 DEC 09 MAR 1988 23 APR 07 | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN)
20
20
270
40
10
20
130
40
50 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV-ERABLE (UG/L AS HG) <0.10 | TOTAL RECOV-ERABLE (UG/L AS NI) <1000 <1 <1 <1 <1 <1 00 <1 <1 <1 00 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOVERABLE (UG/L AS ZN) <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 | DIS-
SOLVED
(UG/L
AS ZN) | FORM TOTAL (UG/L) ND | TETRA- CHLO- RIDE TOTAL (UG/L) ND | BENZENE TOTAL (UG/L) ND | DI- BROMO- METHANE TOTAL (UG/L) ND | ETHANE TOTAL (UG/L) ND | | APR 1987 16 30 MAY 19 JUN 23 JUL 20 SEP 29 NOV 02 DEC 09 MAR 1988 23 APR | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN)
20
20
270
40
10
20
130
40 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOVERABLE (UG/L AS HG) <0.10 | TOTAL RECOV- ERABLE (UG/L AS NI) <100 <1 <1 < <1 <100 <1 8 10 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV-ERABLE (UG/L AS ZN) <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 | DIS-
SOLVED
(UG/L
AS ZN) | FORM TOTAL (UG/L) ND ND ND ND ND ND ND ND | TETRA- CHLO- RIDE TOTAL (UG/L) ND | BENZENE TOTAL (UG/L) ND | DI- BROMO- METHANE TOTAL (UG/L) ND | ETHANE TOTAL (UG/L) ND | | APR 1987 16 30 MAY 19 JUN 23 JUL 20 SEP 29 NOV 02 DEC 09 MAR 1988 23 APR 07 21 MAY | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN)
20
20
270
40
10
20
130
40
50 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV-ERABLE (UG/L AS HG) <0.10 | TOTAL RECOV-ERABLE (UG/L AS NI) <1000 <1 <1 <1 <1 <1 00 <1 <1 <1 00 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOVERABLE (UG/L AS ZN) <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 | DIS-
SOLVED
(UG/L
AS ZN) | FORM TOTAL (UG/L) ND | TETRA- CHLO- RIDE TOTAL (UG/L) ND | BENZENE TOTAL (UG/L) ND | DI- BROMO- METHANE TOTAL (UG/L) ND | ETHANE TOTAL (UG/L) ND | | APR 1987 16 30 MAY 19 JUN 23 JUL 20 SEP 29 NOV 02 DEC 09 MAR 1988 23 APR 07 21 MAY 19 JUN 28 | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN)
20
20
270
40
10
20
130
40
50
10 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOVERABLE (UG/L AS HG) <0.10 | TOTAL RECOV-ERABLE (UG/L AS NI) <100 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOVERABLE (UG/L AS ZN) <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 | DIS-
SOLVED
(UG/L
AS ZN) | FORM TOTAL (UG/L) ND | TETRA-CHLO-RIDE TOTAL (UG/L) ND | BENZENE TOTAL (UG/L) ND | DI- BROMO- METHANE TOTAL (UG/L) ND | ETHANE TOTAL (UG/L) ND | | APR 1987 16 30 MAY 19 JUN 23 SEP 29 NOV 02 DEC 09 MAR 1988 23 APR 07 21 MAY 04 19 JUN 28 SEP 08 | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN)
20
20
270
40
10
20
130
40
50
10
20
360 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV-ERABLE (UG/L AS HG) <0.10 | TOTAL RECOV-ERABLE (UG/L AS NI) <100 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOVERABLE (UG/L AS ZN) <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 | DIS-
SOLVED
(UG/L
AS ZN) | FORM TOTAL (UG/L) ND ND ND ND ND ND ND ND ND | TETRA- CHLO- RIDE TOTAL (UG/L) ND | BENZENE TOTAL (UG/L) ND | DI- BROMO- METHANE TOTAL (UG/L) ND | ETHANE TOTAL (UG/L) ND | | APR 1987 16 30 MAY 19 JUN 23 SEP 29 NOV 02 DEC 09 MAR 1988 23 APR 07 21 MAY 19 JUN 28 SEP | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN)
20
20
270
40
10
20
130
40
50
10
20
360 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOVERABLE (UG/L AS HG) <0.10 | TOTAL RECOV-ERABLE (UG/L AS NI) <1000 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOVERABLE (UG/L AS ZN) <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 | DIS-
SOLVED
(UG/L
AS ZN) <10 <3 <3 <5 | FORM TOTAL (UG/L) ND | TETRA-CHLO-RIDE RIDE TOTAL (UG/L) ND N | BENZENE TOTAL (UG/L) ND | DI- BROMO- METHANE TOTAL (UG/L) ND | ETHANE TOTAL (UG/L) ND | # 04213500 CATTARAUGUS CREEK AT GOWANDA, NY - continued | DATE | CHLORO-
FORM
TOTAL
(UG/L) | CIS
1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | DI-
CHLORO-
BROMO-
METHANE
TOTAL
(UG/L) | METHYL-
BROMIDE
TOTAL
(UG/L) | METHYL-
CHLO-
RIDE
TOTAL
(UG/L) | METHYL-
ENE
CHLO-
RIDE
TOTAL
(UG/L) | 1,1,1-
TRI-
CHLORO-
ETHANE
TOTAL
(UG/L) | 1,1-DI-
CHLORO-
ETHANE
TOTAL
(UG/L) | 1,1-DI-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 1,1,2-
TRI-
CHLORO-
ETHANE
TOTAL
(UG/L) | 1,1,2,2
TETRA-
CHLORO-
ETHANE
TOTAL
(UG/L) | |---|--|--|---|---|---|---|---|--|---|--|--| | APR 1987
16
30 | ND
N D | ND
ND | ND
N D | ND
ND | ND
N D | N D
ND | ND
ND | ND
ND | ND
ND | ND
ND | ND
ND | | MAY
19 | ND | JUN
23 | | | | | | | | | | | | | JUL
20 | | | | | | | | | | | | | SEP
29 | ND | NOV
02 | ND | DEC
09 | ND | MAR 1988
23 | ND | APR
07 | ND | 21
MAY | ND | 04
19 | 0
ND | 0
ND | 0
ND | 0
ND | 0
ND | ND
O | 0
ND | 0
ND | 0
ND | 0
N D | ND | | JUN
28 | ND N D | | SEP
08 | ND | OCT
06 | ND | NOV
17 | ND | | | | | | | | | | | | | | DATE | 1,2-DI-
CHLORO-
BENZENE
TOTAL
(UG/L) | 1,2-DI-
CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L) | 1,2-DI-
CHLORO-
PROPANE
TOTAL
(UG/L) | 1,2-
TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L) | 1,3-DI-
CHLORO-
BENZENE
TOTAL
(UG/L) | 1,4-DI-
CHLORO-
BENZENE
TOTAL
(UG/L) | TETRA-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | TRANS-
1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | TRI-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 2-
CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L) | VINYL
CHLO-
RIDE
TOTAL
(UG/L) | | APR 1987 | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L) | CHLORO-
PROPANE
TOTAL
(UG/L) | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L) | CHLO-
RIDE
TOTAL
(UG/L) | | APR 1987
16
30 | CHLORO-
BENZENE
TOTAL | CHLORO-
ETHANE
WATER
WHOLE
TOTAL | CHLORO-
PROPANE
TOTAL | TR AN SDI
CHLORO-
ETHENE
TOTAL | CHLORO-
BENZENE
TOTAL | CHLORO-
BENZENE
TOTAL | CHLORO-
ETHYL-
ENE
TOTAL | 1,3-DI-
CHLORO-
PROPENE
TOTAL | CHLORO-
ETHYL-
ENE
TOTAL | CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL | CHLO-
RIDE
TOTAL | | APR 1987
16
30
MAY
19 | CHLORO-
BENZENE
TOTAL
(UG/L)
ND | CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L) | CHLORO-
PROPANE
TOTAL
(UG/L) | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) |
1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L) | CHLO-
RIDE
TOTAL
(UG/L) | | APR 1987
16
30
MAY
19
JUN
23 | CHLORO-
BENZENE
TOTAL
(UG/L)
ND
ND | CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L)
ND
ND | CHLORO-
PROPANE
TOTAL
(UG/L)
ND
ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND | CHLORO-
BENZENE
TOTAL
(UG/L)
ND | CHLORO-
BENZENE
TOTAL
(UG/L)
ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND | CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L)
ND | CHLO-
RIDE
TOTAL
(UG/L)
ND
ND | | APR 1987 16 30 MAY 19 JUN 23 JUL 20 | CHLORO-
BENZENE
TOTAL
(UG/L)
ND
ND | CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L)
ND
ND | CHLORO-
PROPANE
TOTAL
(UG/L)
ND
ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND | CHLORO-
BENZENE
TOTAL
(UG/L)
ND
ND | CHLORO-
BENZENE
TOTAL
(UG/L)
ND
ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND
ND | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
ND
ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND
ND | CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L)
ND
ND | CHLO-
RIDE
TOTAL
(UG/L)
ND
ND | | APR 1987 16 30 MAY 19 JUN 23 JUL 20 SEP 29 | CHLORO-
BENZENE
TOTAL
(UG/L)
ND
ND | CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L)
ND
ND | CHLORO-
PROPANE
TOTAL
(UG/L)
ND
ND
ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND | CHLORO-
BENZENE
TOTAL
(UG/L)
ND
ND
ND | CHLORO-
BENZENE
TOTAL
(UG/L)
ND
ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND
ND | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
ND
ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND
ND | CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L)
ND
ND | CHLO-
RIDE
TOTAL
(UG/L)
ND
ND | | APR 1987 16 30 MAY 19 JUN 23 JUL 20 SEP 29 NOV 02 | CHLORO-
BENZENE
TOTAL
(UG/L)
ND
ND | CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L)
ND
ND | CHLORO-
PROPANE
TOTAL
(UG/L)
ND
ND
ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND | CHLORO-
BENZENE
TOTAL
(UG/L)
ND
ND
ND | CHLORO-
BENZENE
TOTAL
(UG/L)
ND
ND
ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND
ND
ND | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
ND
ND
ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND ND ND | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND ND ND | CHLO-
RIDE
TOTAL
(UG/L)
ND
ND | | APR 1987 16 30 MAY 19 JUN 23 JUL 20 SEP 29 NOV 02 DEC 09 | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND | CHLORO-ETHANE WATER WATER WHOLE TOTAL (UG/L) ND ND ND ND ND | CHLORO-PROPANE TOTAL (UG/L) ND ND ND ND ND ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND | CHLORO-BENZEME TOTAL (UG/L) ND ND ND ND ND ND | CHLORO-ETHYL-ENE ENE TOTAL (UG/L) ND ND ND ND ND ND | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND ND ND ND ND | CHLORO-ETHYL-ENE ENE TOTAL (UG/L) ND ND ND ND ND ND | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND ND ND ND ND ND | CHLO-
RIDE
TOTAL
(UG/L)
ND
ND
ND | | APR 1987 16 30 MAY 19 JUN 23 JUL 20 SEP 29 NOV 02 DEC 09 MAR 1988 23 | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND ND ND ND ND ND | CHLORO-PROPANE TOTAL (UG/L) ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND | CHLORO-BENZEME TOTAL (UG/L) ND ND ND ND ND ND ND | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND ND ND ND ND ND ND | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND N | CHLORO-ETHYL-ENE TOTAL (UG/L) ND N | CHLORO-ETHYL- VINYL- VINYL- ETHER TOTAL (UG/L) ND | CHLO-RIDE TOTAL (UG/L) ND ND ND ND ND ND | | APR 1987 16 30 MAY 19 JUN 23 JUL 20 SEP 29 NOV 02 DEC 09 MAR 1988 23 APR 07 | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-ETHANE WATER WATER WHOLE TOTAL (UG/L) ND | CHLORO-PROPANE TOTAL (UG/L) ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND | CHLORO-BENZEME TOTAL (UG/L) ND | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-ETHYL-ENE ENE TOTAL (UG/L) ND N | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND N | CHLORO-ETHYL-ENE ENE TOTAL (UG/L) ND N | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND | CHLO-RIDE TOTAL (UG/L) ND N | | APR 1987 16 30 MAY 19 JUN 23 JUL 20 SEP 29 NOV 02 DEC 09 MAR 1988 23 APR 07 21 MAY | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND | CHLORO-PROPANE TOTAL (UG/L) ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND N | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND N | CHLORO-ETHYL-ENE TOTAL (UG/L) ND N | CHLORO-ETHYL- VINYL- VINYL- ETHER TOTAL (UG/L) ND | CHLO-RIDE TOTAL (UG/L) ND | | APR 1987 16 30 MAY 19 JUN 23 JUL 20 SEP 29 NOV 02 DEC 09 MAR 1988 23 APR 07 21 MAY 04 19 | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-ETHANE WATER WATER WHOLE TOTAL (UG/L) ND | CHLORO-PROPANE TOTAL (UG/L) ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND | CHLORO-BENZEME TOTAL (UG/L) ND | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-ETHYL-ENE ENE TOTAL (UG/L) ND N | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND N | CHLORO-ETHYL-ENE ENE TOTAL (UG/L) ND N | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND | CHLO-RIDE TOTAL (UG/L) ND N | | APR 1987 16 30 MAY 19 JUN 23 JUL 20 SEP 29 NOV 02 DEC 09 MAR 1988 23 APR 07 21 MAY 04 19 JUN 28 | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND | CHLORO-PROPANE TOTAL (UG/L) ND N | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L) ND | CHLORO-BENZEME TOTAL (UG/L) ND N | CHLORO-BENZENE TOTAL (UG/L) ND N | CHLORO-ETHYL-ENE TOTAL (UG/L) ND N | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND N | CHLORO-ETHYL-ENE TOTAL (UG/L) ND N | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND | CHLO-RIDE TOTAL (UG/L) ND N | | APR 1987 16 30 MAY 19 JUN 23 JUL 20 SEP 29 NOV 02 DEC 09 MAR 1988 23 APR 07 21 MAY 04 19 JUN 28 SEP | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND | CHLORO-PROPANE TOTAL (UG/L) ND | TRANSDI
CHLORO-
ETHENE TOTAL
(UG/L) ND | CHLORO-BENZENE TOTAL (UG/L) ND | CHLOROBENZENE TOTAL (UG/L) ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND N | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND N | CHLORO-ETHYL-ENE TOTAL (UG/L) ND N | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND | CHLO-RIDE TOTAL (UG/L) ND | | APR 1987 16 30 MAY 19 JUN 23 JUL 20 SEP 29 NOV 02 DEC 09 MAR 1988 23 APR 07 21 MAY 19 JUN 28 SEP | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND | CHLORO-PROPANE TOTAL (UG/L) ND N | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND
ND
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-BENZENE TOTAL (UG/L) ND N | CHLORO-ETHYL-ENE TOTAL (UG/L) ND N | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND N | CHLORO-ETHYL-ENE ENE TOTAL (UG/L) ND N | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND | CHLO-RIDE TOTAL (UG/L) ND N | # 04213500 CATTARAUGUS CREEK AT GOWANDA, NY - continued ## SUSPENDED SEDIMENT DISCHARGE | | | DIS-
CHARGE, | | SEDI-
MENT, | |----------|------|-----------------|--------|----------------| | | | INST. | SEDI- | DIS- | | | | CUBIC | MENT, | CHARGE, | | | | FEET | SUS- | SUS- | | | | | | | | DATE | TIME | PER | PENDED | | | | | SECOND | (MG/L) | (T/DAY) | | APR 1987 | | | | | | 16 | 1030 | 792 | 38 | 81 | | 30 | 1115 | 629 | 19 | 32 | | JUN | | | | | | 23 | 1055 | 986 | 370 | 985 | | NOA | | | | | | 02 | 1105 | 411 | 14 | 16 | | DEC | | | | | | 09 | 0930 | 1360 | 245 | 900 | | MAY 1988 | | 2000 | | | | 19 | 1300 | 2060 | 474 | 2640 | | JUN | 1300 | 2000 | 4/4 | 2040 | | 28 | 0915 | 144 | 9 | 3.5 | | | 0915 | 144 | 9 | 3.5 | | SEP | | | | | | 08 | 0845 | 174 | 11 | 5.2 | | OCT | | | | | | 06 | 0900 | 161 | 15 | 6.5 | | NOV | | | | | | 17 | 0945 | 406 | 16 | 18 | | | | | | | # BED MATERIAL ANALYSES | DATE JUL 1987 20 JUN 1988 28 | TIME
1830
0915 | (MG/ | IA- II
IN RI
OM FM
I- TOI | NUM, RIECOV. FM BOT- TOI M MA- TIERIAL (I | | CHRO-MIUM, RECOV. M BOT-TOM MA-TERIAL (UG/G) | | 7. RE
C- FM
A- TON
AL TE
G (U
J) AS | ECOV. F
BOT- FN
MA- TO
ERIAL T
JG/G | | MANGA-
NESE,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G)
380 | RE
FM
TOL
TE
(U | COV.
BOT- | NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI) <10 | RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN) | |------------------------------|---|--------------------------------|--|--|---|--|--|--|--|-----------------------------|--|---|---|--|--| | DATE
JUL 1987 | AROC
122
IN
BOTT
MA
(UG/ | 1
OM
T. | AROCLOR
1248
PCB
BOT.MAT
(UG/KG) | AROCLOR
1254
PCB
BOT.MAT
(UG/KG) | AROCLO
1260
PCB
BOT.MA
(UG/KG | IN B
TOM
TER | IN, E
AL TO
OT- IN
MA- TO
IAL TE |
LPHA
BHC
OTAL
N BOT-
DM MA-
ERIAL
JG/KG) | ATRA-
ZINE,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | DOT.M | NE DA
- TO
R- IN
TOM
AT TE | LOR-
NE,
TAL
BOT-
MA-
RIAL
(KG) | CHLOR
PYRIF
IN BO
MAT.
(UG/K | BEN
- HE
OS CH
T. I
BOT | CLTA IZENE CXA- ILOR- CDE C. MAT G/KG) | | 20
JUN 1988 | - | - | | | | - | - | | | | | | | | | | 28 | ND | | ND | ND | ND | ND | | ND | ND | ND | N | D | ND | N | ID | | DATE | DI
AZIN
TOT
IN B
TOM I
TER
(UG/ | ON,
AL
OT-
MA-
IAL | DI-
ELDRIN,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | ENDO-
SULFAN
ALPHA
BOT.MAT
(UG/KG) | ENDO-
SULFAN
BETA
BOT.MA | SULF
SULF
T BOT. | O- I
FAN IN
ATE TO
MAT I | NDRIN,
POTAL
N BOT-
DM MA-
PERIAL
UG/KG) | ENDRIN
ALDE-
HYDE
BOT.MAT | | N, CH
L TO
T- IN
A- TOM
AL TE | PTA-
LOR,
TAL
BOT-
MA-
RIAL | HEPTI
CHLOI
EPOXI
TOT.
BOTTI
MATI
(UG/K | R THOSE TO | NLA-
HION,
PTAL
BOT-
I MA-
GRIAL
G/KG) | | JUL 1987
20 | - | - | | | | - | - | | | | | | | | | | JUN 1988
28 | ND | | ND | ND | ND | ND | | ND | ND | ND | N | D | ND | N | ID | | DATE | METTOY. CHLA TOT. BOTT MA' (UG/) | OR,
IN
IOM
TL. | MIREX,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | P,P' DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) | P, P' DDE, TOTAL IN BOT TOM MA TERIA | DD
TOT
IN B
TOM
L TER | T, T
AL T
OT- IN
MA- TO
IAL T | PARA-
THION,
TOTAL
N BOT-
DM MA-
TERIAL
NG/KG) | TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) | FAL
DIAM
% FIN
THA | . M
L SI
. DI
ER % F
N T | ED
AT.
EVE
AM.
INER
HAN
2 MM | BED
MAT
SIEV
DIAM
% FIN
THAI | . M
E SI
. DI
ER % F
N T | BED
LAT.
EEVE
AM.
INER
HAN | | JUL 1987
20
JUN 1988 | | - | | | | - | - | | | | 2 | 49 | 1 | 80 | 98 | | 28 | ND | | ND | ND | ND | ND | | ND | ND | | | | | | | ### 04214020 CATTARAUGUS CREEK AT IRVING, NY LOCATION.--Lat 42 33'53", long 79 07'30", Chautauqua County, Hydrologic Unit 04120102, on left bank at downstream side of Conrail railroad bridge, 0.6 mi west of Iriving, and 0.9 mi upstream from mouth. DRAINAGE AREA. -- 554 mi2. PERIOD OF RECORD.--Water years 1987 to 1989. CHEMICAL DATA: 1987 (b), 1988 (d), 1989 (a). MINOR ELEMENT DATA: 1987 (b), 1988 (d), 1989 (a). PESTICIDE DATA: 1987 (b), 1988 (d), 1989 (a). ORGANIC DATA: PCB--1988 (a). NUTRIENT DATA: 1987 (b), 1988 (c), 1989 (a). SEDIMENT DATA: 1987-88 (b), 1989 (a). REMARKS .-- Water-discharge data based on records from stream-flow gage 04213500 Cattaraugus at Gowanda. | DATE | TIME | DIS-
CHARGE,
IN
CUBIC
FEET
PER
SECOND | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | SPE-
CIFIC
CON-
DUCT-
ANCE
LAB
(US/CM) | PH WATER WHOLE FIELD (STAND- ARD UNITS) | TEMPER-
ATURE
WATER
(DEG C) | TUR-
BID-
ITY
(NTU) | BARO-
METRIC
PRES-
SURE
(MM
OF
HG) | OXYGEN,
DIS-
SOLVED
(MG/L) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG) | |-----------|--------------|---|---|--|---|--------------------------------------|------------------------------|--|-------------------------------------|---|--|--| | APR 1987 | | | | | | | | | | | | | | 16 | 1145 | 1000 | | | 8.1 | 10.0 | 21 | | 14.4 | 140 | 44 | 7.2 | | 30 | 1215 | 810 | | | 8.2 | 8.0 | 16 | | 11.4 | 140 | 45 | 7.3 | | MAY | | | | | | | | | | | | | | 19 | 1245 | 340 | | 429 | 7.9 | 17.5 | 12 | | | 190 | 59 | 9.8 | | JUN | | | | | | | 4.70 | | | | | | | 23
JUL | 1230 | 1100 | | | 8.2 | 23.0 | 170 | | | 140 | 44 | 7.4 | | 21 | 1115 | 400 | | | 8.0 | 27.0 | 8.2 | | 7.3 | 160 | 50 | 9.5 | | OCT | 1113 | 400 | | | 0.0 | 27.0 | 0.2 | | ,., | 100 | 30 | 5.5 | | 01 | 1200 | 1300 | | 299 | 8.2 | 22.0 | 110 | | | 130 | 41 | 6.9 | | NOV | | | | | • • • | | | | | | | | | 18 | 1000 | 610 | | | 7.9 | 8.0 | 18 | | 14.7 | 160 | 51 | 8.6 | | DEC | | | | | | | | | | | | | | 10 | 1130 | 2800 | | | 8.2 | 5.0 | 280 | | 11.4 | | | | | MAR 1988 | | | | | | | | | | | | | | 24 | 1200 | 1900 | | 232 | 7.7 | 5.0 | 270 | | | 85 | 26 | 4.8 | | APR | | 1400 | | 293 | 8.0 | 12.0 | 44 | | | | | | | 07
21 | 1200
1115 | 1400
590 | | 293
357 | 8.1 | 7.0 | 0.0 | | | 160 | 49 | 9.1 | | MAY | 1113 | 390 | | 337 | 0.1 | 7.0 | 0.0 | | | 100 | 4.7 | 3.1 | | 04 | 0915 | 720 | | 335 | 7.7 | 10.0 | 5.0 | | 10.8 | | | | | 19 | 0915 | 400 | | 313 | 7.6 | 12.0 | 300 | | 9.8 | 120 | 38 | 6.6 | | JUN | | | | | | | | | | | | | | 28 | 1100 | 180 | 435 | 435 | 7.9 | 19.5 | 9.0 | | 7.4 | 190 | 5 6 | 11 | | SEP | | | | | | | | | | | | | | 08 | 1130 | 230 | | 467 | | | 9.2 | | | 180 | 55 | 11 | | OCT | | | | | | | | | | | | | | 06 | 1300 | 196 | | 430 | 8.0 | 11.0 | 7.4 | 772 | 10.6 | 200 | 60 | 12 | | NOV | 0000 | E14 | | 254 | 7 7 | 7.0 | 10 | 7/0 | 10 4 | 160 | 48 | 9.0 | | 17 | 0900 | 514 | | 354 | 7.7 | 7.0 | 10 | 760 | 10.4 | 160 | 48 | 9.0 | # 04214020 CATTARAUGUS CREEK AT IRVING, NY - continued | DATE | SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K) | ALKA-
LINITY
LAB
(MG/L
AS
CACO3) | (MG | CH
ATE RI
- DI
VED SO | LO- 1 DE, 1 S- LVED : G/L | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVEI
(MG/L) | SOLIDS,
RESIDUE
AT 105
DEG. C, | TILE ON
IGNI-
TION,
TOTAL | RESIDUE
TOTAL
FIXED | NITRO-
GEN,
NITRATE
TOTAL
(MG/L
AS N) | |----------------------|--|---|---|-------------|---|--|--|--|---|---|---|---|--| | APR 1987
16 | | | | _ | _ | | | 162 | | 214 | . 60 | 170 | 1.23 | | 30 | | | | | | | | 148 | | 198 | | | | | MAY
19 | | | | _ | _ | | | 220 | | 271 | 1 16 | 3 232 | 1.01 | | JUN
23 | | | | _ | _ | | | 204 | | 732 | 112 | 620 | 1.17 | | JUL | | | | | | | | | | | | | | | 21
⊙CT | | | | - | - | | | 208 | | 240 |) 8 | 3 232 | | | 01
NOV | | | | - | - | | | 228 | | 416 | 40 | 360 | 0.620 | | 18 | | | | - | - | | | 192 | | 234 | 84 | 144 | 0.690 | | DEC
10 | | | | - | - | | | 160 | | 844 | 112 | 732 | | | MAR 1988
24 | 6.7 | 1.4 | 76 | 31 | . 1 | 1 | 0.10 | 140 | 12 | 882 | 2 76 | 806 | 0.520 | | APR
07 | | | 100 | 30 | | 2 | 0.10 | 184 | | 260 | 56 | 5 204 | 1.06 | | 21 | 9.9 | 1.2 | 125 | 32 | | | 0.10 | 212 | 191 | | | | | | MAY
04 | | | 118 | - | _ | | | 208 | | 228 | 3 36 | 192 | 0.900 | | 19
JUN | 8.1 | 1.4 | 111 | 24 | 1 | 2 | 0.20 | 160 | 157 | 884 | 124 | 760 | 0.710 | | 28 | 15 | 1.8 | 149 | 3 5 | 2 | 1 | 0.20 | 298 | 229 | 317 | 127 | 190 | 0.710 | | SEP
08 | 18 | 1.7 | 147 | 51 | . 2 | 7 | 0.10 | 304 | 252 | 332 | 2 76 | 256 | 0.700 | | ост
06 | 14 | 2.1 | 136 | 52 | 1 | 9 | 0.10 | 276 | 241 | . 280 |) 76 | 204 | 0.600 | | NOV
17 | 10 | 1.7 | 115 | 39 | | Λ | 0.10 | | 191 | . 200 |) 56 | 144 | 0.690 | | DAT | | , GE
FE NO2+
L TOT
L (MG | N, G
NO3 AMM
AL TO | TAL
IG/L | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L | NITRO
GEN,
ORGANIO
TOTAL
(MG/L | MONIA
C ORGAN
TOTA
(MG) | AM-
A + NIT
NIC GE
AL TOT
'L (MC | EN, C
PAL TO
G/L (! | SEN, PHO
TAL TO
IG/L () | PHO
HOS- OF
DRUS DI
DTAL SOI
HG/L (MO | ORUS PH
RTHO, OR
SS- D
LVED SO
G/L (M | OS-
ATE,
THO,
IS-
LVED
G/L
PO4) | | | AS N |) AS | N) AS | (N) | AS NH4) | AS N) | AS 1 | I) AS | N) AS | NO3) AS | SP) AS | r) AS | FO4) | | APR 198'
16
30 | 7
0.0
0.0 | | | .050 | 0.06 | 0.0 | | | 1.3 | | | ID
ID | | | MAY
19 | 0.0 | 20 1. | 03 0 | .080 | 0.10 | 0.0 | 90. | .17 | 1.2 | 5.3 |).020 h | ID | | | JUN
23 | 0.0 | 40 1 | 21 0 | .470 | 0.61 | 0.4 | 4 0 | .91 2 | 2.1 | 9.4 (|).590 (| 0.00 | 0.0 | | JUL
21 | | | | .010 | | | | | .67 | | | | 0.0 | | OCT | | | | | 0.01 | 0.1 | | | | | | | | | 01
NOV | 0.0 | 10 0. | 630 | | | | | | | (|).300 (| 0.00 | 0.0 | | 18
DEC | 0.0 | 0 0. | 690 0 | .010 | 0.01 | 0.2 | 0 0. | .21 (| .90 | 4.0 | 0.040 | 0.00 | 0.0 | | 10 | | - | - | | | | | | | | | | | | MAR 1988
24 | 0.0 | 0 0. | 520 1 | .00 | 1.3 | 0.5 | 0 1. | .5 2 | 2.0 | 8.9 | .820 | 0.00 | 0.0 | | APR
07 | 0.0 | 0 1. | 06 0 | .110 | 0.14 | 0.2 | 0 0. | .31 : | 1.4 | 6.1 |).120 | 0.00 | 0.0 | | 21
MAY | 0.0 | 0 1. | 20 0 | .020 | 0.03 | 0.1 | 1 0. | .13 | 1.3 | 5.9 | 0.010 | 0.00 | 0.0 | | 04 | | | | .030 | 0.04 | 0.1 | | | 1.0 | | | | 0.0 | | 19
JUN | 0.0 | | | 0.060 | 0.08 | 1.4 | | | 2.2 | | | | 0.0 | | 28
SEP | 0.0 | 30 0. | 740 0 | .030 | 0.04 | 0.0 | 8 0. | .11 (| 0.85 | 3.8 |).020 N | D | | | 08 | 0.0 | 40 0. | 740 0 | .030 | 0.04 | 0.2 | 0 0. | .23 | .97 | 4.3 |).020 N | ID | | | 06 | 0.0 | 10 0. | 610 0 | .030 | 0.04 | 0.2 | 4 0. | . 27 | .88 | 3.9 |).010
N | ID | | | NOV
17 | 0.0 | 10 0. | 7 00 0 | .270 | 0.35 | 0.2 | 5 0. | .52 1 | 1.2 | 5.4 | 0.020 | 0.00 | 0.0 | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). ## 04214020 CATTARAUGUS CREEK AT IRVING, NY - continued | DATE | ALUM-
INUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS AL) | ALUM-
INUM,
DIS-
SOLVED
(UG/L
AS AL) | CADMIUM
TOTAL
RECOV-
ERABLE
(UG/L
AS CD) | CADMIUM
DIS-
SOLVED
(UG/L
AS CD) | COPPER,
TOTAL
RECOV-
ERABLE
(UG/L
AS CU) | COPPER,
DIS-
SOLVED
(UG/L
AS CU) | IRON,
TOTAL
RECOV-
ERABLE
(UG/L
AS FE) | IRON,
DIS-
SOLVED
(UG/L
AS FE) | LEAD,
TOTAL
RECOV-
ERABLE
(UG/L
AS PB) | LEAD,
DIS-
SOLVED
(UG/L
AS PB) | MANGA-
NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | |--|--|--|---|--|--|---|---|---|--|---|---| | APR 1987 | | | | | | | | | | | | | 16 | | | <10 | | <10 | | 1300 | | <100 | | 40 | | 30
MAY | | | <10 | | <10 | | 1300 | | 32 | | 40 | | 19 | | | <10 | | <10 | | 850 | | <5 | | 50 | | JUN
23 | | | <10 | <1.0 | 20 | 3 | 12000 | | 29 | < 5 | 420 | | JUL
21 | | | <10 | | 20 | | 200 | | < 5 | | 10 | | ОСТ
01 | | | <10 | <1.0 | 20 | 4 | 6900 | | <100 | <5 | 160 | | NOV
18 | | | <1 | | 6 | | 1100 | | < 5 | | 50 | | DEC 10 | | | <1 | | 26 | | 20000 | | 18 | | 480 | | MAR 1988
24 | 12000 | 150 | <1 | <1.0 | 24 | 2 | 24000 | 400 | 8 | < 5 | 540 | | APR | 1300 | | | | 7 | | | | | | | | 07
21 | 70 | <10 | <1
1 | <1.0 | 2 | <1 | 2800
250 | 12 | <5
<5 |
< 5 | 70
20 | | MAY
04 | 150 | | <1 | | 5 | | 340 | | <5 | | 30 | | 19
JUN | 11000 | 20 | 1 | <1.0 | 21 | 2 | 1800 | 26 | 10 | <5 | 500 | | 28
SEP | 330 | | <1 | | 4 | | 750 | | < 5 | | 80 | | 08 | 240 | | <1 | | 3 | | 590 | | < 5 | | 50 | | 06 | 260 | 20 | <1 | <1.0 | 24 | 2 | 430 | 13 | <5 | < 5 | 30 | | 17 | 350 | | <1 | | 9 | | 600 | | <5 | | 40 | | | | | | | | | | | | | | | DATE | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN) | MERCURY
TOTAL
RECOV-
ERABLE
(UG/L
AS HG) | NICKEL,
TOTAL
RECOV-
ERABLE
(UG/L
AS NI) | NICKEL,
DIS-
SOLVED
(UG/L
AS NI) | ZINC,
TOTAL
RECOV-
ERABLE
(UG/L
AS ZN) | ZINC,
DIS-
SOLVED
(UG/L
AS ZN) | BROMO-
FORM
TOTAL
(UG/L) | CARBON-
TETRA-
CHLO-
RIDE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
DI-
BROMO-
METHANE
TOTAL
(UG/L) | CHLORO-
ETHANE
TOTAL
(UG/L) | | APR 1987 | NESE,
DIS-
SOLVED
(UG/L | TOTAL
RECOV-
ERABLE
(UG/L
AS HG) | TOTAL
RECOV-
ERABLE
(UG/L
AS NI) | DIS-
SOLVED
(UG/L | TOTAL
RECOV-
ERABLE
(UG/L
AS ZN) | DIS-
SOLVED
(UG/L | FORM
TOTAL
(UG/L) | TETRA-
CHLO-
RIDE
TOTAL
(UG/L) | BENZENE
TOTAL
(UG/L) | DI-
BROMO-
METHANE
TOTAL
(UG/L) | ETHANE
TOTAL
(UG/L) | | APR 1987
16
30 | NESE,
DIS-
SOLVED
(UG/L | TOTAL
RECOV-
ERABLE
(UG/L | TOTAL
RECOV-
ERABLE
(UG/L | DIS-
SOLVED
(UG/L | TOTAL
RECOV-
ERABLE
(UG/L | DIS-
SOLVED
(UG/L | FORM
TOTAL | TETRA-
CHLO-
RIDE
TOTAL | BENZENE
TOTAL | DI-
BROMO-
METHANE
TOTAL | ETHANE
TOTAL | | APR 1987
16
30
MAY
19 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL
RECOV-
ERABLE
(UG/L
AS HG) | TOTAL
RECOV-
ERABLE
(UG/L
AS NI) | DIS-
SOLVED
(UG/L
AS NI) | TOTAL
RECOV-
ERABLE
(UG/L
AS ZN) | DIS-
SOLVED
(UG/L
AS ZN) | FORM TOTAL (UG/L) | TETRA-
CHLO-
RIDE
TOTAL
(UG/L) | BENZENE
TOTAL
(UG/L)
ND | DI-
BROMO-
METHANE
TOTAL
(UG/L) | ETHANE
TOTAL
(UG/L)
ND | | APR 1987
16
30
MAY
19
JUN
23 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV- ERABLE (UG/L AS HG) <0.10 0.10 | TOTAL
RECOV-
ERABLE
(UG/L
AS NI)
<100 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV- ERABLE (UG/L AS ZN) <10 <10 | DIS-
SOLVED
(UG/L
AS ZN) | FORM
TOTAL
(UG/L)
ND
ND | TETRA-
CHLO-
RIDE
TOTAL
(UG/L)
ND
ND | BENZENE
TOTAL
(UG/L)
ND
ND | DI-
BROMO-
METHANE
TOTAL
(UG/L)
ND | ETHANE
TOTAL
(UG/L)
ND
ND | | APR 1987
16
30
MAY
19
JUN | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV- ERABLE (UG/L AS HG) <0.10 0.10 <0.10 | TOTAL
RECOV-
ERABLE
(UG/L
AS NI)
<100
5 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV- ERABLE (UG/L AS ZN) <10 <10 <10 | DIS-
SOLVED
(UG/L
AS ZN) | FORM
TOTAL
(UG/L)
ND
ND | TETRA-
CHLO-
RIDE
TOTAL
(UG/L)
ND
ND | BENZENE
TOTAL
(UG/L)
ND
ND | DI-
BROMO-
METHANE
TOTAL
(UG/L)
ND
ND | ETHANE
TOTAL
(UG/L)
ND
ND | | APR 1987 16 30 MAY 19 JUN 23 JUL 21 OCT 01 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV- ERABLE (UG/L AS HG) <0.10 0.10 <0.10 <0.10 | TOTAL RECCV- ERABLE (UG/L AS NI) <100 5 <1 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV- ERABLE (UG/L AS ZN) <10 <10 <10 | DIS-
SOLVED
(UG/L
AS ZN) | FORM
TOTAL
(UG/L)
ND
ND
ND | TETRA-CHLO-RIDE TOTAL (UG/L) ND ND ND | BENZENE
TOTAL
(UG/L)
ND
ND
ND | DI-
BROMO-
METHANE
TOTAL
(UG/L)
ND
ND | ETHANE TOTAL (UG/L) ND ND ND ND | | APR 1987 16 30 MAY 19 JUN 23 JUL 21 OCT 01 NOV 18 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV- ERABLE (UG/L AS HG) <0.10 0.10 <0.10 <0.10 0.20 | TOTAL RECOV-ERABLE (UG/L AS NI) <100 5 <1 17 <1 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV- ERABLE (UG/L AS 2N) <10 <10 <10 <10 <10 | DIS-
SOLVED
(UG/L
AS ZN) | FORM
TOTAL
(UG/L)
ND
ND
ND
ND | TETRA- CHLO- RIDE TOTAL (UG/L) ND ND ND ND | BENZENE
TOTAL
(UG/L)
ND
ND
ND
ND | DI-
BROMO-
METHANE
TOTAL
(UG/L)
ND
ND
ND | ETHANE TOTAL (UG/L) ND ND ND ND | | APR 1987 16 30 MAY 19 JUN 23 JUL 21 OCT 01 NOV 18 DEC 10 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV-ERABLE (UG/L AS HG) <0.10 0.10 <0.10 <0.10 <0.10 <0.10 | TOTAL RECOV-ERABLE (UG/L AS NI) <100 5 <1 17 <1 <100 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV- ERABLE (UG/L AS ZN) <10 <10 <10 <10 <40 40 | DIS-
SOLVED
(UG/L
AS ZN) <10 <10 | FORM TOTAL (UG/L) ND ND ND ND ND ND | TETRA-CHLO-RIDE TOTAL (UG/L) ND ND ND ND ND | BENZENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND | DI-
BROMO-
METHANE
TOTAL
(UG/L)
ND
ND
ND
ND | ETHANE TOTAL (UG/L) ND ND ND ND ND ND | | APR 1987 16 30 MAY 19 JUN 23 JUL 21 OCT 01 NOV 18 DEC | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV- ERABLE (UG/L AS HG) <0.10 0.10 <0.10 <0.10 <0.10 <0.10 | TOTAL RECOV-ERABLE (UG/L AS NI) <100 5 <1 17 <100 <1 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV-ERABLE (UG/L AS 2N) <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 | DIS-
SOLVED
(UG/L
AS ZN) <10 <10 | FORM TOTAL (UG/L) ND | TETRA-CHLO-RIDE TOTAL (UG/L) ND N | BENZENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND | DI- BROMO- METHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND | ETHANE TOTAL (UG/L) ND | | APR 1987 16 30 MAY 19 JUN 23 JUL 21 OCT 01 NOV 18 DEC 10 MAR 1988 24 APR | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOVERABLE (UG/L AS HG) <0.10 0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 | TOTAL RECOV-ERABLE (UG/L AS NI) <100 5 <1 17 <10 <10 <1 <10 <1 <10 <1 <10 <1 <10 <10 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV-ERABLE (UG/L AS 2N) <10 <10 <10 <10 <10 <00 <10 <10 <00 <00 | DIS-
SOLVED
(UG/L
AS ZN) <10 <10 8 | FORM TOTAL (UG/L) ND | TETRA-CHLO-RIDE TOTAL (UG/L) ND N | BENZENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND
ND
ND | DI- BROMO- METHANE TOTAL (UG/L) ND | ETHANE TOTAL (UG/L) ND | | APR 1987 16 30 MAY 19 JUN 23 JUL 21 OCT 01 NOV 18 DEC 10 MAR 1988 24 APR 07 21 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV-ERABLE (UG/L AS HG) <0.10 0.10 <0.10 <0.10 -0.10 <0.10 -0.10 | TOTAL RECOV-ERABLE (UG/L AS NI) <100 5 <1 17 <1 <100 <1 24 | DIS- SOLVED (UG/L AS NI) 3 2 | TOTAL RECOV-ERABLE (UG/L AS ZN) <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 | DIS-
SOLVED (UG/L
AS ZN) <10 <10 | FORM TOTAL (UG/L) ND | TETRA-CHLO-RIDE TOTAL (UG/L) ND N | BENZENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND
ND | DI- BROMO- METHANE TOTAL (UG/L) ND | ETHANE TOTAL (UG/L) ND | | APR 1987 16 30 MAY 19 JUN 23 JUL 21 OCT 01 NOV 18 DEC 10 MAR 1988 24 APR 07 21 MAY 04 19 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV-ERABLE (UG/L AS HG) <0.10 | TOTAL RECOV-ERABLE (UG/L AS NI) <100 5 <1 17 <100 <1 24 29 8 | DIS-
SOLVED
(UG/L
AS NI) 3 2 2 | TOTAL RECOV-ERABLE (UG/L AS ZN) <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 | DIS-
SOLVED
(UG/L
AS 2N) <10 <10 8 | FORM TOTAL (UG/L) ND | TETRA-CHLO-RIDE TOTTAL (UG/L) ND N | BENZENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND
ND
ND | DI- BROMO- METHANE TOTAL (UG/L) ND | ETHANE TOTAL
(UG/L) ND | | APR 1987 16 30 MAY 19 JUN 23 JUL 21 OCT 01 NOV 18 DEC 10 MAR 1988 24 APR 07 21 MAY 04 19 JUN 28 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOVERABLE (UG/L AS HG) <0.10 0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 | TOTAL RECOV-ERABLE (UG/L AS NI) <100 5 <1 17 <10 <10 <1 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOVERABLE (UG/L AS 2N) <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 | DIS-
SOLVED
(UG/L
AS ZN) <10 8 <3 | FORM TOTAL (UG/L) ND | TETRA-CHLO-RIDE TOTAL (UG/L) ND N | BENZENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND
ND
ND
ND | DI- BROMO- METHANE TOTAL (UG/L) ND | ETHANE TOTAL (UG/L) ND | | APR 1987 16 30 MAY 19 JUN 23 JUL 21 OCT 01 NOV 18 DEC 10 MAR 1988 24 APR 07 21 MAY 04 19 JUN 28 SEP 08 | NESE, DIS- SOLVED (UG/L AS MN) 160 17 19 8 | TOTAL RECOVERABLE (UG/L AS HG) <0.10 | TOTAL RECOV-ERABLE (UG/L AS NI) <100 5 <1 17 <1 <100 <1 24 29 8 4 7 24 | DIS-
SOLVED
(UG/L
AS NI) 3 2 2 1 | TOTAL RECOVERABLE (UG/L AS ZN) <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 | DIS-
SOLVED
(UG/L
AS 2N) <10 <10 8 <3 | FORM TOTAL (UG/L) ND | TETRA-CHLO-RIDE TOTAL (UG/L) ND N | BENZENE TOTAL (UG/L) ND | DI- BROMO- METHANE TOTAL (UG/L) ND | ETHANE TOTAL (UG/L) ND | | APR 1987 16 30 MAY 19 JUN 23 JUL 21 OCT 01 NOV 18 DEC 10 MAR 1988 24 APR 07 21 MAY 19 JUN 23 MAY 19 JUN 28 SEP | NESE, DIS- SOLVED (UG/L AS MN) 160 17 19 8 | TOTAL RECOVERABLE (UG/L AS HG) <0.10 | TOTAL RECOVERABLE (UG/L AS NI) <100 5 <1 17 <100 <1 24 29 8 4 7 24 6 | DIS- SOLVED (UG/L AS NI) 3 2 1 1 | TOTAL RECOVERABLE (UG/L AS ZN) <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 | DIS-
SOLVED
(UG/L
AS ZN) <10 <10 8 <3 9 | FORM TOTAL (UG/L) ND | TETRA-CHLO-RIDE TOTTAL (UG/L) ND N | BENZENE TOTAL (UG/L) ND | DI- BROMO- METHANE TOTAL (UG/L) ND | ETHANE TOTAL (UG/L) ND | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). # 04214020 CATTARAUGUS CREEK AT IRVING, NY - continued | DATE | CHLORO-
FORM
TOTAL
(UG/L) | CIS
1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | DI-
CHLORO-
BROMO-
METHANE
TOTAL
(UG/L) | METHYL-
BROMIDE
TOTAL
(UG/L) | METHYL-
CHLO-
RIDE
TOTAL
(UG/L) | METHYL-
ENE
CHLO-
RIDE
TOTAL
(UG/L) | 1,1,1-
TRI-
CHLORO-
ETHANE
TOTAL
(UG/L) | 1,1-DI-
CHLORO-
ETHANE
TOTAL
(UG/L) | 1,1-DI-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 1,1,2-
TRI-
CHLORO-
ETHANE
TOTAL
(UG/L) | 1,1,2,2
TETRA-
CHLORO-
ETHANE
TOTAL
(UG/L) | |--|---|--|---|---|---|---|--|--|---|---|--| | APR 1987
16
30 | nd
nd | MAY
19 | ND | JUN
23 | ND | JUL
21 | ND | ОСТ
01 | ND | NOV
18 | ND ИD | | DEC 10 | ND | ND | ND | ИD | ND | ND | ИD | ИD | ND | ND | ND | | MAR 1988
24 | ND | APR
07 | ND | 21
MAY | ND | 04
19 | 0
N D | 0
И D | ND
0 | ND
ND | ND
O | ND
ND | 0
ND | 0
ND | 0
ND | ND
ND | N D | | JUN
28
SEP | ND | ИĎ | ND | 08
OCT | 0.1 | МD | ND | 06 | ND | ЙN | ND | 17 | ND | | | | | | | | | | | | | | DATE | 1,2-DI-
CHLORO-
BENZENE
TOTAL
(UG/L) | 1,2-DI-
CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L) | 1,2-DI-
CHLORO-
PROPANE
TOTAL
(UG/L) | 1,2-
TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L) | 1,3-DI-
CHLORO-
BENZENE
TOTAL
(UG/L) | 1,4-DI-
CHLORO-
BENZENE
TOTAL
(UG/L) | TETRA-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | TRANS-
1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | TRI-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 2-
CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L) | VINYL
CHLO-
RIDE
TOTAL
(UG/L) | | APR 1987 | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L) | CHLORO-
PROPANE
TOTAL
(UG/L) | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L) | CHLO-
RIDE
TOTAL
(UG/L) | | APR 1987
16
30 | CHLORO-
BENZENE
TOTAL | CHLORO-
ETHANE
WATER
WHOLE
TOTAL | CHLORO-
PROPANE
TOTAL | TRANSDI
CHLORO-
ETHENE
TOTAL | CHLORO-
BENZENE
TOTAL | CHLORO-
BENZENE
TOTAL | CHLORO-
ETHYL-
ENE
TOTAL | 1,3-DI-
CHLORO-
PROPENE
TOTAL | CHLORO-
ETHYL-
ENE
TOTAL | CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL | CHLO-
RIDE
TOTAL | | APR 1987
16
30
MAY
19 | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L) | CHLORO-
PROPANE
TOTAL
(UG/L) | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L) | CHLO-
RIDE
TOTAL
(UG/L) | | APR 1987
16
30
MAY
19
JUN
23 | CHLORO-
BENZENE
TOTAL
(UG/L)
ND
ND | CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L)
ND
ND | CHLORO-
PROPANE
TOTAL
(UG/L)
ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND | CHLORO-
BENZENE
TOTAL
(UG/L)
ND
ND | CHLORO-
BENZENE
TOTAL
(UG/L)
ND
ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND | CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L)
ND | CHLO-
RIDE
TOTAL
(UG/L)
ND | | APR 1987 16 30 MAY 19 JUN 23 JUL 21 | CHLORO-
BENZENE
TOTAL
(UG/L)
ND
ND | CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L)
ND
ND | CHLORO-
PROPANE
TOTAL
(UG/L)
ND
ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND | CHLORO-
BENZENE
TOTAL
(UG/L)
ND
ND | CHLORO-
BENZENE
TOTAL
(UG/L)
ND
ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND
ND | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
ND
ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND
ND | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND ND | CHLO-
RIDE
TOTAL
(UG/L)
ND
ND | | APR 1987 16 30 MAY 19 JUN 23 JUL 21 OCT 01 | CHLORO-BENZENE TOTAL (UG/L) ND ND ND | CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L)
ND
ND | CHLORO-
PROPANE
TOTAL
(UG/L)
ND
ND
ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND | CHLORO-
BENZENE
TOTAL
(UG/L)
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND ND ND | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
ND
ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND
ND | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND ND ND | CHLO-
RIDE
TOTAL
(UG/L)
ND
ND
ND | | APR 1987 16 30 MAY 19 JUN 23 JUL 21 OCT 01 NOV 18 | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND ND ND ND | CHLORO-
PROPANE
TOTAL
(UG/L)
ND
ND
ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND | CHLORO- BENZENE TOTAL (UG/L) ND ND ND ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND ND ND 2.0 ND ND | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
ND
ND
ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND ND ND ND ND ND | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND ND ND ND | CHLO-
RIDE
TOTAL
(UG/L)
ND
ND
ND | | APR 1987 16 30 MAY 19 JUN 23 JUL 21 OCT 01 NOV 18 DEC 10 | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND ND ND ND ND | CHLORO-PROPANE TOTAL (UG/L) ND ND ND ND ND ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
ND
ND
ND
ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND
ND
ND | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND ND ND ND ND | CHLO-
RIDE
TOTAL
(UG/L)
ND
ND
ND | | APR 1987 16 30 MAY 19 JUN 23 JUL 21 OCT 01 NOV 18 DEC 10 MAR 1988 24 | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND ND ND ND ND ND | CHLORO-PROPANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND N | CHLORO-BENZENE TOTAL (UG/L) ND N | CHLORO-ETHYL-ENE TOTAL (UG/L) ND ND ND 10 ND | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
ND
ND
ND
ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND N | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND ND ND ND ND ND ND ND ND |
CHLO-RIDE TOTAL (UG/L) ND ND ND ND ND ND ND | | APR 1987 16 30 MAY 19 JUN 23 JUL 21 OCT 01 NOV 18 DEC 10 MAR 1988 | CHLORO-BENZENE TOTAL (UG/L) ND N | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND | CHLORO-PROPANE TOTAL (UG/L) ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND ND 2.0 ND N | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND N | CHLORO-ETHYL-ENE ENE TOTAL (UG/L) ND N | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND | CHLO-RIDE TOTAL (UG/L) ND N | | APR 1987 16 30 MAY 19 JUN 23 JUL 21 OCT 01 NOV 18 DEC 10 MAR 1988 24 APR 07 21 MAY | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND | CHLORO-PROPANE TOTAL (UG/L) ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND
ND | CHLOROBENZENE TOTAL (UG/L) ND | CHLORO-BENZENE TOTAL (UG/L) ND N | CHLORO-ETHYL-ENE TOTAL (UG/L) ND N | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND N | CHLORO-ETHYL-ENE TOTAL (UG/L) ND N | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND | CHLO-RIDE TOTAL (UG/L) ND N | | APR 1987 16 30 MAY 19 JUN 23 JUL 21 OCT 01 NOV 18 DEC 10 MAR 1988 24 APR 07 21 MAY 04 19 JUN 28 | CHLORO-BENZENE TOTAL (UG/L) ND N | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND | CHLORO-PROPANE TOTAL (UG/L) ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND
ND
ND
ND
ND | CHLOROBENZENE TOTAL (UG/L) ND | CHLORO-BENZENE TOTAL (UG/L) ND N | CHLORO-ETHYL-ENE TOTAL (UG/L) ND N | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND N | CHLORO-ETHYL-ENE TOTAL (UG/L) ND N | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND | CHLO-RIDE TOTAL (UG/L) ND N | | APR 1987 16 30 MAY 19 JUN 23 JUL 21 OCT 01 NOV 18 DEC 10 MAR 1988 24 APR 07 21 MAY 04 19 JUN 28 SEP 08 | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND | CHLORO-PROPANE TOTAL (UG/L) ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND
ND
ND
ND | CHLOROBENZENE TOTAL (UG/L) ND | CHLORO-BENZENE TOTAL (UG/L) ND N | CHLORO-ETHYL-ENE TOTAL (UG/L) ND ND 2.0 ND N | 1,3-DI-CHLORO-PROPERE TOTAL (UG/L) ND N | CHLORO-ETHYL-ENE TOTAL (UG/L) ND N | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND | CHLO-RIDE TOTAL (UG/L) ND | | APR 1987 16 30 MAY 19 JUN 23 JUL 21 OCT 01 NOV 18 DEC 10 MAR 1988 24 APR 07 21 MAY 19 JUN 28 SEP | CHLORO-BENZENE TOTAL (UG/L) ND N | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND | CHLORO-PROPANE TOTAL (UG/L) ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND
ND
ND
ND
ND | CHLOROBENZENE TOTAL (UG/L) ND | CHLORO-BENZENE TOTAL (UG/L) ND N | CHLORO-ETHYL-ENE TOTAL (UG/L) ND N | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND N | CHLORO-ETHYL-ENE TOTAL (UG/L) ND N | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND | CHLO-RIDE TOTAL (UG/L) ND | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). ## 04214020 CATTARAUGUS CREEK AT IRVING, NY - continued # SUSPENDED SEDIMENT DISCHARGE | | | CHA: | BIC ME | M
EDI-
ENT, CH | EDI-
ENT,
DIS-
ARGE,
SUS- | |---------|-------|--------|--------|----------------------|---------------------------------------| | DAT | re TI | ME P | ER PE | ENDED P | ENDED
(DAY) | | APR 198 | 37 | | ,. | | , | | 16 | . 11- | 45 100 | 0 | 43 1 | 16 | | 30 | . 12 | 15 81 | 0 | 63 1 | 38 | | JUN | | | | | | | 23 | . 12 | 30 110 | 0 | 6 18 18 | 40 | | OCT | | | | | | | 01 | . 12 | 00 130 | 0 | 230 8 | 107 | | DEC | | | _ | | | | 10 | | 30 280 | U | 831 62 | 80 | | MAY 198 | | 15 40 | 0 | 702 7 | 81 | | JUN | . 09 | 15 40 | U | 723 7 | 81 | | 28 | . 11 | 00 18 | n | 24 | 12 | | SEP | | 10 | · | 24 | 12 | | 08 | . 11 | 30 23 | 0 | 15 | 9.3 | | OCT | | | - | | • | | 06 | . 13 | 00 19 | 6 | 11 | 5.8 | | NOV | | | | | | | 17 | . 09 | 00 51 | 4 | 14 | 19 | | | | | | | | # BED MATERIAL ANALYSES | | | SOLI
VOI
TILI | -A- | ALUM-
INUM,
RECOV. | RE | COV. | CHR
MIU | JM, | COPP
REC | ov. | RON,
RECOV. | RE | AD,
COV.
BOT- | NE | NGA-
SE,
COV. | RE | CURY
COV.
BOT- | | KEL,
COV.
BOT- | ZINC,
RECOV.
FM BOT- | | |----------------|----------------------------------|---------------------|---------------------------------|--------------------------|-----------------------|-----------------------------|------------|-----------------------------|--------------|---|--------------------|-----------------------------------|------------------------------------|---------|------------------------------|------------------|-----------------------------------|----------------|--------------------------------|----------------------------|--| | | | BOTT | I MOT | M BOT- | | | | | TOM | | M MA- | | | | BOT- | TOM | MA- | TOM | MA- | TOM MA- | | | DATE | TIME | | RIAL | TERIAL | , (U | IG/G | TER | MA-
RIAL | (UG | G/G | TERIAL
(UG/G | (0 | IG/G | TE | MA-
RIAL | (U | RIAL
G/G | (U | RIAL
G/G | TERIAL
(UG/G | | | JUL 1987 | | (MG) | /KG) | (UG/G) | AS | CD) | (UG | G/G) | AS | CU) | AS FE) | AS | PB) | (00 | G/G) | AS | HG) | AS | NI) | AS ZN) | | | 21
JUN 1988 | 1115 | 53 | 3700 | | | <1 | | 250 | | 20 | 12000 | | 20 | | 530 | < | 0.10 | | 10 | 60 | | | 28 | 1100 | 1 | 7500 | 4800 |) | <10 | - | | | 20 | 13000 | | 10 | | 3 4 0 0 | | 0.24 | | 20 | 80 | ALPHA | | RA- | BET | 'A | CHL | | | | DEL | | | | | AROC
122 | | AROCLO | אם אם | CLOR | AROCLO | | ALDRI | | BHC
TOTAL | | NE,
TAL | BENZE
HEXA | | DAN! | | CHLO | D_ | BENZ
HEX | | | | | IN | | 1248 | | 254 | 1260 | , | IN BO | | IN BOT | | BOT- | CHLC | | IN B | | PYRI | | CHL | | | | | BOTT | | PCB | | СВ | PCB | _ | TOM M. | | TOM MA | | MA- | IDE | | TOM | | IN B | | ID | | | | DATE | MA
(UG/ | | BOT.MA | | MAT (KG) | BOT.MA | | TERI. | | TERIAL
(UG/KG | | RIAL
/KG) | BOT.M
(UG/K | | TER | | MAT
(UG/ | | BOT. | | | | JUL 1987 | (00) | , | (00)10 | , (00 | ,,, | (007110 | • • | (00/10 | ٠, | (007110 | (00 | ,, | (00/1 | , | (00) | , | (00) | , | ,,,,,, | ,, | | | 21
JUN 1988 | - | - | | | | | | | | | | | | | - | - | - | - | - | - | | | 28 | ND |) | ND | ì | ID | ND | | ND | | ND | N | D | ND | | ND | | ND | | ND | | | | | DI
AZIN
TOT
IN B
TOM | ON,
'AL
OT- | DI-
ELDRII
TOTAI
IN BO | . En | IDO -
JFAN
JPHA | ENDO-
SULFAN
BETA | | ENDO
SULFA | AN | ENDRIN
TOTAL
IN BOT
TOM MA | END
- AL | RIN
DE-
YDE | ETHIC
TOTA
IN BC | L
T- | HEP
CHLC
TOT.
IN BO | OR,
AL
OT- | HEP
CHL
EPOX
TOT.
BOT | OR
IDE | MAL
THIOT
TOT
IN BO | ON,
AL
OT- | | | DATE | TER
(UG/ | (IAL
(KG) | TERIA
(UG/K | | MAT (KG) | BOT.MA | | BOT.M. | | TERIA
(UG/KG | | .MAT
/KG) | TERI
(UG/K | | TER | | MA
(UG/ | TL.
KG) | TER
(UG/ | | | | JUL 1987
21 | _ | _ | | | | | | | | | | | | | _ | _ | - | - | _ | _ | | | JUN 1988 | | | | | | | | | | | | _ | | | | | | | | | | | 28 | ND |) | ND | ı | ID | ND | | ND | | ND | N | D | ND | | ND | | ND | | ND | | | | | MET
OXY
CHL
TOT.
BOT | oR, | MIRE:
TOTAL
IN BO | (, I
. T(
- IN | P,P' DDD, DTAL BOT- | P,P'DDE,
TOTAL
IN BOT | | P,P
DDT
TOTA
IN BO | ,
L
T- | PARA-
THION
TOTAL
IN BOT
TOM MA | , РН
ТО
- IN | XA-
ENE,
TAL
BOT-
MA- | BEI
MAT
FAL
DIAM
% FIN | L
L | BE
MA'
SIE'
DIA | T.
VE
M. | BE
MA
SIE
DIA
% FI | T.
VE
M. | BE
MA
SIE
DIA
% FI | T.
VE
M. | | | DATE | MA | TL. | TERI | AL TI | ERIAL | TERIA | AL. | TERI | AL | TERIA | L TE | RIAL | THA | ιN | TH. | AN | TH | AN | TH | AN | | | TIT 1007 | (UG/ | KG) | (UG/K | 3) (U | S/KG) | (UG/K | 3) | (UG/K | G) | (UG/KG | (UG | /KG) | .004 | MM | .062 | MM | .125 | MM | 2.00 | MM | | | JUL 1987
21 | - | - | | | | | | | | | | | | 9 | | 84 | | 98 | | 100 | | | JUN 1988
28 | NE |) | ND | 1 | 1 D | ND | | ND | | ND | N | D | | | - | - | - | - | - | - | | ### 04214240 EIGHTEENMILE CREEK AT HIGHLAND-ON-THE-LAKE, NY LOCATION.--Lat 42 42'44", long 78 58'00", Erie County, Hydrologic Unit 04120103, at bridge on Lake Shore Road, 0.6 mi (.96 km) northeast of highland on the lake. DRAINAGE AREA. -- 119 mi2. PERIOD OF RECORD.--Water years 1987 to 1989. CHEMICAL DATA: 1987-88 (c), 1989 (a). MINOR ELEMENT DATA: 1987-88 (c), 1989 (a). PESTICIDE DATA: 1987-88 (c), 1989 (a). ORGANIC DATA: PCB--1988 (a). NUTRIENT DATA: 1987-88 (c), 1989 (a). SEDIMENT DATA: 1987-88 (b), 1989 (a). REMARKS.--Water-discharge data obtained from a discharge rating developed for this site. | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | SPE-
CIFIC
CON-
DUCT-
ANCE
LAB
(US/CM) | PH WATER WHOLE FIELD (STAND- ARD UNITS) | TEMPER-
ATURE
WATER
(DEG C) | TUR-
BID-
ITY
(NTU) | BARO-
METRIC
PRES-
SURE
(MM
OF
HG) | OXYGEN,
DIS-
SOLVED
(MG/L) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG) | |-----------|------|--|---|--|---|--------------------------------------|------------------------------|--|-------------------------------------|---|--|--| | APR 1987 | | | | | | | | | | | | | | 16 | 1330 | | | | 8.6 | 10.5 | 1.4 | | 15. 4 | 120 | 37 | 6.6 | | 27 | 1400 | 19 | | | 8.3 | 17.0 | 0.70
 | 10.0 | 150 | 48 | 8.4 | | MAY | | | | | | | | | | | | | | 19 | 1700 | | | 512 | 8.5 | 21.0 | 0.60 | | | 190 | 59 | 11 | | JUN | | | | | | | | | | | | | | 24 | 0830 | 86 | | | 7.6 | 19.0 | 16 | | | 160 | 50 | 8.3 | | JUL | | | | | | | | | | | | | | 21 | 1300 | | | | 8.4 | 31.0 | 2.5 | | 8.8 | 150 | 43 | 9.3 | | SEP | | | | | | | | | | | | | | 28 | 1310 | 201 | | 418 | 8.3 | 19.0 | 2.5 | | | | | | | NOV | 1130 | | | | 7.8 | 7.0 | 84 | | 15.8 | 100 | 31 | 5.7 | | 18
DEC | 1130 | | | | 7.8 | 7.0 | 84 | | 15.8 | 100 | 31 | 5.7 | | 10 | 1205 | 802 | | | 8.2 | 5.0 | 56 | | 12.0 | | | | | MAR 1988 | 1203 | 802 | | | 0.2 | 3.0 | 30 | | 12.0 | | | | | 23 | 1200 | 115 | | 443 | 7.7 | 5.0 | 4.1 | | | 150 | 45 | 8.6 | | APR | -200 | 113 | | 445 | | 3.0 | ••• | | | 100 | •• | | | 04 | 0900 | ~- | | 222, | 8.1 | 11.0 | 280 | | | | | | | 19 | 0900 | 115 | | 389 | 7.1 | 4.0 | 1.3 | | | 140 | 44 | 8.4 | | MAY | | | | | | | | | | | | | | 05 | 1000 | | | 378 | 8.2 | 12.0 | 1.3 | | 10.4 | | | | | 17 | 0900 | 250 | | 427 | 7.8 | 14.5 | 1.8 | | 8.8 | 150 | 47 | 8.7 | | JUN | | | | | | | | | | | | | | 28 | 1315 | 97 | 490 | 479 | 7.8 | 21.5 | 1.9 | | 9.6 | 160 | 46 | 12 | | SEP | | | | | | | | | | | | | | 09 | 0900 | 40 | | 587 | 8.0 | 15.0 | | | | 210 | 60 | 14 | | OCT | 1420 | 2.0 | | 50 . | | | | 7.64 | 40.0 | 212 | | 1.2 | | 05
NOV | 1130 | 22 | | 534 | 8.2 | 11.5 | 1.8 | 764 | 10.0 | 210 | 63 | 13 | | 16 | 1140 | | | 372 | 8.1 | 9.0 | 2.4 | 759 | 11.2 | 140 | 43 | 8.3 | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). CHLO- RIDE, SOLVED (MG/L AS CL) DIS- SULFATE SOLVED (MG/L AS SO4) DIS- POTAS- SIUM, DIS- SOLVED (MG/L AS K) SODIUM, DIS- SOLVED (MG/L AS NA) DATE ALKA- LAB (MG/L CACO3) AS LINITY ### STREAMS TRIBUTARY TO LAKE ERIE ### 04214240 EIGHTEENMILE CREEK AT HIGHLAND-ON-THE-LAKE, NY - continued FLUO- RIDE, DIS- SOLVED (MG/L AS F) WATER-QUALITY DATA (continued) SOLIDS, RESIDUE DEG. C DIS- SOLVED (MG/L) AT 180 SOLIDS, CONSTI- TUENTS, DIS- SOLVED (MG/L) SOLIDS, RESIDUE AT 105 DEG. C, TOTAL (MG/L) SUM OF SOLIDS, VOLA- TILE ON IGNI- TION, TOTAL (MG/L) RESIDUE (MG/L) TOTAL FIXED NITRO- NITRATE TOTAL (MG/L AS N) | APR 1987
16 | | | | | | | 184 | | 199 | 76 | 128 | 1.02 | |--|--|---|--|---|--|---|---|---|---|--|---|-----------------------| | 27 | | | | | | | 234 | | 239 | 66 | 198 | 0.990 | | MAY
19 | | | | | | | 332 | | 348 | 44 | 304 | 0.980 | | JUN | | | | | | | | | | | 272 | 2.46 | | 2 4
JUL | | | | ~- | | | 264 | | 316 | 104 | 272 | 2.46 | | 21
SEP | | | | | | | 244 | | 304 | 44 | 260 | | | 28 | | | | | | | 256 | | 274 | 82 | 192 | 0.590 | | NOV
18 | | | | | | | 196 | | 290 | 80 | 2 72 | 0.540 | | DEC | | | | | - <i>-</i> - | | | | 296 | 100 | 196 | | | 10
MAR 1988 | | | | | | | 188 | | | | | | | 23
APR | 28 | 1.8 85 | 5 4 | 4 5 | 5 | 0.10 | 262 | 234 | 274 | 66 | 208 | 1.01 | | 04 | | 53 | | | | 0.10 | 168 | | 1110 | 80 | 1030 | 0.490 | | 19
MAY | 20 | 1.7 92 | 2 4 | 4 3 | ь | 0.10 | 256 | 209 | 260 | 44 | 216 | 0.920 | | 05
17 |
25 | 91
2.3 103 | | | 0 | 0.30 | 2 44
288 | 227 | 252
296 | 60
96 | 192
200 | 0.530
0.500 | | JUN | | | | | | | | | | | | | | 28
SEP | 29 | 3.0 100 | | | | 0.20 | 312 | 257 | 342 | 109 | 233 | | | 09
OCT | 40 | 3.1 102 | 10 | 0 5 | 8 | 0.10 | 348 | 336 | 380 | 88 | 292 | 0.520 | | 05
NOV | 30 | 3.4 113 | 8 | 2 4 | 5 | 0.10 | 312 | 304 | 320 | 60 | 260 | | | 16 | 18 | 2.4 76 | 5 5 | 6 2 | 7 | 0.10 | 196 | 200 | 200 | 76 | 124 | 1.25 | | | NITRO-
GEN, | NITRO- | NITRO- | NITRO- | NITRO- | NITRO-
GEN, AM- | | | | PHOS-
PHORUS | PHOS | E, | | | NITRITE | GEN,
NO2+NO3 | GEN,
AMMONIA | | GEN,
ORGANIC | MONIA +
ORGANIC | GEN, | MITRO-
GEN, | PHOS-
PHORUS | ORTHO,
DIS- | ORTHO
DIS- | - | | DATE | NITRITE
TOTAL
(MG/L | NO2+NO3
TOTAL
(MG/L | AMMONIA
TOTAL
(MG/L | AMMONIA
TOTAL
(MG/L | ORGANIC
TOTAL
(MG/L | ORGANIC
TOTAL
(MG/L | GEN,
TOTAL
(MG/L | GEN,
TOTAL
(MG/L | PHORUS
TOTAL
(MG/L | DIS-
SOLVED
(MG/L | DIS
SOLV
(MG/ | ED
L | | DATE | NITRITE
TOTAL | NO2+NO3
TOTAL | AMMONIA
TOTAL | AMMONIA
TOTAL | ORGANIC
TOTAL | ORGANIC
TOTAL | GEN,
TOTAL | GEN,
TOTAL | PHORUS
TOTAL | DIS-
SOLVED | DIS-
SOLV | ED
L | | APR 1987 | NITRITE
TOTAL
(MG/L
AS N) | NO2+NO3
TOTAL
(MG/L
AS N) | AMMONIA
TOTAL
(MG/L
AS N) | AMMONIA
TOTAL
(MG/L
AS NH4) | ORGANIC
TOTAL
(MG/L
AS N) | ORGANIC
TOTAL
(MG/L
AS N) | GEN,
TOTAL
(MG/L
AS N) | GEN,
TOTAL
(MG/L
AS NO3) | PHORUS
TOTAL
(MG/L
AS P) | DIS-
SOLVED
(MG/L
AS P) | DIS-
SOLVI
(MG/)
AS PO- | ED
L | | | NITRITE
TOTAL
(MG/L | NO2+NO3
TOTAL
(MG/L | AMMONIA
TOTAL
(MG/L | AMMONIA
TOTAL
(MG/L | ORGANIC
TOTAL
(MG/L | ORGANIC
TOTAL
(MG/L | GEN,
TOTAL
(MG/L | GEN,
TOTAL
(MG/L | PHORUS
TOTAL
(MG/L | DIS-
SOLVED
(MG/L | DIS
SOLV
(MG/ | ED
L | | APR 1987
16
27
MAY | NITRITE
TOTAL
(MG/L
AS N)
0.00
0.00 | NO2+NO3
TOTAL
(MG/L
AS N)
1.02
0.990 | AMMONIA
TOTAL
(MG/L
AS N)
0.00
0.020 | AMMONIA
TOTAL
(MG/L
AS NH4)
0.0
0.03 | ORGANIC
TOTAL
(MG/L
AS N)
0.13
0.06 | ORGANIC
TOTAL
(MG/L
AS N)
0.13
0.08 | GEN,
TOTAL
(MG/L
AS N)
1.2
1.1 | GEN,
TOTAL
(MG/L
AS NO3)
5.1
4.7 | PHORUS
TOTAL
(MG/L
AS P)
0.010
0.00 | DIS-
SOLVED
(MG/L
AS P)
ND | DIS-
SOLVI
(MG/)
AS PO- | ED
L | | APR 1987
16
27
MAY
19
JUN | NITRITE
TOTAL
(MG/L
AS N)
0.00
0.00 | NO2+NO3
TOTAL
(MG/L
AS N)
1.02
0.990 | AMMONIA
TOTAL
(MG/L
AS N)
0.00
0.020 | AMMONIA
TOTAL
(MG/L
AS NH4)
0.0
0.03 | ORGANIC
TOTAL
(MG/L
AS N)
0.13
0.06 | ORGANIC
TOTAL
(MG/L
AS N)
0.13
0.08 | GEN,
TOTAL
(MG/L
AS N)
1.2
1.1 | GEN,
TOTAL
(MG/L
AS NO3)
5.1
4.7 | PHORUS
TOTAL
(MG/L
AS P)
0.010
0.00 | DIS-
SOLVED
(MG/L
AS P)
ND
ND | DIS-
SOLVI
(MG/)
AS PO- | -
ED
L
4) | | APR 1987
16
27
MAY
19 | NITRITE
TOTAL
(MG/L
AS N)
0.00
0.00 | NO2+NO3
TOTAL
(MG/L
AS N)
1.02
0.990 | AMMONIA
TOTAL
(MG/L
AS N)
0.00
0.020 | AMMONIA
TOTAL
(MG/L
AS NH4)
0.0
0.03 | ORGANIC
TOTAL
(MG/L
AS N)
0.13
0.06 | ORGANIC
TOTAL
(MG/L
AS N)
0.13
0.08 | GEN,
TOTAL
(MG/L
AS N)
1.2
1.1 | GEN,
TOTAL
(MG/L
AS NO3)
5.1
4.7 | PHORUS
TOTAL
(MG/L
AS P)
0.010
0.00 | DIS-
SOLVED
(MG/L
AS P)
ND | DIS-
SOLVI
(MG/)
AS PO- | -
ED
L
4) | | APR 1987
16
27
MAY
19
JUN
24 | NITRITE
TOTAL
(MG/L
AS N)
0.00
0.00 | NO2+NO3
TOTAL
(MG/L
AS N)
1.02
0.990 | AMMONIA
TOTAL
(MG/L
AS N)
0.00
0.020 | AMMONIA
TOTAL
(MG/L
AS NH4)
0.0
0.03 | ORGANIC
TOTAL
(MG/L
AS N)
0.13
0.06 | ORGANIC
TOTAL
(MG/L
AS N)
0.13
0.08 | GEN,
TOTAL
(MG/L
AS N)
1.2
1.1 | GEN,
TOTAL
(MG/L
AS NO3)
5.1
4.7 | PHORUS
TOTAL
(MG/L
AS P)
0.010
0.00 | DIS-
SOLVED
(MG/L
AS P)
ND
ND | DIS-
SOLVI
(MG/)
AS PO- | ED
L
4) | | APR 1987 16 27 MAY 19 JUN 24 JUL 21 SEP 28 | NITRITE
TOTAL
(MG/L
AS N)
0.00
0.00
0.010 | NO2+NO3
TOTAL
(MG/L
AS N)
1.02
0.990
0.990
2.49 | AMMONIA
TOTAL
(MG/L
AS N)
0.00
0.020
0.010 | AMMONIA
TOTAL
(MG/L
AS NH4)
0.0
0.03
0.01 | ORGANIC
TOTAL
(MG/L
AS N)
0.13
0.06
0.09 | ORGANIC
TOTAL
(MG/L
AS N)
0.13
0.08
0.10 | GEN,
TOTAL
(MG/L
AS N)
1.2
1.1
2.7 | GEN,
TOTAL
(MG/L
AS NO3)
5.1
4.7
4.8 | PHORUS
TOTAL
(MG/L
AS P)
0.010
0.00
0.00 | DIS-
SOLVED
(MG/L
AS P)
ND
ND
ND | DISSOLVI
(MG/)
AS PO- | ED L 4) | | APR 1987 16 27 MAY 19 JUN 24 JUL 21 SEP 28 NOV 18 | NITRITE
TOTAL
(MG/L
AS N)
0.00
0.00
0.010
0.030 | NO2+NO3
TOTAL
(MG/L
AS N)
1.02
0.990
0.990
2.49 | AMMONIA
TOTAL
(MG/L
AS N)
0.00
0.020
0.010
0.040 | AMMONIA
TOTAL
(MG/L
AS NH4)
0.0
0.03
0.01
0.05 | ORGANIC
TOTAL
(MG/L
AS N)
0.13
0.06
0.09
0.17 |
ORGANIC
TOTAL
(MG/L
AS N)
0.13
0.08
0.10
0.21 | GEN,
TOTAL
(MG/L
AS N)
1.2
1.1
2.7 | GEN,
TOTAL
(MG/L
AS NO3)
5.1
4.7
4.8
12
2.1 | PHORUS
TOTAL
(MG/L
AS P)
0.010
0.00
0.00
0.060 | DIS-
SOLVED
(MG/L
AS P)
ND
ND
ND | DIS-
SOLVI
(MG/:
AS PO- | ED L 4) | | APR 1987 16 27 MAY 19 JUN 24 JUL 21 SEP 28 NOV 18 DEC 10 | NITRITE
TOTAL
(MG/L
AS N)
0.00
0.010
0.030 | NO2+NO3
TOTAL
(MG/L
AS N)
1.02
0.990
0.990
2.49
0.220
0.590 | AMMONIA
TOTAL
(MG/L
AS N)
0.00
0.020
0.010
0.040
0.020 | AMMONIA
TOTAL
(MG/L
AS NH4)
0.0
0.03
0.01
0.05
0.03 | ORGANIC
TOTAL
(MG/L
AS N)
0.13
0.06
0.09
0.17
0.23 | ORGANIC
TOTAL
(MG/L
AS N)
0.13
0.08
0.10
0.21
0.25 | GEN,
TOTAL
(MG/L
AS N)
1.2
1.1
1.1
2.7
0.47 | GEN,
TOTAL
(MG/L
AS NO3)
5.1
4.7
4.8
12
2.1
3.9 | PHORUS
TOTAL
(MG/L
AS P)
0.010
0.00
0.00
0.060
0.00
0.010 | DIS-
SOLVED
(MG/L
AS P)
ND
ND
0.00
0.00 | DIS-
SOLVI
(MG/X
AS PO- | 0
0
0 | | APR 1987 16 27 MAY 19 JUN 24 JUL 21 SEP 28 NOV 18 DEC 10 MAR 1988 | NITRITE
TOTAL
(MG/L
AS N)
0.00
0.010
0.030

0.00
0.00 | NO2+NO3
TOTAL
(MG/L
AS N)
1.02
0.990
0.990
2.49
0.220
0.590 | AMMONIA
TOTAL
(MG/L
AS N)
0.00
0.020
0.010
0.040
0.020
0.020 | AMMONIA
TOTAL
(MG/L
AS NH4)
0.0
0.03
0.01
0.05
0.03
0.03 | ORGANIC
TOTAL
(MG/L
AS N)
0.13
0.06
0.09
0.17
0.23
0.26 | ORGANIC
TOTAL
(MG/L
AS N)
0.13
0.08
0.10
0.21
0.25
0.28 | GEN,
TOTAL
(MG/L
AS N)
1.2
1.1
2.7
0.47
0.87 | GEN,
TOTAL
(MG/L
AS NO3)
5.1
4.7
4.8
12
2.1
3.9
5.8 | PHORUS
TOTAL
(MG/L
AS P)
0.010
0.00
0.00
0.060
0.010
0.280 | DIS-
SOLVED
(MG/L
AS P)
ND
ND
0.00
0.00 | DIS-SOLVI (MG/: AS PO: 0 | 0
0
0 | | APR 1987 16 27 MAY 19 JUN 24 JUL 21 SEP 28 NOV 18 DEC 10 MAR 1988 23 APR | NITRITE TOTAL (MG/L AS N) 0.00 0.00 0.010 0.030 0.00 0.00 | NO2+NO3
TOTAL
(MG/L
AS N)
1.02
0.990
0.990
2.49
0.220
0.590
 | AMMONIA
TOTAL
(MG/L
AS N)
0.00
0.020
0.010
0.040
0.020
0.020 | AMMONIA
TOTAL
(MG/L
AS NH4)
0.0
0.03
0.01
0.05
0.03
0.03
0.19 | ORGANIC
TOTAL
(MG/L
AS N) 0.13 0.06 0.09 0.17 0.23 0.26 0.62 | ORGANIC
TOTAL
(MG/L
AS N) 0.13 0.08 0.10 0.21 0.25 0.28 0.77 0.14 | GEN,
TOTAL
(MG/L
AS N)
1.2
1.1
2.7
0.47
0.87
1.3 | GEN,
TOTAL
(MG/L
AS NO3)
5.1
4.7
4.8
12
2.1
3.9
5.8 | PHORUS
TOTAL
(MG/L
AS P)
0.010
0.00
0.00
0.060
0.010
0.280 | DIS-
SOLVED
(MG/L
AS P)
ND
ND
0.00
0.00
0.00 | DIS SOLV! (MG/:) AS PO: 0. 0. 0. | 0
0
0
0 | | APR 1987 16 27 MAY 19 JUN 24 JUL 21 SEP 28 NOV 18 DEC 10 MAR 1988 23 APR 04 19 | NITRITE
TOTAL
(MG/L
AS N)
0.00
0.010
0.030

0.00
0.00 | NO2+NO3
TOTAL
(MG/L
AS N)
1.02
0.990
0.990
2.49
0.220
0.590
0.540 | AMMONIA
TOTAL
(MG/L
AS N)
0.00
0.020
0.010
0.040
0.020
0.020 | AMMONIA
TOTAL
(MG/L
AS NH4)
0.0
0.03
0.01
0.05
0.03
0.03 | ORGANIC
TOTAL
(MG/L
AS N)
0.13
0.06
0.09
0.17
0.23
0.26 | ORGANIC
TOTAL
(MG/L
AS N)
0.13
0.08
0.10
0.21
0.25
0.28 | GEN,
TOTAL
(MG/L
AS N)
1.2
1.1
1.1
2.7
0.47
0.87
1.3 | GEN,
TOTAL
(MG/L
AS NO3)
5.1
4.7
4.8
12
2.1
3.9
5.8 | PHORUS
TOTAL
(MG/L
AS P)
0.010
0.00
0.00
0.060
0.00
0.010
0.280 | DIS-
SOLVED
(MG/L
AS P)
ND
ND
0.00
0.00
0.00 | DIS-
SOLVI
(MG/:
AS PO- | 0
0
0
0 | | APR 1987 16 27 MAY 19 JUN 24 JUL 21 SEP 28 NOV 18 DEC 10 MAR 1988 23 APR 04 19 MAY | NITRITE TOTAL (MG/L AS N) 0.00 0.00 0.010 0.030 0.00 0.00 0.00 0.00 0.00 0.00 | NO2+NO3
TOTAL
(MG/L
AS N)
1.02
0.990
0.990
2.49
0.220
0.590

1.01
0.490
0.920
0.530 | AMMONIA
TOTAL
(MG/L
AS N)
0.00
0.020
0.010
0.040
0.020
0.150

ND
0.800
ND | AMMONIA
TOTAL
(MG/L
AS NH4)
0.0
0.03
0.01
0.05
0.03
0.03
0.19

1.0
 | ORGANIC
TOTAL
(MG/L
AS N) 0.13 0.06 0.09 0.17 0.23 0.26 0.62 0.90 0.14 | ORGANIC TOTAL (MG/L AS N) 0.13 0.08 0.10 0.21 0.25 0.28 0.77 0.14 1.7 0.15 0.15 | GEN,
TOTAL
(MG/L
AS N)
1.2
1.1
2.7
0.47
0.87
1.3

1.2
2.2
1.1 | GEN,
TOTAL
(MG/L
AS NO3)
5.1
4.7
4.8
12
2.1
3.9
5.8

5.1
9.7
4.7 | PHORUS TOTAL (MG/L AS P) 0.010 0.00 0.000 0.000 0.010 0.280 0.010 0.570 0.010 0.010 | DIS-
SOLVED
(MG/L
AS P)
ND
ND
0.00
0.00
0.00

0.00
0.00
ND
ND | DIS SOLVI (MG/: AS PO: 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. | 0
0
0
0
0 | | APR 1987 16 27 MAY 19 JUN 24 JUL 21 SEP 28 NOV 18 DEC 10 MAR 1988 23 APR 04 19 MAY 05 17 JUN | NITRITE TOTAL (MG/L AS N) 0.00 0.00 0.010 0.030 0.00 0.00 0.00 0.00 0.00 0.00 | NO2+NO3
TOTAL
(MG/L)
AS N)
1.02
0.990
0.990
2.49
0.220
0.590

1.01
0.490
0.920
0.530
0.500 | AMMONIA
TOTAL
(MG/L
AS N)
0.00
0.020
0.010
0.020
0.020
0.150

ND
0.800
ND | AMMONIA
TOTAL
(MG/L
AS NH4)
0.0
0.03
0.01
0.05
0.03
0.19

1.0

0.01
0.0 | ORGANIC
TOTAL
(MG/L
AS N) 0.13 0.06 0.09 0.17 0.23 0.26 0.62 0.90 0.14 0.25 | ORGANIC
TOTAL
(MG/L
AS N) 0.13 0.08 0.10 0.21 0.25 0.28 0.77 0.14 1.7 0.15 0.15 0.25 | GEN,
TOTAL
(MG/L
AS N) 1.2 1.1 1.1 2.7 0.47 0.87 1.3 1.2 2.2 1.1 0.68 0.75 | GEN,
TOTAL
(MG/L
AS NO3)
5.1
4.7
4.8
12
2.1
3.9
5.8

5.1
9.7
4.7 | PHORUS TOTAL (MG/L AS P) 0.010 0.00 0.060 0.010 0.280 0.010 0.570 0.010 0.010 0.010 | DIS-
SOLVED
(MG/L
AS P)
ND
ND
0.00
0.00
0.00
0.00
0.00
0.00
ND
ND | DIS SOLVI (MG/: AS POOR | 0
0
0
0
0 | | APR 1987 16 27 MAY 19 JUN 24 JUL 21 SEP 28 NOV 18 DEC 10 MAR 1988 23 APR 04 19 MAY 17 JUN 28 SEP | NITRITE TOTAL (MG/L AS N) 0.00 0.00 0.010 0.030 0.00 0.00 0.00 0.00 0.00 0.00 | NO2+NO3
TOTAL
(MG/L
AS N)
1.02
0.990
0.990
2.49
0.220
0.590

1.01
0.490
0.920
0.530 | AMMONIA
TOTAL
(MG/L
AS N)
0.00
0.020
0.010
0.040
0.020
0.150

ND
0.800
ND | AMMONIA
TOTAL
(MG/L
AS NH4)
0.0
0.03
0.01
0.05
0.03
0.03
0.19

1.0
 | ORGANIC
TOTAL
(MG/L
AS N) 0.13 0.06 0.09 0.17 0.23 0.26 0.62 0.90 0.14 | ORGANIC TOTAL (MG/L AS N) 0.13 0.08 0.10 0.21 0.25 0.28 0.77 0.14 1.7 0.15 0.15 | GEN,
TOTAL
(MG/L
AS N)
1.2
1.1
2.7
0.47
0.87
1.3

1.2
2.2
1.1 | GEN,
TOTAL
(MG/L
AS NO3)
5.1
4.7
4.8
12
2.1
3.9
5.8

5.1
9.7
4.7 | PHORUS TOTAL (MG/L AS P) 0.010 0.00 0.000 0.000 0.010 0.280 0.010 0.570 0.010 0.010 | DIS-
SOLVED
(MG/L
AS P)
ND
ND
0.00
0.00
0.00

0.00
0.00
ND
ND | DIS SOLVI (MG/: AS PO: 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. | 0
0
0
0
0 | | APR 1987 16 27 MAY 19 JUN 24 JUL 21 SEP 28 NOV 18 DEC 10 MAR 1988 23 APR 04 19 MAY 05 17 JUN 28 SEP 09 | NITRITE TOTAL (MG/L AS N) 0.00 0.00 0.010 0.030 0.00 0.00 0.00 0.00 0.00 0.00 | NO2+NO3
TOTAL
(MG/L)
AS N)
1.02
0.990
0.990
2.49
0.220
0.590

1.01
0.490
0.920
0.530
0.500 | AMMONIA
TOTAL
(MG/L
AS N)
0.00
0.020
0.010
0.020
0.020
0.150

ND
0.800
ND | AMMONIA
TOTAL
(MG/L
AS NH4)
0.0
0.03
0.01
0.05
0.03
0.19

1.0

0.01
0.0 | ORGANIC
TOTAL
(MG/L
AS N) 0.13 0.06 0.09 0.17 0.23 0.26 0.62 0.90 0.14 0.25 | ORGANIC
TOTAL
(MG/L
AS N) 0.13 0.08 0.10 0.21 0.25 0.28 0.77 0.14 1.7 0.15 0.15 0.25 | GEN,
TOTAL
(MG/L
AS N) 1.2 1.1 1.1 2.7 0.47 0.87 1.3 1.2 2.2 1.1 0.68 0.75 | GEN,
TOTAL
(MG/L
AS NO3)
5.1
4.7
4.8
12
2.1
3.9
5.8

5.1
9.7
4.7 | PHORUS TOTAL (MG/L AS P) 0.010 0.00 0.060 0.010 0.280 0.010 0.570 0.010 0.010 0.010 | DIS-
SOLVED
(MG/L
AS P)
ND
ND
0.00
0.00
0.00
0.00
0.00
0.00
ND
ND | DIS SOLVI (MG/: AS POOR | 0
0
0
0
0 | | APR 1987 16 27 MAY 19 JUN 24 JUL 21 SEP 28 NOV 18 DEC 10 MAR 1988 23 APR 04 19 MAY 05 17 JUN 28 SEP 09 OCT | NITRITE TOTAL (MG/L AS N) 0.00 0.010 0.030 0.00 0.00 0.00 0.00 0.00 0.00 | NO2+NO3
TOTAL
(MG/L
AS N)
1.02
0.990
0.990
2.49
0.220
0.590
 | AMMONIA
TOTAL
(MG/L
AS N)
0.00
0.020
0.010
0.020
0.150

ND
0.800
ND
0.010
0.010 | AMMONIA
TOTAL
(MG/L
AS NH4)
0.0
0.03
0.01
0.05
0.03
0.03
0.19

1.0

0.01
0.0 | ORGANIC TOTAL (MG/L AS N) 0.13 0.06 0.09 0.17 0.23 0.26 0.62 0.90 0.14 0.25 0.18 | ORGANIC TOTAL (MG/L AS N) 0.13 0.08 0.10 0.21 0.25 0.28 0.77 0.14 1.7 0.15 0.15 0.25 0.19 | GEN,
TOTAL
(MG/L
AS N)
1.2
1.1
1.1
2.7
0.47
0.87
1.3

1.2
2.2
1.1
0.68
0.75 | GEN,
TOTAL
(MG/L
AS NO3)
5.1
4.7
4.8
12
2.1
3.9
5.8

5.1
9.7
4.7
3.0
3.3
1.4 | PHORUS TOTAL (MG/L AS P) 0.010 0.00 0.000 0.000 0.010 0.280 0.010 0.570 0.010 0.010 0.010 0.010 | DIS-
SOLVED
(MG/L
AS P)
ND
ND
0.00
0.00
0.00

0.00
ND
ND
ND | DIS SOLVI (MG/: AS POOR |
0
0
0
0
0 | | APR 1987 16 27 MAY 19 JUN 24 JUL 21 SEP 28 NOV 18 DEC 10 MAR 1988 23 APR 04 19 MAY 05 JUN 28 SEP 09 OCT | NITRITE TOTAL (MG/L AS N) 0.00 0.00 0.010 0.030 0.00 0.00 0.00 0.00 0.00 0.00 | NO2+NO3
TOTAL
(MG/L)
AS N)
1.02
0.990
0.990
2.49
0.220
0.590
0.540

1.01
0.490
0.920
0.530
0.500
0.130 | AMMONIA
TOTAL
(MG/L
AS N)
0.00
0.020
0.010
0.020
0.150

ND
0.800
ND
0.010
0.001
0.001 | AMMONIA
TOTAL
(MG/L
AS NH4)
0.0
0.03
0.01
0.05
0.03
0.19

1.0

0.01
0.0
0.01 | ORGANIC TOTAL (MG/L AS N) 0.13 0.06 0.09 0.17 0.23 0.26 0.62 0.90 0.14 0.25 0.18 0.32 | ORGANIC TOTAL (MG/L AS N) 0.13 0.08 0.10 0.21 0.25 0.28 0.77 0.14 1.7 0.15 0.15 0.25 0.19 0.34 | GEN,
TOTAL
(MG/L
AS N)
1.2
1.1
1.1
2.7
0.47
0.87
1.3

1.2
2.2
1.1
0.68
0.75
0.32 | GEN, TOTAL (MG/L AS NO3) 5.1 4.7 4.8 12 2.1 3.9 5.8 5.1 9.7 4.7 3.0 3.3 1.4 3.8 | PHORUS TOTAL (MG/L AS P) 0.010 0.00 0.000 0.060 0.010 0.280 0.010 0.570 0.010 0.010 0.010 0.010 0.010 0.010 | DIS-
SOLVED
(MG/L
AS P)
ND
ND
0.00
0.00
0.00
0.00
0.00
0.00
ND
ND
ND
ND | DIS SOLVI (MG/: AS POOR | 0
0
0
0
0 | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). # 04214240 EIGHTEENMILE CREEK AT HIGHLAND-ON-THE-LAKE, NY - continued | | ALUM-
INUM, | ALUM- | CADMIUM | | COPPER, | | IRON, | | LEAD, | | MANGA-
NESE, | |--|--|--|--|-----------------------------------|---|-----------------------------------|---|---|--|---|---| | | TOTAL
RECOV-
ERABLE | INUM,
DIS-
SOLVED | TOTAL
RECOV-
ERABLE | CADMIUM
DIS-
SOLVED | TOTAL
RECOV-
ERABLE | COPPER,
DIS-
SOLVED | TOTAL
RECOV-
ERABLE | IRON,
DIS-
SOLVED | TOTAL
RECOV-
ERABLE | LEAD,
DIS-
SOLVED | TOTAL
RECOV-
ERABLE | | DATE | (UG/L
AS AL) | (UG/L
AS AL) | (UG/L
AS CD) | (UG/L
AS CD) | (UG/L
AS CU) | (UG/L
AS CU) | (UG/L
AS FE) | (UG/L
AS FE) | (UG/L
AS PB) | (UG/L
AS PB) | (UG/L
AS MN) | | APR 1987 | | | | | | | | | | | | | 16
27 | | | <10
<10 | | <10
<10 | | 80
100 | | <100
9 | | <10
<10 | | MAY
19 | | | <10 | | 10 | | 90 | | <5 | | 10 | | JUN 24 | | | <10 | | <10 | | 730 | | 13 | | 40 | | JUL
21
SEP | | | <10 | 1.0 | 20 | 4 | 200 | | <5 | <5 | 10 | | 28 | | | <10 | ~- | <10 | | 360 | | <100 | | 20 | | NOV
18 | | | 1 | | 12 | | 5400 | | 7 | | 130 | | DEC
10 | | | <1 | | 11 | | 3600 | | 7 | | 80 | | MAR 1988
23 | 110 | <10 | <1 | <1.0 | 3 | 1 | 260 | 12 | <5 | < 5 | 30 | | APR
04 | 17000 | | <1 | | 31 | | 35000 | | 14 | | 690 | | 19
MAY | <10 | 20 | 1 | <1.0 | 2 | 3 | 110 | 16 | <5 | <5 | 12 | | 05
17 | 30
70 |
10 | 2
6 |
<1.0 | 4
9 |
3 | 110
220 |
25 | 16
< 5 |
<5 | 10
10 | | JUN
28 | 90 | | 1 | | 4 | | 200 | | < 5 | | 50 | | SEP 09 | 140 | | <1 | | 4 | | 280 | | < 5 | | 20 | | ОСТ
05 | 90 | <10 | 1 | <1.0 | 10 | 1 | 160 | 21 | <5 | <5 | 20 | | NOV
16 | 50 | | <1 | | 3 | | 260 | | <5 | | 30 | | 10 | 30 | | ~1 | | 3 | | 200 | | \3 | | 50 | | | | | | | | | | | | | | | | MANGA- | MERCURY | NICKEL. | | ZINC. | | | CARBON- | | CHI.ORO- | | | | MANGA-
NESE, | MERCURY
TOTAL | NICKEL,
TOTAL | NICKEL, | ZINC,
TOTAL | ZINC, | BROWO - | CARBON-
TETRA- | CHI OBO- | CHLORO-
DI- | כעו ספס. | | 2200 | NESE,
DIS-
SOLVED | TOTAL
RECOV-
ERABLE | TOTAL
RECOV-
ERABLE | DIS-
SOLVED | TOTAL
RECOV-
ERABLE | DIS-
SOLVED | BROMO-
FORM | TETRA-
CHLO-
RIDE | CHLORO-
BENZENE | DI-
BROMO-
METHANE | CHLORO-
ETHANE | | DATE | NESE,
DIS- | TOTAL
RECOV- | TOTAL
RECOV- | DIS- | TOTAL
RECOV- | DIS- | | TETRA-
CHLO- | | DI-
BROMO- | | | APR 1987 | NESE,
DIS-
SOLVED
(UG/L | TOTAL
RECOV-
ERABLE
(UG/L
AS HG) | TOTAL
RECOV-
ERABLE
(UG/L
AS NI) | DIS-
SOLVED
(UG/L | TOTAL
RECOV-
ERABLE
(UG/L
AS ZN) | DIS-
SOLVED
(UG/L | FORM
TOTAL
(UG/L) | TETRA-
CHLO-
RIDE
TOTAL | BENZENE
TOTAL
(UG/L) | DI-
BROMO-
METHANE
TOTAL
(UG/L) | ETHANE
TOTAL
(UG/L) | | | NESE,
DIS-
SOLVED
(UG/L | TOTAL
RECOV-
ERABLE
(UG/L
AS HG) | TOTAL
RECOV-
ERABLE
(UG/L | DIS-
SOLVED
(UG/L | TOTAL
RECOV-
ERABLE
(UG/L | DIS-
SOLVED
(UG/L | FORM
TOTAL | TETRA-
CHLO-
RIDE
TOTAL
(UG/L) | BENZENE
TOTAL | DI-
BROMO-
METHANE
TOTAL | ETHANE
TOTAL | | APR 1987
16 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL
RECOV-
ERABLE
(UG/L
AS HG) | TOTAL
RECOV-
ERABLE
(UG/L
AS NI) | DIS-
SOLVED
(UG/L
AS NI) | TOTAL
RECOV-
ERABLE
(UG/L
AS ZN) | DIS-
SOLVED
(UG/L
AS ZN) | FORM TOTAL (UG/L) ND | TETRA-
CHLO-
RIDE
TOTAL
(UG/L) | BENZENE
TOTAL
(UG/L)
ND | DI-
BROMO-
METHANE
TOTAL
(UG/L) | ETHANE
TOTAL
(UG/L)
ND | | APR 1987
16
27
MAY | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV- ERABLE (UG/L AS HG) <0.10 0.10 | TOTAL
RECOV-
ERABLE
(UG/L
AS NI)
<100
<1 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL
RECOV-
ERABLE
(UG/L
AS ZN) | DIS-
SOLVED
(UG/L
AS ZN) | FORM TOTAL (UG/L) ND ND | TETRA-
CHLO-
RIDE
TOTAL
(UG/L)
ND | BENZENE
TOTAL
(UG/L)
ND
ND | DI-
BROMO-
METHANE
TOTAL
(UG/L)
ND | ETHANE
TOTAL
(UG/L)
ND
ND | | APR 1987
16
27
MAY
19
JUN
24 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL
RECOV-
ERABLE
(UG/L
AS HG)
<0.10
<0.10
<0.10 | TOTAL RECOV- ERABLE (UG/L AS NI) <100 <1 <1 <1 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV- ERABLE (UG/L AS ZN) <10 <10 <10 10 | DIS-
SOLVED
(UG/L
AS ZN) | FORM TOTAL (UG/L) ND ND ND ND | TETRA-CHLO-RIDE TOTAL (UG/L) ND ND ND | BENZENE
TOTAL
(UG/L)
ND
ND
ND | DI-
BROMO-
METHANE
TOTAL
(UG/L)
ND
ND
ND | ETHANE TOTAL (UG/L) ND ND ND ND | | APR 1987 16 27 MAY 19 JUN 24 JUL 21 SEP | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV-ERABLE (UG/L AS HG) <0.10 0.10 <0.10 <0.10 0.20 | TOTAL RECOV- ERABLE (UG/L AS NI) <100 <1 <1 <1 <1 <1 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV- ERABLE (UG/L AS ZN) <10 <10 <10 <10 <10 | DIS-
SOLVED
(UG/L
AS ZN) | FORM TOTAL (UG/L) ND ND ND ND | TETRA-CHLO-RIDE RIDE TOTAL (UG/L) ND ND ND ND | BENZENE
TOTAL
(UG/L)
ND
ND
ND
ND | DI-
BROMO-
METHANE
TOTAL
(UG/L)
ND
ND
ND | ETHANE TOTAL (UG/L) ND ND ND ND ND | | APR 1987 16 27 MAY 19 JUN 24 JUL 21 SEP 28 NOV | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV-ERABLE (UG/L AS HG) <0.10 0.10 <0.10 <0.10 0.20 <0.10 | TOTAL RECOV- ERABLE (UG/L AS NI) <100 <1 <1 <1 <1 <1 <100 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV- ERABLE (UG/L AS ZN) <10 <10 <10 <10 <10 <10 <10 | DIS-
SOLVED
(UG/L
AS ZN) | FORM TOTAL (UG/L) ND ND ND ND ND ND | TETRA-CHLO-RIDE RIDE TOTAL (UG/L) ND ND ND ND ND | BENZENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND | DI-
BROMO-
METHANE
TOTAL
(UG/L)
ND
ND
ND
ND | ETHANE TOTAL (UG/L) ND ND ND ND ND ND ND | | APR 1987 16 27 MAY 19 JUN 24 JUL 21 SEP 28 NOV 18 DEC | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV-ERABLE (UG/L AS HG) <0.10 0.10 <0.10 <0.10 <0.10 <0.10 -0.10 | TOTAL RECOV-ERABLE (UG/L AS NI) <100 <1 <1 <1 <1 <1 <1 <1 <5 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV-ERABLE (UG/L AS ZN) <10 <10 <10 10 <10 410 410 410 410 410 410 410 4 | DIS-
SOLVED
(UG/L
AS ZN) | FORM TOTAL (UG/L) ND ND ND ND ND ND ND | TETRA-CHLO-RIDE TOTAL (UG/L) ND ND ND ND ND ND ND | BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND | DI-
BROMO-
METHANE
TOTAL
(UG/L)
ND
ND
ND
ND | ETHANE TOTAL (UG/L) ND | | APR 1987 16 27 MAY 19 JUN 24 JUL 21 SEP 28 NOV 18 DEC 10 MAR 1988 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV-ERABLE (UG/L AS HG) <0.10 0.10 <0.10 <0.10 <0.10 -0.10 <0.10 <0.10 | TOTAL RECOVERABLE (UG/L AS NI) <100 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV-ERABLE (UG/L AS ZN) <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 | DIS-
SOLVED
(UG/L
AS ZN) | FORM TOTAL (UG/L) ND | TETRA-CHLO-RIDE RIDE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND | BENZENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND
ND | DI- BROMO- METHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND | ETHANE TOTAL (UG/L) ND | | APR 1987 16 27 MAY 19 JUN 24 JUL 21 SEP 28 NOV 18 DEC 10 MAR 1988 23 APR | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV-ERABLE (UG/L AS HG) <0.10 0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 | TOTAL RECOV-ERABLE (UG/L AS NI) <100 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOVERABLE (UG/L AS ZN) <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 | DIS-
SOLVED
(UG/L
AS ZN) | FORM TOTAL (UG/L) ND | TETRA-CHLO-RIDE TOTAL (UG/L) ND | BENZENE
TOTAL (UG/L) ND | DI-
BROMO-
METHANE
TOTAL
(UG/L)
ND
ND
ND
ND
ND
ND | ETHANE TOTAL (UG/L) ND | | APR 1987 16 27 MAY 19 JUN 24 JUL 21 SEP 28 NOV 18 DEC 10 MAR 1988 23 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV-ERABLE (UG/L AS HG) <0.10 0.10 <0.10 <0.10 <0.10 -0.10 <0.10 <0.10 | TOTAL RECOVERABLE (UG/L AS NI) <100 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV-ERABLE (UG/L AS ZN) <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 | DIS-
SOLVED
(UG/L
AS ZN) | FORM TOTAL (UG/L) ND | TETRA-CHLO-RIDE RIDE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND | BENZENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND
ND | DI- BROMO- METHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND | ETHANE TOTAL (UG/L) ND | | APR 1987 16 27 MAY 19 JUN 24 JUL 21 SEP 28 NOV 18 DEC 10 MAR 1988 23 APR 04 19 MAY | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV-ERABLE (UG/L AS HG) <0.10 | TOTAL RECOV-ERABLE (UG/L AS NI) <100 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV-ERABLE (UG/L AS ZN) <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 | DIS-
SOLVED
(UG/L
AS ZN) | FORM TOTAL (UG/L) ND | TETRA-CHLO-RIDE RIDE TOTAL (UG/L) ND | BENZENE TOTAL (UG/L) ND | DI- BROMO- METHANE TOTAL (UG/L) ND | ETHANE TOTAL (UG/L) ND | | APR 1987 16 27 MAY 19 JUN 24 JUL 21 SEP 28 NOV 18 DEC 10 MAR 1988 23 APR 04 19 MAY 05 17 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV-ERABLE (UG/L AS HG) <0.10 | TOTAL RECOV-ERABLE (UG/L AS NI) <100 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOVERABLE (UG/L AS ZN) <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 | DIS-
SOLVED
(UG/L
AS ZN) | FORM TOTAL (UG/L) ND | TETRA-CHLO-RIDE TOTAL (UG/L) ND | BENZENE TOTAL (UG/L) ND | DI- BROMO- METHANE TOTAL (UG/L) ND | ETHANE TOTAL (UG/L) ND | | APR 1987 16 27 MAY 19 JUN 24 SEP 28 NOV 18 DEC 10 MAR 1988 23 APR 04 19 MAY 05 17 JUN 28 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOVERABLE (UG/L AS HG) <0.10 0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 | TOTAL RECOV-ERABLE (UG/L AS NI) <100 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOVERABLE (UG/L AS ZN) <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 | DIS-
SOLVED
(UG/L
AS ZN) | FORM TOTAL (UG/L) ND | TETRA-CHLO-RIDE TOTAL (UG/L) ND | BENZENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND
ND
ND
ND | DI-
BROMO-
METHANE
TOTAL
(UG/L)
ND
ND
ND
ND
ND
ND
ND
ND | ETHANE TOTAL (UG/L) ND | | APR 1987 16 27 MAY 19 JUN 24 JUL 21 SEP 28 NOV 18 DEC 10 MAR 1988 23 APR 04 19 MAY 05 17 JUN 28 SEP 09 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV-ERABLE (UG/L AS HG) <0.10 | TOTAL RECOV-ERABLE (UG/L AS NI) <100 <1 <1 <1 <1 <1 <1 <1 <1 <4 <1 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV-ERABLE (UG/L AS ZN) <10 <10 <10 <10 <10 <10 <10 <10 <10 <1 | DIS-SOLVED (UG/L AS ZN) | FORM TOTAL (UG/L) ND | TETRA-CHLO-RIDE RIDE TOTAL (UG/L) ND | BENZENE TOTAL (UG/L) ND | DI- BROMO- METHANE TOTAL (UG/L) ND | ETHANE TOTAL (UG/L) ND | | APR 1987 16 27 MAY 19 JUN 24 JUL 21 SEP 28 NOV 18 DEC 10 MAR 1988 23 APR 04 19 MAY 05 17 JUN 28 SEP | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOVERABLE (UG/L AS HG) <0.10 | TOTAL RECOVERABLE (UG/L AS NI) <100 <1 <1 <1 <1 <1 <1 <1 <4 <1 <1 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOVERABLE (UG/L AS ZN) <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 | DIS-SOLVED (UG/L AS ZN) | FORM TOTAL (UG/L) ND | TETRA-CHLO-RIDE TOTAL (UG/L) ND N | BENZENE TOTAL (UG/L) ND | DI- BROMO- METHANE TOTAL (UG/L) ND | ETHANE TOTAL (UG/L) ND | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). # 04214240 EIGHTEENMILE CREEK AT HIGHLAND-ON-THE-LAKE, NY - continued | DATE | CHLORO-
FORM
TOTAL
(UG/L) | CIS
1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | DI-
CHLORO-
BROMO-
METHANE
TOTAL
(UG/L) | METHYL-
BROMIDE
TOTAL
(UG/L) | METHYL-
CHLO-
RIDE
TOTAL
(UG/L) | METHYL-
ENE
CHLO-
RIDE
TOTAL
(UG/L) | 1,1,1-
TRI-
CHLORO-
ETHANE
TOTAL
(UG/L) | 1,1-DI-
CHLORO-
ETHANE
TOTAL
(UG/L) | 1,1-DI-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 1,1,2-
TRI-
CHLORO-
ETHANE
TOTAL
(UG/L) | 1,1,2,2
TETRA-
CHLORO-
ETHANE
TOTAL
(UG/L) | |---|---|--|---|---|--|--|---|--|---|---|--| | APR 1987
16
27 | ND
ND | MAY
19 | ND | JUN
24 | ND | JUL
21 | 1.0 | ND | SEP
28 | ND | NOV
18 | ND | DEC 10 | ND | MAR 1988
23 | ND | APR 04 | ND | 19 | ND ИD | | MAY
05
17
JUN | 0
ND | 28 | ND | SEP
09 | ND | OCT
05 | ND | NOV
16 | ND | | | | | | | | | | | | | | DATE | 1,2-DI-
CHLORO-
BENZENE
TOTAL
(UG/L) | 1,2-DI-
CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L) | 1,2-DI-
CHLORO-
PROPANE
TOTAL
(UG/L) | 1,2-
TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L) | 1,3-DI-
CHLORO-
BENZENE
TOTAL
(UG/L) | 1,4-DI-
CHLORO-
BENZENE
TOTAL
(UG/L) | TETRA-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | TRANS-
1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | TRI -
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 2-
CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L) | VINYL
CHLO-
RIDE
TOTAL
(UG/L) | | APR 1987 | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L) | CHLORO-
PROPANE
TOTAL
(UG/L) | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L) | CHLO-
RIDE
TOTAL
(UG/L) | | | CHLORO-
BENZENE
TOTAL | CHLORO-
ETHANE
WATER
WHOLE
TOTAL | CHLORO-
PROPANE
TOTAL | TRANSDI
CHLORO-
ETHENE
TOTAL | CHLORO-
BENZENE
TOTAL | CHLORO-
BENZENE
TOTAL | CHLORO-
ETHYL-
ENE
TOTAL | 1,3-DI-
CHLORO-
PROPENE
TOTAL | CHLORO-
ETHYL-
ENE
TOTAL | CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL | CHLO-
RIDE
TOTAL | | APR 1987
16 | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L) | CHLORO-
PROPANE
TOTAL
(UG/L) | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L) | CHLO-
RIDE
TOTAL
(UG/L) | | APR 1987
16
27
MAY | CHLORO-
BENZENE
TOTAL
(UG/L)
ND
ND | CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L)
ND | CHLORO-
PROPANE
TOTAL
(UG/L)
ND
ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND | CHLORO-
BENZENE
TOTAL
(UG/L)
ND
ND | CHLORO-
BENZENE
TOTAL
(UG/L)
ND
ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND | CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L)
ND | CHLO-
RIDE
TOTAL
(UG/L)
ND | | APR 1987 16 27 MAY 19 JUN 24 JUL | CHLORO-
BENZENE
TOTAL
(UG/L)
ND
ND
ND | CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L)
ND
ND | CHLORO-
PROPANE
TOTAL
(UG/L)
ND
ND
ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND | CHLORO-
BENZENE
TOTAL
(UG/L)
ND
ND
ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND
ND | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
ND
ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND
ND | CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L)
ND
ND | CHLO-
RIDE
TOTAL
(UG/L)
ND
ND | | APR 1987 16 27 MAY 19 JUN 24 JUL 21 SEP | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND ND ND ND | CHLORO-
PROPANE
TOTAL
(UG/L)
ND
ND
ND
ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND ND ND ND ND ND | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
ND
ND
ND | CHLORO-ETHYL-ENETOTAL (UG/L) ND ND ND ND ND | CHLORO-ETHYL-VINYL-ETHER TOTAL (UG/L) ND ND ND ND ND ND ND ND ND | CHLO-
RIDE
TOTAL
(UG/L)
ND
ND
ND | | APR 1987 16 27 MAY 19 JUN 24 JUL 21 SEP 28 NOV | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND | CHLORO- ETHANE WATER WHOLE TOTAL (UG/L) ND ND ND ND ND ND | CHLORO-PROPANE TOTAL (UG/L) ND ND ND ND ND ND |
TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND | CHLORO-ETHYL-ENE ENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
ND
ND
ND
ND | CHLORO-ETHYL-ENE ENE TOTAL (UG/L) ND N | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND ND ND ND ND ND | CHLO-RIDE TOTAL (UG/L) ND ND ND ND ND | | APR 1987 16 27 MAY 19 JUN 24 JUL 21 SEP 28 NOV 18 DEC | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND ND ND ND ND ND ND ND | CHLORO-PROPANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND N | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND N | CHLORO-ETHYL-ENE TOTAL (UG/L) ND N | CHLORO-ETHYL-VINYL-ETHER TOTAL (UG/L) ND N | CHLO-RIDE TOTAL (UG/L) ND ND ND ND ND ND ND | | APR 1987 16 27 MAY 19 JUN 24 JUL 21 SEP 28 NOV 18 DEC 10 MAR 1988 | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND | CHLORO-PROPANE TOTAL (UG/L) ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND N | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND N | CHLORO-ETHYL-ENE ENE TOTAL (UG/L) ND N | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND | CHLO-RIDE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND | | APR 1987 16 27 MAY 19 JUN 24 JUL 21 SEP 28 NOV 18 DEC 10 MAR 1988 23 APR | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND | CHLORO-PROPANE TOTAL (UG/L) ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND
ND
ND | CHLOROBENZENE TOTAL (UG/L) ND | CHLOROBENZENE TOTAL (UG/L) ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND N | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND N | CHLORO-ETHYL-ENE TOTAL (UG/L) ND N | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND | CHLO-RIDE TOTAL (UG/L) ND | | APR 1987 16 27 MAY 19 JUN 24 JUL 21 SEP 28 NOV 18 DEC 10 MAR 1988 23 APR 04 19 | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND | CHLORO-PROPANE TOTAL (UG/L) ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND N | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND N | CHLORO-ETHYL-ENE ENE TOTAL (UG/L) ND N | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND | CHLO-RIDE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND | | APR 1987 16 27 MAY 19 JUN 24 JUL 21 SEP 28 NOV 18 DEC 10 MAR 1988 23 APR 04 19 MAY 05 | CHLORO-BENZENE TOTAL (UG/L) ND N | CHLORO-ETHANE WHOLE WATER WHOLE TOTAL (UG/L) ND | CHLORO-PROPANE TOTAL (UG/L) ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND
ND
ND
ND | CHLOROBENZENE TOTAL (UG/L) ND | CHLOROBENZENE TOTAL (UG/L) ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND N | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND N | CHLORO-ETHYL-ENE TOTAL (UG/L) ND N | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND | CHLO-RIDE TOTAL (UG/L) ND | | APR 1987 16 27 MAY 19 JUN 24 JUL 21 SEP 28 NOV 18 DEC 10 MAR 1988 23 APR 04 19 MAY | CHLORO-BENZENE TOTAL (UG/L) ND N | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND | CHLORO-PROPANE TOTAL (UG/L) ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND
ND
ND | CHLOROBENZENE TOTAL (UG/L) ND | CHLOROBENZENE TOTAL (UG/L) ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND N | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND N | CHLORO-ETHYL-ENE TOTAL (UG/L) ND N | CHLORO-ETHYL-VINYL-ETHER TOTAL (UG/L) ND N | CHLO-RIDE TOTAL (UG/L) ND | | APR 1987 16 27 MAY 19 JUN 24 JUL 21 SEP 28 NOV 18 DEC 10 MAR 1988 23 APR 04 19 MAY 05 17 | CHLORO-BENZENE TOTAL (UG/L) ND N | CHLORO-ETHANE WHOLE WATER WHOLE TOTAL (UG/L) ND | CHLORO-PROPANE TOTAL (UG/L) ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND
ND
ND
ND | CHLOROBENZENE TOTAL (UG/L) ND | CHLOROBENZENE TOTAL (UG/L) ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND N | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND N | CHLORO-ETHYL-ENE TOTAL (UG/L) ND N | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND | CHLO-RIDE TOTAL (UG/L) ND | | APR 1987 16 27 MAY 19 JUN 24 JUL 21 SEP 28 NOV 18 DEC 10 MAR 1988 23 APR 04 19 MAY 05 17 JUN 28 | CHLORO-BENZENE TOTAL (UG/L) ND N | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND | CHLORO-PROPANE TOTAL (UG/L) ND N | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND
ND
ND
ND
ND | CHLOROBENZENE TOTAL (UG/L) ND | CHLOROBENZENE TOTAL (UG/L) ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND N | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND N | CHLORO-ETHYL-ENE TOTAL (UG/L) ND N | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND | CHLO-RIDE TOTAL (UG/L) ND | | APR 1987 16 27 MAY 19 JUN 24 JUN 21 SEP 28 NOV 18 DEC 10 MAR 1988 23 APR 04 19 MAY 05 17 JUN 28 SEP | CHLORO-BENZENE TOTAL (UG/L) ND N | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND | CHLORO-PROPANE TOTAL (UG/L) ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND | CHLOROBENZENE TOTAL (UG/L) ND | CHLOROBENZENE TOTAL (UG/L) ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND N | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND N | CHLORO-ETHYL-ENE ENE TOTAL (UG/L) ND N | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND | CHLO-RIDE TOTAL (UG/L) ND | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). # 04214240 EIGHTEENMILE CREEK AT HIGHLAND-ON-THE-LAKE, NY - continued ## SUSPENDED SEDIMENT DISCHARGE | | | DIS-
CHARGE,
INST.
CUBIC
FEET | SEDI-
MENT,
SUS- | SEDI-
MENT,
DIS-
CHARGE,
SUS- | |-----------|------|---|------------------------|---| | DATE | TIME | PER
SECOND | PENDED (MG/L) | PENDED
(T/DAY) | | APR 1987 | | 5555115 | (11072) | (, , , , , , , , , , , , , , , , , , , | | 16 | 1330 | | 10 | | | 27 | 1400 | 19 | 3 | 0.15 | | JUN | | | | | | 24 | 0830 | 86 | 22 | 5.1 | | JUL | | | | | | 21 | 1300 | | 6 | | | SEP | | | _ | | | 28 | 1310 | 201 | 6 | 3.3 | | DEC | | | | | | 10 | 1205 | 802 | 92 | 199 | | MAY 1988 | 0900 | 250 | 15 | 10 | | 17
JUN | 0900 | 250 | 15 | 10 | | 28 | 1315 | 97 | 7 | 1.8 | | SEP | 1313 | 31 | , | 1.0 | | 09 | 0900 | 40 | 10 | 1.1 | | OCT | | •• | ** | | | 05 | 1130 | 22 | 4 | 0.24 | | NOV | | | - | 0.2. | | 16 | 1140 | | 2 | | | | | | | | # BED MATERIAL ANALYSES | DATE JUL 1987 21 JUN 1988 28 | TIME
1300
1315 | VO
TIL
BOT
M
TE
(MG | | ALUM- INUM, RECOV. FM BOT- FOM MA- TERIAL (UG/G) 8000 | FM F
TOM
TEF
(UC | COV. N
BOT- F
MA- FN
RIAL TO | CHRO-
MIUM,
RECOV.
M BOT-
DM MA-
TERIAL
(UG/G) | RE
FM
TOM
TE
(U | COV. I
BOT- FI
MA- TO
RIAL ' | IRON,
RECOV.
M BOT-
DM MA-
TERIAL
(UG/G
AS FE)
20000 | RE
FM
TOM
TE
(U | COV.
BOT-
MA- F
CRIAL T | MANGA-
NESE,
RECOV
M BOT-
OM MA-
TERIAI
(UG/G | RE R | RCURY
ECOV.
BOT-
I MA-
ERIAL
JG/G
S HG)
(0.10 | FM E
TOM
TER
(UC | COV.
BOT-
MA-
RIAL | ZINC,
RECOV.
FM BOT-
IOM MA-
TERIAL
(UG/G
AS ZN)
110 | |--|--|---------------------------------------|---|---|-----------------------------------|---|--|--------------------------------------|--|---|---|---|---|---|--|--------------------------------|---|---| | DATE JUL 1987 21 JUN 1988 28 | AROC:
122
IN
BOTTY
MA'
(UG/) | OM
T.
KG) | AROCLI
124
PCB
BOT.M
(UG/K | B 1:
PC
AT BOT
G) (UG | CLOR
254
CB
.MAT
/KG) | AROCLOF
1260
PCB
BOT.MAT
(UG/KG) | IN B
TOM | AL
OT-
MA-
IAL
KG) | ALPHA
BHC
TOTAL
IN BOT-
TOM MA
TERIAL
(UG/KG | TOM
TEI
(UG) | NE,
FAL
BOT-
MA-
RIAL
/KG) | BETA
BENZEN
HEXA-
CHLOR
IDE
BOT.MA
(UG/KG | E D. TO TO TO (U) | HLOR-
ANE,
OTAL
BOT-
M MA-
ERIAL
G/KG) | CHLOF
PYRIE
IN BC
MAT.
(UG/F | FOS
OT. | DELT. BENZE HEXA CHLO. IDE BOT.M. (UG/K | NE
-
R- | | DATE
JUL 1987
21
JUN 1988
28 | DI
AZING
TOT:
IN B
TOM:
TER
(UG/ | ON,
AL
OT-
MA-
IAL
KG) | DI-
ELDRI
TOTA
IN BO
TOM M
TERI
(UG/K | L ENI
T- SULI
A- ALI
AL BOT
G) (UG | PHA
.MAT
/KG) | ENDO-
SULFAN
BETA
BOT.MAT
(UG/KG) | | FAN
ATE
MAT
KG) | ENDRIN
TOTAL
IN BOT
TOM MA
TERIAL
(UG/KG | ENDI
- ALI
- HY
L BOT | DE-
YDE
.MAT
/KG) | ETHION
TOTAL
IN BOT
TOM MA
TERIA
(UG/KG | . CI
- IN
- TO
L TI | EPTA-
HLOR,
OTAL
BOT-
M MA-
ERIAL
G/KG) | HEPTICHLC EPOXITOT. BOTTIMATI (UG/F | OR
IDE
IN
IOM
I'L. | MALA THIOI TOTA IN BO' TOM M. TERI (UG/K) | N,
L
Γ-
A-
AL | | DATE JUL 1987 21 JUN 1988 28 | METTOXY CHLOTOT. BOTTOMAY (UG/ |
OR,
IN
TOM
TL.
KG) | MIRE
TOTA
IN BO
TOM M
TERI
(UG/K | X, Di
L TO'
I- IN I
A- TOM
AL TEI
G) (UG | , P' DD, FAL BOT- MA- RIAL /KG) | P,P' DDE, TOTAL, IN BOT- TOM MA- TERIAL (UG/KG) | TOM | T,
AL
OT-
MA-
IAL
KG) | PARA- THION TOTAL IN BOT TOM MA TERIA: (UG/KG | PHI
TOT
IN I
TOM
TEI
(UG, | BOT-
MA-
RIAL
/KG) | BED
MAT.
FALL
DIAM.
% FINE
THAN
.004 M | S
D
R & | BED
MAT.
IEVE
IAM.
FINER
THAN
62 MM | BEI
MAT
SIEV
DIAN
% FIN
THA | r.
/e
1.
Ner
An | BED
MAT
SIEVI
DIAM
% FINI
THAI
2.00 1 | E
ER
N | ### 04214480 BUFFALO CREEK NEAR BLOSSOM, NY LOCATION.--Lat 42 50'41", long 78 58'00", Erie County, Hydrologic Unit 04120103, at bridge on Pound Road, 1.5 mi (2.4 km) upstream from bridge in Blossom, and 2.3 mi (3.7 km) downstream from bridge on Bowen Road in Elma. DRAINAGE AREA. -- 135 mi2. PERIOD OF RECORD.--April to December 1987. CHEMICAL DATA: 1987 (c), 1988 (a). MINOR ELEMENT DATA: 1987 (c), 1988 (a). PESTICIDE DATA: 1987 (c), 1988 (a). NUTRIENT DATA: 1987 (c), 1988 (a). SEDIMENT DATA: 1987 (b), 1988 (a). REMARKS.--Water-discharge data based on records from stream-flow gage 04214500 Buff. Creek at Gardenville. Sampling site move to 04214500 Buff. Creek at Gardenville in 1988. | DATE | TIME | DIS-
CHARGE,
IN
CUBIC
FEET
PER
SECOND | SPE-
CIFIC
CON-
DUCT-
ANCE
LAB
(US/CM) | PH WATER WHOLE FIELD (STAND- ARD UNITS) | TEMPER-
ATURE
WATER
(DEG C) | TUR-
BID-
ITY
(NTU) | OXYGEN,
DIS-
SOLVED
(MG/L) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | |-----------|------|---|--|---|--------------------------------------|------------------------------|-------------------------------------|---|--|--|--|--| | APR 1987 | | | | | | | | | | | | | | 15 | 1500 | 157 | | 9.0 | 15.5 | 2.0 | 17.1 | 150 | 47 | 9.0 | | 188 | | 29 | 1030 | 327 | | 8.1 | 7.0 | 13 | 12.4 | 130 | 41 | 7.6 | | 164 | | MAY | | | | | | | | | | | | | | 20 | 1830 | 44 | 445 | 8.4 | 20.0 | 1.0 | | 200 | 58 | 13 | | 260 | | JUN | | | | | | | | | | | | | | 24 | 1010 | 172 | | 8.2 | 20.0 | 20 | | 150 | 48 | 8.2 | | 216 | | JUL | | | | | | | | | | | | | | 21 | 1600 | 76 | | 8.6 | 32.0 | 18 | 8.6 | 110 | 35 | 6.6 | | 168 | | SEP | 1045 | | 407 | 0.6 | 22.0 | | | | | | 0.00 | 220 | | 29
NOV | 1045 | 64 | 407 | 8.6 | 22.0 | 1.6 | | | | | 0.20 | 228 | | 18 | 1300 | 357 | | 8.0 | 7.0 | 35 | 16.0 | 130 | 39 | 7.7 | | 184 | | DEC | 1300 | 331 | | 0.0 | 7.0 | 23 | 10.0 | 130 | 33 | ,., | | 104 | | 09 | 1115 | 530 | | 8.0 | 5.5 | 36 | 12.4 | | | | | 228 | | DATE | SOLIDS,
RESIDUE
AT 105
DEG. C,
TOTAL
(MG/L) | SOLIDS,
VOLA-
TILE ON
IGNI-
TION,
TOTAL
(MG/L) | RESIDUE
TOTAL
FIXED
(MG/L) | NITRO-
GEN,
NITRATE
TOTAL
(MG/L
AS N) | NITRO-
GEN,
NITRITE
TOTAL
(MG/L
AS N) | NITRO-
GEN,
NO2+NO3
TOTAL
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS NH4) | NITRO-
GEN,
ORGANIC
TOTAL
(MG/L
AS N) | NITRO-
GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | NITRO-
GEN,
TOTAL
(MG/L
AS N) | |----------|--|--|-------------------------------------|--|--|--|--|--|--|---|---| | APR 1987 | | | | | | | | | | | | | 15 | 202 | 22 | 180 | 0.890 | 0.00 | 0.890 | 0.010 | 0.01 | 0.17 | 0.18 | 1.1 | | 29 | 204 | 34 | 170 | | ND | 0.620 | 0.020 | 0.03 | 0.18 | 0.20 | 0.82 | | MAY | | | | | | | | | | | | | 20 | 308 | 100 | 208 | 0.550 | 0.00 | 0.550 | 0.020 | 0.03 | 0.08 | 0.10 | 0.65 | | JUN | | | | | | | | | | | | | 24 | 300 | 112 | 188 | 2.60 | 0.020 | 2.62 | 0.050 | 0.06 | 0.22 | 0.27 | 2.9 | | JUL | | | | | | | | | | | | | 21 | 192 | 16 | 176 | | | 0.610 | 0.030 | 0.04 | 0.43 | 0.46 | 1.1 | | SEP | | | | | | | | | | | | | 29 | 264 | 100 | 164 | | ND | 0.050 | 0.030 | 0.04 | 0.30 | 0.33 | 0.38 | | NOV | | | | | | | | | | | | | 18 | 252 | 76 | 176 | 0.440 | 0.00 | 0.440 | 0.040 | 0.05 | 0.30 | 0.34 | 0.78 | | DEC | | | | | | | | | | | | | 09 | 264 | 144 | 120 | | | | | | | | | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). ## 04214480 BUFFALO CREEK NEAR BLOSSOM, NY - continued | DATE | NITRO-
GEN,
TOTAL
(MG/L
AS NO3) | PHOS-
PHORUS
TOTAL
(MG/L
AS P) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P) | PHOS-
PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4) | CADMIUM
TOTAL
RECOV-
ERABLE
(UG/L
AS CD) | CADMIUM
DIS-
SOLVED
(UG/L
AS CD) | COPPER,
TOTAL
RECOV-
ERABLE
(UG/L
AS CU) | COPPER,
DIS-
SOLVED
(UG/L
AS CU) | IRON,
TOTAL
RECOV-
ERABLE
(UG/L
AS FE) | LEAD,
TOTAL
RECOV-
ERABLE
(UG/L
AS PB) | LEAD,
DIS-
SOLVED
(UG/L
AS PB) | |------------------|---|---|---|---|---|--|---|---|---|--|---| | APR 1987 | | | | | | | | | | | | | 15
29 | 4.7
3.6 | 0.010
0.030 | ND
ND | | <10
<10 | | <10
<10 | | 120
560 | <100
<5 | | | MAY
20
JUN | 2.9 | 0.010 | ND | | <10 | <1.0 | <10 | 4 | 80 | <5 | <5 | | 24
JUL | 13 | 0.080 | 0.00 | 0.0 | <10 | | <10 | | 630 | <5 | | | 21
SEP | 4.7 | 0.040 | 0.00 | 0.0 | <10 | | 30 | | 1000 | <5 | | | 29
NOV | 1.7 | 0.010 | ND | | <10 | | <10 | | 120 | <100 | | | 18
DEC | 3.5 | 0.120 | 0.00 | 0.0 | 1 | | 9 | | 2000 | < 5 | | | 09 | | | | | <1 | | 8 | | 2300 | <5 | | | DATE | MANGA-
NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | MERCURY
TOTAL
RECOV-
ERABLE
(UG/L
AS HG) | NICKEL,
TOTAL
RECOV-
ERABLE
(UG/L
AS NI) | NICKEL,
DIS-
SOLVED
(UG/L
AS NI) | ZINC,
TOTAL
RECOV-
ERABLE
(UG/L
AS ZN) | ZINC,
DIS-
SOLVED
(UG/L
AS ZN) | BROMO-
FORM
TOTAL
(UG/L) | CARBON-
TETRA-
CHLO-
RIDE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
DI-
BROMO-
METHANE
TOTAL
(UG/L) | CHLORO-
ETHANE
TOTAL
(UG/L) | | APR 1987
15 | 10 | <0.10 | <100 | | <10 | | ND | ND | ND | ND | ND | | 29
May | 30 | 0.10 | 2 | | <10 | | ND | ND | ND | ND | ND | | 20
Jun | <10 | <0.10 | <1 | 5 | 10 | <10 | ND | ИD | ND | ND | ND | | 24
JUL | 50 | <0.10 | <1 | | 10 | | ИD | ND | ИD | ND | ND | | 21
SEP | 40 | 0.20 | 3 | | 20 | | ND | ND | ND | ND | ИD | | 29
NOV | 10 | <0.10 | <100 | | <10 | | ИD | ND | ND | ND | ND | | 18
DEC | 70 | | 3 | | 20 | | ИD | ИD | ND | ND | ND | | 09 | 60 | <0.10 | 2 | | 20 | | ND | ND | ND | ND | ND | | DATE | CHLORO-
FORM
TOTAL | CIS
1,3-DI-
CHLORO-
PROPENE
TOTAL | DI-
CHLORO-
BROMO-
METHANE
TOTAL | METHYL-
BROMIDE
TOTAL | METHYL-
CHLO-
RIDE
TOTAL | METHYL-
ENE
CHLO-
RIDE
TOTAL | 1,1,1-
TRI-
CHLORO-
ETHANE
TOTAL | 1,1-DI-
CHLORO-
ETHANE
TOTAL | 1,1-DI-
CHLORO-
ETHYL-
ENE
TOTAL | 1,1,2-
TRI-
CHLORO-
ETHANE
TOTAL | 1,1,2,2
TETRA-
CHLORO-
ETHANE
TOTAL | | | (UG/L) | APR 1987
15 | ND | 29
MAY | ND | 20
JUN | ND ИD | ND | | 24
JUL | ND | 21
SEP | ND | 29
NOV | ND | ИD | ND | ND | ND | ND | ND | ИD | ND | ND | ND | | 18
DEC | ND | 09 | ND Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). ## 04214480 BUFFALO CREEK NEAR BLOSSOM, NY - continued # WATER-QUALITY DATA (continued) | DATE | 1,2-DI-
CHLORO-
BENZENE
TOTAL
(UG/L) | 1,2-DI-
CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L) | 1,2-DI-
CHLORO-
PROPANE
TOTAL
(UG/L) | 1,2-
TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L) | 1,3-DI-
CHLORO-
BENZENE
TOTAL
(UG/L) | 1,4-DI-
CHLORO-
BENZENE
TOTAL
(UG/L) | TETRA-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | TRANS-
1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | TRI-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 2-
CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L) | VINYL
CHLO-
RIDE
TOTAL
(UG/L) | |-----------|--
---|--|---|--|--|---|--|---|---|---| | APR 1987 | | | | | | | | | | | | | 15 | ND | 29 | ND | MAY | | | | | | | | | | | | | 20 | ND | JUN | | | | | | | | | | | | | 24 | ND | JUL | | | | | | | | | | | | | 21 | ND | SEP
29 | ND | MD | MD | ND. | ND | ND. | ND. | MD | | 110 | ND | | NOV | ND | ND | ND | ND | עא | ND | ND | ND | ND | ND | ND | | 18 | ND | DEC | | | | | | 1.0 | 1.0 | | ND | 1.0 | | | 09 | ND ### SUSPENDED SEDIMENT DISCHARGE | DATE | TIME | DIS-
CHARGE,
IN
CUBIC
FEET
PER
SECOND | SEDI ~
MENT,
SUS-
PENDED
(MG/L) | SEDI-
MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY) | |------------|------|---|---|--| | APR 1987 | | | | | | 15 | 1500 | 157 | 8 | 3.4 | | 29 | 1030 | 327 | 21 | 19 | | JUN | | | | | | 24 | 1010 | 172 | 35 | 16 | | DEC | | | | | | 0 9 | 1115 | 530 | 63 | 90 | | | | | | | # BED MATERIAL ANALYSES | DATE | TIME | SOLIDS,
VOLA-
TILE IN
BOTTOM
MA-
TERIAL
(MG/KG) | CADMIUM
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS CD) | MIUM,
RECOV.
FM BOT- | | IRON,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS FE) | LEAD,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS PB) | MANGA-
NESE,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G) | |----------------|----------------------------------|---|--|---|---|--|--|---| | JUL 1987 | | | | | | | | | | 21 | 1600 | 66200 | 1 | 130 | 10 | 9900 | 20 | 620 | | DATE | MERC' REC' FM B TOM TER (UG AS | OV. REG
OT- FM I
MA- TOM
IAL TEI
/G (UG | COV. RE
BOT- FM
MA- TOM
RIAL TE
G/G (U | COV. M
BOT- F
MA- DI
RIAL % F
G/G T | AT. MA
ALL SIE
AM. DIA
INER % FI
HAN TE | EVE SIE
AM. DIA
INER % FI
HAN TH | AT. MA
EVE SIE
AM. DIA | T.
VE
M.
NER
AN | | JUL 1987
21 | <0 | .10 | 10 | 60 | 85 | 60 | 82 | 100 | ## 04214500 BUFFALO CREEK AT GARDENVILLE NY LOCATION.--Lat 42 51' 17", long 78 45'19", Erie County, Hydrologic Unit 04120103, on left bank 300 ft downstream from bridge on Union Road in Gardenville, 2 mi upstream from Cayuga Creek, and 10.1 mi upstream from mouth. DRAINAGE AREA .-- 142 mi2. PERIOD OF RECORD.--Water years 1988 to 1989. CHEMICAL DATA: 1988 (c), 1989 (a). MINOR ELEMENT DATA: 1988 (c) 1989 (a). SEDIMENT DATA: 1988 (b), 1989 (a). REMARKS.--Water-discharge data obtained from stream-flow gage at this site. | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM | SPE-
CIFIC
CON-
DUCT-
ANCE
LAB
(US/CM) | PH WATER WHOLE FIELD (STAND- ARD UNITS) | WATE | ME
PR
R- S
E (| MM I | S
YGEN, (
DIS-
OLVED S | OLVED NI
PER- TO
CENT (1
ATUR-) | ARD-
ESS
OTAL
MG/L
AS
ACO3) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG) | |----------------|----------------------------------|--|--|--|---|--------------------------------|--|--|---|---|--|--|--| | MAR 1988
21 | 1400 | 97 | 399 | 9 414 | | | | | | | 160 | 49 | 10 | | APR | | | | | | | _ | | | | | | | | 05 | 1025 | 380 | 298 | | | | | | | | 180 | 53 | | | 20
MAY | 1100 | 106 | 404 | 4 410 | 8.4 | , , | . 0 | | | | 180 | 53 | 11 | | 02 | 1015 | 149 | 344 | 4 353 | 8.6 | 11. | . 0 | | 11.8 | ~- | | | | | 18 | 1115 | 89 | 408 | | | | | | 10.4 | | 180 | 53 | 11 | | JUN | | | | | | | | | | | | | | | 28 | 1730 | 15 | 35: | 1 357 | 8.6 | 25 | . 0 | | 7.6 | | 140 | 33 | 13 | | SEP
06 | 1045 | 37 | 560 | 562 | 7.9 | 14 | 0 | | | | 220 | 63 | 16 | | OCT | 1043 | 37 | 201 | 3 362 | / | 14 | . 0 | | | | 220 | 03 | 10 | | 04
NOV | 1040 | 17 | 47 | 7 488 | 8.1 | . 14 | .0 | 763 | 10.2 | 99 | 210 | 60 | 15 | | 15 | 0950 | 125 | 399 | 9 411 | 8.2 | 5 | . 0 | 763 | 14.0 | 110 | 180 | 54 | 10 | | DATE | SODI
DIS
SOLV
(MG
AS | UM, S:
- D:
ED SOI
:/L (MG | IUM, LII
IS- I
LVED (I
G/L / | LAB DI
MG/L SC
AS (M | FATE RI
S-' DI
LVED SC
G/L (N | DE, I
S-
DLVED S
IG/L | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | AT 105
DEG. C, | SOLID
VOLA
TILE (
IGNI
TION
TOTA
(MG/) | -
ON
- RESI
, TOTA
L FIXE | | | MAR 1988 | | | | | | | | | | | | | | | 21 | 18 | | 1.7 12 | 3 | 4 3 | 3 | 0.10 | 244 | 223 | 266 | 1 | 68 | 198 | | APR
05 | _ | | 9 [,] | 7) | 7 1 | .8 | 0 10 | 200 | | 248 | | 36 | 212 | | 20 | 14 | | 1.6 14: | | | 13 | 0.10
0.10 | 224 | 219 | | | 56 | 192 | | MAY | 14 | | 1.0 14. | | | | 0.10 | 224 | 219 | 240 | | 30 | 192 | | 02 | _ | _ | 12 | 3 | | | | 204 | ~- | 208 | | 40 | 168 | | 18 | 15 | | 2.0 15: | | 7 2 | 23 | 0.30 | 228 | 222 | | | 92 | 184 | | JUN | | | | | | | | | | | | | | | 28 | 16 | | 2.6 99 | 9 3 | 9 2 | 16 | 0.30 | 226 | 189 | 243 | | 91 | 152 | | SEP
06 | 29 | | 2.6 14! | | 5 4 | 4 | 0 10 | 276 | 217 | 400 | | 96 | 304 | | oct | 29 | • | 2.6 14! | , , | 4 ر | . 4 | 0.10 | 376 | 317 | 400 | | 7 0 | 304 | | 04 | 20 | | 3.0 148 | 3 5 | 6 3 | 1 | 0.10 | 288 | 274 | 312 | • | 76 | 236 | | NOA | | | | | | | | | | | | | | | 15 | 16 | | 2.4 118 | 3 5 | 3 2 | 23 | 0.10 | 256 | 229 | 276 | ! | 92 | 184 | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). # 04214500 BUFFALO CREEK AT GARDENVILLE NY - continued | DATE | NITRO-
GEN,
NITRATE
TOTAL
(MG/L
AS N) | NITRO-
GEN,
NITRITE
TOTAL
(MG/L
AS N) | NITRO-
GEN,
NO2+NO3
TOTAL
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS NH4) | NITRO-
GEN,
ORGANIC
TOTAL
(MG/L
AS N) | NITRO-
GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | NITRO-
GEN,
TOTAL
(MG/L
AS N) | NITRO-
GEN,
TOTAL
(MG/L
AS NO3) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P) | PHOS-
PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4) | |------------------|--|---|---|--|---|--|---|---|---|---|---| | 21
APR | | | 1.01 | 0.060 | 0.08 | 0.26 | 0.32 | 1.3 | 5.9 | 0.00 | 0.0 | | 05
20
MAY | 0.670
0.850 | 0.00
0.00 | 0.670
0.850 | 0.050
0.010 | 0.06
0.01 | 0.41
0.12 | 0.46
0.13 | 1.1
0.98 | 5.0
4.3 | 0.00
ND | 0.0 | | 02
18
JUN | 0.390
0.480 | 0.00
0.00 | 0.390
0.480 | 0.00
0.020 | 0.0
0.03 | 0.21
0.52 | 0.21
0.54 | 0.60
1.0 | 2.7
4.5 | 0.00
0.00 | 0.0
0.0 | | 28 | | ND | ND | 0.010 | 0.01 | 0.28 | 0.29 | | | ND | | | SEP
06 | | ND | 0.080 | | | | 0.23 | 0.31 | 1.4 | ND | | | 04 | | ND | 0.070 | 0.010 | 0.01 | 0.25 | 0.26 | 0.33 | 1.5 | ND | | | NOV
15 | | ND | 0.310 | 0.020 | 0.03 | 0.31 | 0.33 | 0.64 | 2.8 | ND | | | DATE
MAR 1988 | ALUM-
INUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS AL) | ALUM-
INUM,
DIS-
SOLVED
(UG/L
AS AL) | CADMIUM
TOTAL
RECOV-
ERABLE
(UG/L
AS CD) | CADMIUM
DIS-
SOLVED
(UG/L
AS CD) | COPPER,
TOTAL
RECOV-
ERABLE
(UG/L
AS CU) | COPPER,
DIS-
SOLVED
(UG/L
AS CU) | IRON,
TOTAL
RECOV-
ERABLE
(UG/L
AS FE) | IRON,
DIS-
SOLVED
(UG/L
AS FE) | LEAD,
TOTAL
RECOV-
ERABLE
(UG/L
AS PB) | LEAD,
DIS-
SOLVED
(UG/L
AS PB) | MANGA-
NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | | 21 | 80 | <10 | <1 | <1.0 | 3 | 1 | 200 | 14 | < 5 | < 5 | 20 | | APR
05 | 960 | | <1 | | 10 | | 1800 | | <5 | | 50 | | 20
May | <10 | 10 | 2 | <1.0 | 2 | <1 | 140 | 26 | < 5 | <5 | <10 | |
02
18 | 70
20 |
<10 | 1
5 |
<1.0 | 5
9 | 4 | 180
140 |
19 | 5
< 5 |
< 5 | 20
10 | | JUN | | | | | | | | | | | | | 28
SEP | 90 | | <1 | | 4 | | 170 | | < 5 | | 40 | | 06
OCT | 30 | | <1 | | 3 | | 150 | | < 5 | | 20 | | 04
NOV | 60 | <10 | 2 | <1.0 | 6 | 1 | 140 | 13 | <5 | <5 | 10 | | 15 | 40 | | 1 | | 4 | | 180 | | < 5 | | 30 | | DATE | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN) | MERCURY
TOTAL
RECOV-
ERABLE
(UG/L
AS HG) | NICKEL,
TOTAL
RECOV-
ERABLE
(UG/L
AS NI) | NICKEL,
DIS~
SOLVED
(UG/L
AS NI) | ZINC,
TOTAL
RECOV-
ERABLE
(UG/L
AS ZN) | ZINC,
DIS-
SOLVED
(UG/L
AS ZN) | BROMO-
FORM
TOTAL
(UG/L) | CARBON-
TETRA-
CHLO-
RIDE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
DI-
BROMO-
METHANE
TOTAL
(UG/L) | CHLORO-
ETHANE
TOTAL
(UG/L) | | MAR 1988
21 | 19 | <0.10 | 6 | 3 | 80 | <3 | <0.3 | <0.1 | <0.30 | <0.1 | <0.4 | | APR 05 | | <0.10 | 6 | | | | 0 | | 0.0 | 0 | 0 | | 20
May | 12 | <0.10 | 6 | 2 | 20
<10 | 3 | <0.5 | 0
<0.5 | <0.50 | <0.5 | <0.5 | | 02
18 | 6 | <0.10
<0.10 | 5
5 | 4 | 20
<10 | 4 | 0
<0.5 | 0
<0.5 | 0.0
<0.50 | 0
<0.5 | 0
<0.5 | | JUN
28
SEP | | 1.7 | 8 | | 10 | | <0.5 | <0.5 | <0.50 | <0.5 | <0.5 | | 06 | | <0.10 | 3 | | <10 | | <0.3 | <0.1 | <0.30 | <0.1 | <0.4 | | OCT
04
NOV | 5 | <0.10 | 3 | 2 | <10 | 5 | <0.3 | <0.1 | <0.30 | <0.1 | <0.4 | | 15 | | <0.10 | 2 | | <10 | | <0.3 | <0.1 | <0.30 | <0.1 | <0.4 | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). # 04214500 BUFFALO CREEK AT GARDENVILLE NY - continued ## WATER-QUALITY DATA (continued) | DATE | CHLORO-
FORM
TOTAL
(UG/L) | CIS
1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | DI-
CHLORO-
BROMO-
METHANE
TOTAL
(UG/L) | METHYL-
BROMIDE
TOTAL
(UG/L) | METHYL-
CHLO-
RIDE
TOTAL
(UG/L) | METHYL-
ENE
CHLO-
RIDE
TOTAL
(UG/L) | 1,1,1-
TRI-
CHLORO-
ETHANE
TOTAL
(UG/L) | 1,1-DI-
CHLORO-
ETHANE
TOTAL
(UG/L) | 1,1-DI-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 1,1,2-
TRI-
CHLORO-
ETHANE
TOTAL
(UG/L) | 1,1,2,2
TETRA-
CHLORO-
ETHANE
TOTAL
(UG/L) | |--|--|---|--|---|---|--|--|---|--|--|--| | MAR 1988 | | | | | | | | | | | | | 21
APR | <0.1 | <0.3 | <0.2 | <1.2 | <0.2 | | <0.2 | <0.2 | <0.1 | <0.1 | <0.1 | | 05
20
MAY | 0
<0.5 | 02
18
JUN | 0
<0.5 0
< 0.5 | | 28
SEP | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | | 06 | <0.1 | <0.3 | <0.2 | <1.2 | <0.2 | <0.5 | <0.2 | <0.2 | <0.1 | <0.1 | <0.1 | | 04 | <0.1 | <0.3 | <0.2 | <1.2 | <0.2 | <0.5 | <0.2 | <0.2 | <0.1 | <0.1 | <0.1 | | NOV
15 | <0.1 | <0.3 | <0.2 | <1.2 | <0.2 | <0.5 | <0.2 | <0.2 | <0.1 | <0.1 | <0.1 | | | | | | | | | | | | | | | DATE | 1,2-DI-
CHLORO-
BENZENE
TOTAL
(UG/L) | 1,2-DI-
CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L) | 1,2-DI-
CHLORO-
PROPANE
TOTAL
(UG/L) | 1,2-
TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L) | 1,3-DI-
CHLORO-
BENZENE
TOTAL
(UG/L) | 1,4-DI-
CHLORO-
BENZENE
TOTAL
(UG/L) | TETRA-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | TRANS-
1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | TRI-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 2-
CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L) | VINYL
CHLO-
RIDE
TOTAL
(UG/L) | | MAR 1988 | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L) | CHLORO-
PROPANE
TOTAL
(UG/L) | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L) | CHLO-
RIDE
TOTAL
(UG/L) | | | CHLORO-
BENZENE
TOTAL | CHLORO-
ETHANE
WATER
WHOLE
TOTAL | CHLORO-
PROPANE
TOTAL | TRANSDI
CHLORO-
ETHENE
TOTAL | CHLORO-
BENZENE
TOTAL | CHLORO-
BENZENE
TOTAL | CHLORO-
ETHYL-
ENE
TOTAL | 1,3-DI-
CHLORO-
PROPENE
TOTAL | CHLORO-
ETHYL-
ENE
TOTAL | CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL | CHLO-
RIDE
TOTAL | | MAR 1988
21
APR
05 | CHLORO-
BENZENE
TOTAL
(UG/L)
<0.2 | CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L)
<0.300 | CHLORO-
PROPANE
TOTAL
(UG/L)
<0.2 | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
<0.3 | CHLORO-BENZENE TOTAL (UG/L) <0.4 | CHLORO-
BENZENE
TOTAL
(UG/L)
<0.3 | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
<0.2 | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
<0.1 | CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L)
<0.2 | CHLO-
RIDE
TOTAL
(UG/L)
<0.3 | | MAR 1988
21
APR | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L) | CHLORO-
PROPANE
TOTAL
(UG/L) | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L) | CHLO-
RIDE
TOTAL
(UG/L) | | MAR 1988
21
APR
05
20
MAY
02 | CHLORO-BENZENE TOTAL (UG/L) <0.2 0 <0.5 | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) <0.300 0.00 <0.500 0.00 | CHLORO-PROPANE TOTAL (UG/L) <0.2 0 <0.5 0 | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
<0.3
0
<0.5 | CHLORO-BENZENE TOTAL (UG/L) <0.4 0 <0.5 0 | CHLORO-BENZENE TOTAL (UG/L) <0.3 0 <0.5 | CHLORO-ETHYL-ENE TOTAL (UG/L) <0.2 0.0 <0.5 0.0 | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
<0.3
0
<0.5 | CHLORO-ETHYL-ENE TOTAL (UG/L) <0.1 0 <0.5 | CHLORO-ETHYL-
VINYL-
ETHER
TOTAL
(UG/L)
<0.2
0
<0.5 | CHLO-
RIDE
TOTAL
(UG/L)
<0.3
0
<0.5 | | MAR 1988
21
APR
05
20 | CHLORO-BENZENE TOTAL (UG/L) <0.2 0 <0.5 | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) <0.300 0.00 <0.500 | CHLORO-PROPANE TOTAL (UG/L) <0.2 0 <0.5 | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
<0.3 | CHLORO-BENZENE TOTAL (UG/L) | CHLORO-BENZENE TOTAL (UG/L) | CHLORO-ETHYL-ENE TOTAL (UG/L) <0.2 0.0 <0.5 | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
<0.3 | CHLORO-ETHYL-ENE TOTAL (UG/L) <0.1 0 <0.5 | CHLORO-ETHYL-
VINYL-
ETHER
TOTAL
(UG/L)
<0.2
0
<0.5 | CHLO-
RIDE
TOTAL
(UG/L)
<0.3
0
<0.5 | | MAR 1988
21
APR
05
20
MAY
02
18
JUN
28 | CHLORO-BENZENE TOTAL (UG/L) <0.2 0 <0.5 | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) <0.300 0.00 <0.500 0.00 | CHLORO-PROPANE TOTAL (UG/L) <0.2 0 <0.5 0 | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
<0.3
0
<0.5 | CHLORO-BENZENE TOTAL (UG/L) <0.4 0 <0.5 0 | CHLORO-BENZENE TOTAL (UG/L) <0.3 0 <0.5 | CHLORO-ETHYL-ENE TOTAL (UG/L) <0.2 0.0 <0.5 0.0 | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
<0.3
0
<0.5 | CHLORO-ETHYL-ENE TOTAL (UG/L) <0.1 0 <0.5 | CHLORO-ETHYL-
VINYL-
ETHER
TOTAL
(UG/L)
<0.2
0
<0.5 | CHLO-
RIDE
TOTAL
(UG/L)
<0.3
0
<0.5 | | MAR 1988 21 APR 05 20 MAY 02 18 JUN 28 SEP 06 | CHLORO-BENZENE TOTAL (UG/L) <0.2 0 <0.5 0 <0.5 | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) <0.300 0.00 <0.500 0.00 <0.500 | CHLORO-PROPANE TOTAL (UG/L) <0.2 0 <0.5 0 <0.5 | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
<0.3
0
<0.5 | CHLORO-BENZENE TOTAL (UG/L) <0.4 0 <0.5 0 <0.5 | CHLORO-BENZENE TOTAL (UG/L) <0.3 0 <0.5 | CHLORO-ETHYL-ENE TOTAL (UG/L) <0.2 0.0 <0.5 0.0 <0.5 | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
<0.3
0
<0.5 | CHLORO-ETHYL-ENE TOTAL (UG/L) <0.1 0 <0.5 0 <0.5 | CHLORO-ETHYL-VINYL-ETHER TOTAL (UG/L) <0.2 0 <0.5 0 <0.5 | CHLO-
RIDE
TOTAL
(UG/L)
<0.3
0
<0.5 | | MAR 1988
21
APR
05
20
MAY
02
18
JUN
28
SEP | CHLORO-BENZENE TOTAL (UG/L) <0.2 0 <0.5 0 <0.5 <0.5 | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) <0.300 0.00 <0.500 0.00 <0.500 <0.500 | CHLORO-PROPANE TOTAL (UG/L) <0.2 0 <0.5 0 <0.5 <0.5 | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
<0.3
0
<0.5
0
<0.5 | CHLORO-BENZENE TOTAL (UG/L) <0.4 0 <0.5 0 <0.5 <0.5 | CHLORO-BENZENE TOTAL (UG/L) <0.3 0 <0.5 0 <0.5 | CHLORO-ETHYL-ENE TOTAL (UG/L) <0.2 0.0 <0.5 0.0 <0.5 <0.5 | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) <0.3 0 <0.5 0 <0.5 <0.5 | CHLORO-ETHYL-ENE TOTAL (UG/L) <0.1 0 <0.5 0 <0.5 <0.5 | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) <0.2 0 <0.5 0 <0.5 | CHLO-
RIDE
TOTAL
(UG/L)
<0.3
0
<0.5
0
<0.5 | # SUSPENDED SEDIMENT DISCHARGE | | | DIS- | | SEDI- | |----------|------|---------|--------|---------| | | | CHARGE, | | MENT, | | | | INST. | SEDI- | DIS- | | | | CUBIC | MENT, | CHARGE, | | | | FEET
| SUS- | sus- | | DATE | TIME | PER | PENDED | PENDED | | | | SECOND | (MG/L) | (T/DAY) | | MAY 1988 | | | | | | 18 | 1115 | 89 | 4 | 0.96 | | JUN | | | | | | 28 | 1730 | 15 | 5 | 0.20 | | SEP | | | | | | 06 | 1045 | 37 | 5 | 0.50 | | OCT | | | | | | 04 | 1040 | 17 | 6 | 0.28 | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). # 04214500 BUFFALO CREEK AT GARDENVILLE NY - continued ## BED MATERIAL ANALYSES | DATE | TIME | SOLIDS,
VOLA-
TILE IN
BOTTOM
MA-
TERIAL
(MG/KG) | ALUM-
INUM,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G) | CADMIUM
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS CD) | COPPER,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS CU) | IRON,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS FE) | LEAD,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS PB) | MANGA-
NESE,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G) | MERCURY
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS HG) | NICKEL,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS NI) | |----------------|--|---|---|--|--|--|--|---|--|--| | JUN 1988
28 | 1730 | 31100 | 3100 | <1 | 10 | 7300 | <10 | 240 | <0.10 | 10 | | | | | | | | | | | | | | DATE | ZINC,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS ZN) | AROCLOR
1221
IN
BOTTOM
MAT.
(UG/KG) | AROCLOR
1248
PCB
BOT.MAT
(UG/KG) | AROCLOR
1254
PCB
BOT.MAT
(UG/KG) | AROCLOR
1260
PCB
BOT.MAT
(UG/KG) | ALDRIN,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | ALPHA
BHC
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | ATRA-
ZINE,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | BETA
BENZENE
HEXA-
CHLOR-
IDE
BOT.MAT
(UG/KG) | CHLOR-
DANE,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | | JUN 1988
28 | 50 | ND | DATE | CHLOR-
PYRIFOS
IN BOT.
MAT.
(UG/KG) | DELTA
BENZENE
HEXA-
CHLOR-
IDE
BOT.MAT
(UG/KG) | DI-
AZINON,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | DI-
ELDRIN,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | ENDO-
SULFAN
ALPHA
BOT.MAT
(UG/KG) | ENDO-
SULFAN
BETA
BOT.MAT
(UG/KG) | ENDO-
SULFAN
SULFATE
BOT.MAT
(UG/KG) | ENDRIN,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | ENDRIN
ALDE-
HYDE
BOT.MAT
(UG/KG) | ETHION,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | | JUN 1988
28 | ND | DATE | HEPTA-
CHLOR,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | HEPTA-
CHLOR
EPOXIDE
TOT. IN
BOTTOM
MATL.
(UG/KG) | MALA-
THION,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | METH-
OXY-
CHLOR,
TOT. IN
BOTTOM
MATL.
(UG/KG) | MIREX,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | P, P'DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) | P, P' DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) | P, P' DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) | PARA-
THION,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | TOXA-
PHENE,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | | JUN 1988
28 | ND MD | | ∠8 | ND ## 04214740 CAYUGA CREEK NEAR ALDEN, NY LOCATION. -- Lat 42 52'48, long 78 31'19", Erie County, Hydrologic Unit 04120104, at bridge on Three Rod Road, 1,8 mi southwest of DRAINAGE AREA. -- 55.1 mi2. PERIOD OF RECORD.--April to December 1987 (discontinued). CHEMICAL DATA: 1987 (c), 1988 (a). MINOR ELEMENT DATA: 1987 (c), 1988 (a). PESTICIDE DATA: 1987 (c), 1988 (a). NUTRIENT DATA: 1987 (c), 1988 (a). SEDIMENT DATA: 1987 (b), 1988 (a). REMARKS.--Water-discharge data based on records from stream-flow gage 04215000 Cayuga Creek near Lancaster. Sampling Site moved 0445000 Cayuga Creek near Lancaster in 1988. | DATE | TIME | DIS-
CHARGE,
IN
CUBIC
FEET
PER
SECOND | SPE-
CIFIC
CON-
DUCT-
ANCE
LAB
(US/CM) | PH WATER WHOLE FIELD (STAND- ARD UNITS) | TEMPER-
ATURE
WATER
(DEG C) | TUR-
BID-
ITY
(NTU) | OXYGEN,
DIS-
SOLVED
(MG/L) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | |--|--|--|--|--|---|---|--|--|--|---|--|--| | APR 1987 | | | | | | | | | | | | | | 15 | 1400 | 74 | | 8.7 | 14.5 | 1.0 | 14.8 | 120 | 37 | 6.7 | | 152 | | 29
MAY | 1130 | 179 | | 8.2 | 6.0 | 7.3 | 11.6 | 82 | 25 | 4.7 | | 134 | | 20
JUN | 1200 | 13 | 416 | 8.3 | 16.0 | 1.0 | | 180 | 55 | 9.7 | | 240 | | 24
JUL | 1100 | 90 | | 8.1 | 18.0 | 5.0 | | 130 | 40 | 7.0 | | 184 | | 21
SEP | 1730 | 71 | | 8.2 | 29.5 | 7.1 | 7.4 | 120 | 37 | 6.3 | | 176 | | 29
NOV | 1140 | 14 | 362 | 8.4 | 22.0 | 1.7 | | | | | 0.30 | 204 | | 18 | 1430 | 100 | | 8.1 | 7.0 | 13 | 16.3 | 120 | 37 | 6.9 | | 164 | | 09 | 1215 | 183 | | 8.2 | 6.0 | 8.5 | 11.2 | | | | | 180 | | | | | | | | | | | | | | | | DATE | SOLIDS,
RESIDUE
AT 105
DEG. C,
TOTAL
(MG/L) | SOLIDS,
VOLA-
TILE ON
IGNI-
TION,
TOTAL
(MG/L) | RESIDUE
TOTAL
FIXED
(MG/L) | NITRO-
GEN,
NITRATE
TOTAL
(MG/L
AS N) | NITRO-
GEN,
NITRITE
TOTAL
(MG/L
AS N) | NITRO-
GEN,
NO2+NO3
TOTAL
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS NH4) | NITRO-
GEN,
ORGANIC
TOTAL
(MG/L
AS N) | NITRO-
GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | NITRO-
GEN,
TOTAL
(MG/L
AS N) | NITRO-
GEN,
TOTAL
(MG/L
AS NO3) | | APR 1987 | RESIDUE
AT 105
DEG. C,
TOTAL
(MG/L) | VOLA-
TILE ON
IGNI-
TION,
TOTAL
(MG/L) | TOTAL
FIXED
(MG/L) | GEN,
NITRATE
TOTAL
(MG/L
AS N) | GEN,
NITRITE
TOTAL
(MG/L
AS N) | GEN,
NO2+NO3
TOTAL
(MG/L
AS N) | GEN,
AMMONIA
TOTAL
(MG/L
AS N) | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4) | GEN,
ORGANIC
TOTAL
(MG/L
AS N) | GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | GEN,
TOTAL
(MG/L
AS N) | GEN,
TOTAL
(MG/L
AS NO3) | | APR 1987
15
29 | RESIDUE
AT 105
DEG. C,
TOTAL
(MG/L) | VOLA-
TILE ON
IGNI-
TION,
TOTAL | TOTAL
FIXED | GEN,
NITRATE
TOTAL
(MG/L | GEN,
NITRITE
TOTAL
(MG/L | GEN,
NO2+NO3
TOTAL
(MG/L | GEN,
AMMONIA
TOTAL
(MG/L | GEN,
AMMONIA
TOTAL
(MG/L | GEN,
ORGANIC
TOTAL
(MG/L | GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L | GEN,
TOTAL
(MG/L | GEN,
TOTAL
(MG/L | | APR 1987
15
29
MAY
20 | RESIDUE
AT 105
DEG. C,
TOTAL
(MG/L) | VOLA-
TILE ON
IGNI-
TION,
TOTAL
(MG/L) | TOTAL
FIXED
(MG/L) | GEN,
NITRATE
TOTAL
(MG/L
AS N) | GEN,
NITRITE
TOTAL
(MG/L
AS N) | GEN,
NO2+NO3
TOTAL
(MG/L
AS N) | GEN,
AMMONIA
TOTAL
(MG/L
AS N) | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4) | GEN,
ORGANIC
TOTAL
(MG/L
AS N) | GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | GEN,
TOTAL
(MG/L
AS N) | GEN,
TOTAL
(MG/L
AS NO3) | | APR 1987
15
29
MAY
20
JUN
24 | RESIDUE
AT 105
DEG. C,
TOTAL
(MG/L)
170
140 | VOLA-
TILE ON
IGNI-
TION,
TOTAL
(MG/L) | TOTAL
FIXED
(MG/L)
144
108 | GEN,
NITRATE
TOTAL
(MG/L
AS N) | GEN,
NITRITE
TOTAL
(MG/L
AS N)
0.00
ND | GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
0.660
0.380 | GEN,
AMMONIA
TOTAL
(MG/L
AS N)
0.010
0.020 | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4)
0.01 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.23
0.20 | GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | GEN,
TOTAL
(MG/L
AS N)
0.90
0.60 | GEN,
TOTAL
(MG/L
AS NO3)
4.0
2.7 | | APR 1987 15 29 MAY 20 JUN 24 JUL 21 | RESIDUE
AT 105
DEG. C,
TOTAL
(MG/L)
170
140
248 | VOLA- TILE ON IGNI- TION, TOTAL (MG/L) 26 32 | TOTAL
FIXED
(MG/L)
144
108 | GEN, NITRATE TOTAL (MG/L AS N) 0.660 0.430 | GEN,
NITRITE
TOTAL
(MG/L
AS N)
0.00
ND | GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
0.660
0.380 | GEN,
AMMONIA
TOTAL
(MG/L
AS N)
0.010
0.020 |
GEN,
AMMONIA
TOTAL
(MG/L
AS NH4)
0.01
0.03 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.23
0.20 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.24 0.22 | GEN,
TOTAL
(MG/L
AS N)
0.90
0.60 | GEN,
TOTAL
(MG/L
AS NO3)
4.0
2.7 | | APR 1987 15 29 MAY 20 JUN 24 JUL 21 SEP 29 | RESIDUE
AT 105
DEG. C,
TOTAL
(MG/L)
170
140
248
228 | VOLA-
TILE ON
IGNI-
TION,
TOTAL
(MG/L)
26
32
100 | TOTAL
FIXED
(MG/L)
144
108
148 | GEN,
NITRATE
TOTAL
(MG/L
AS N)
0.660

0.430
2.71 | GEN,
NITRITE
TOTAL
(MG/L
AS N)
0.00
ND
0.00 | GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
0.660
0.380
0.430
2.72 | GEN,
AMMONIA
TOTAL
(MG/L
AS N)
0.010
0.020
0.020 | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4)
0.01
0.03
0.03 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.23
0.20
0.05 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.24 0.22 0.07 | GEN,
TOTAL
(MG/L
AS N)
0.90
0.60
0.50
3.0 | GEN,
TOTAL
(MG/L
AS NO3)
4.0
2.7
2.2 | | APR 1987 15 29 MAY 20 JUN 24 JUL 21 SEP | RESIDUE
AT 105
DEG. C,
TOTAL
(MG/L)
170
140
248
228
188 | VOLA- TILE ON IGNI- TION, TOTAL (MG/L) 26 32 100 92 8 | TOTAL
FIXED
(MG/L)
144
108
148
136 | GEN,
NITRATE
TOTAL
(MG/L
AS N)
0.660

0.430
2.71 | GEN,
NITRITE
TOTAL
(MG/L
AS N)
0.00
ND
0.00
0.010 | GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
0.660
0.380
0.430
2.72 | GEN,
AMMONIA
TOTAL
(MG/L
AS N)
0.010
0.020
0.020
0.020 | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4)
0.01
0.03
0.03
0.03 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.23
0.20
0.05
0.23 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.24 0.22 0.07 0.25 | GEN,
TOTAL
(MG/L
AS N)
0.90
0.60
0.50
3.0 | GEN,
TOTAL
(MG/L
AS NO3)
4.0
2.7
2.2
13 | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). # 04214740 CAYUGA CREEK NEAR ALDEN, NY - continued | | | | | WA | TEK-QUALIT | II DATA (| continued | , | | | | |------------------|--|---|---|---|---|---|--|---|--|--|---| | DATE | PHOS-
PHORUS
TOTAL
(MG/L
AS P) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P) | PHOS-
PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4) | CADMIUM
TOTAL
RECOV-
ERABLE
(UG/L
AS CD) | CADMIUM
DIS-
SOLVED
(UG/L
AS CD) | COPPER,
TOTAL
RECOV-
ERABLE
(UG/L
AS CU) | COPPER,
DIS-
SOLVED
(UG/L
AS CU) | IRON,
TOTAL
RECOV-
ERABLE
(UG/L
AS FE) | LEAD,
TOTAL
RECOV-
ERABLE
(UG/L
AS PB) | LEAD,
DIS-
SOLVED
(UG/L
AS PB) | MANGA-
NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | | APR 1987 | | | | | | | | | | | | | 15
29 | 0.010
0.030 | 0.00
0.00 | 0.0 | <10
<10 | | <10
<10 | | 80
380 | <100
11 | | <10
20 | | MAY
20
JUN | 0.00 | ND | | <10 | 1.0 | <10 | 2 | 90 | < 5 | < 5 | 20 | | 24
JUL | 0.030 | 0.00 | 0.0 | <10 | | <10 | | 340 | <100 | | <10 | | 21
SEP | 0.020 | 0.00 | 0.0 | <10 | | 20 | | 450 | < 5 | | 20 | | 29
NOV | 0.010 | 0.00 | 0.0 | <10 | | <10 | | 120 | <100 | | 10 | | 18
DEC | 0.050 | 0.00 | 0.0 | <1 | | 4 | | 750 | < 5 | | 20 | | 09 | | | | <1 | | 5 | | 510 | <5 | | 30 | | DATE | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN) | MERCURY
TOTAL
RECOV-
ERABLE
(UG/L
AS HG) | NICKEL,
TOTAL
RECOV-
ERABLE
(UG/L
AS NI) | NICKEL,
DIS-
SOLVED
(UG/L
AS NI) | ZINC,
TOTAL
RECOV-
ERABLE
(UG/L
AS ZN) | ZINC,
DIS-
SOLVED
(UG/L
AS ZN) | BROMO-
FORM
TOTAL
(UG/L) | CARBON-
TETRA-
CHLO-
RIDE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
DI-
BROMO-
METHANE
TOTAL
(UG/L) | CHLORO-
ETHANE
TOTAL
(UG/L) | | APR 1987 | | | | | | | | | | | | | 15 | | <0.10 | <100 | | <10 | | ND | ND | ND | ND | ND | | 29 | | 0.10 | <1 | | <10 | | ND | ND | ND | ND | ND | | MAY
20
JUN | | <0.10 | <1 | 2 | <10 | 10 | ND | ND | ND | ND | ND | | 24
JUL | | <0.10 | <100 | | 30 | | ND | ND | ND | ND | ND | | 21
SEP | | 0.20 | <1 | | 30 | | ND | ND | ND | ND | ND | | 29
NOV | 10 | <0.10 | <100 | | <10 | | ND | ND | ND | ND | ND | | 18
DEC | | | 3 | | 10 | | ND | ND | ND | ND | ND | | 09 | | <0.10 | <1 | | <10 | | ND | ND | ND | ND | ND | | DATE | CHLORO-
FORM
TOTAL
(UG/L) | CIS
1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | DI -
CHLORO-
BROMO-
METHANE
TOTAL
(UG/L) | METHYL-
BROMIDE
TOTAL
(UG/L) | METHYL-
CHLO-
RIDE
TOTAL
(UG/L) | METHYL-
ENE
CHLO-
RIDE
TOTAL
(UG/L) | 1,1,1-
TRI-
CHLORO-
ETHANE
TOTAL
(UG/L) | 1,1-DI-
CHLORO-
ETHANE
TOTAL
(UG/L) | 1,1-DI-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 1,1,2-
TRI-
CHLORO-
ETHANE
TOTAL
(UG/L) | 1,1,2,2
TETRA-
CHLORO-
ETHANE
TOTAL
(UG/L) | | APR 1987 | MD | ND | MP | ND | NP | MP | MP | MD | MP | ND | MO | | 15
29 | ND
ND | MAY
20 | ND N D | | JUN
24 | ND | JUL
21
SEP | ND | 29
NOV | ND | 18
DEC | ND | 09 | ND Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). ## 04214740 CAYUGA CREEK NEAR ALDEN, NY - continued ## WATER-QUALITY DATA (continued) | DATE | 1,2-DI-
CHLORO-
BENZENE
TOTAL
(UG/L) | 1,2-DI-
CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L) | 1,2-DI-
CHLORO-
PROPANE
TOTAL
(UG/L) | 1,2-
TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L) | 1,3-DI-
CHLORO-
BENZENE
TOTAL
(UG/L) | 1,4-DI-
CHLORO-
BENZENE
TOTAL
(UG/L) | TETRA-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | TRANS-
1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | TRI -
CHLORO-
ETHYL -
ENE
TOTAL
(UG/L) | 2-
CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L) | VINYL
CHLO-
RIDE
TOTAL
(UG/L) | |-----------|--|---|--|---|--|--|---|--|---|---|---| | APR 1987 | | | | | | | | | | | | | 15 | ND | 29 | ND | MAY | | | | | | | | | | | | | 20 | ND | JUN
24 | *** | 110 | MD | ND | N.D. | ND | ND | N. | ND | ND | ND | | JUL | ND | 21 | NĎ | ND | SEP | | | | | | | | | 110 | | | | 29 | ND | NOV | | | | | | | | | | | | | 18 | ND | DEC | | | | | | | | | | | | | 09 | ND # SUSPENDED SEDIMENT DISCHARGE | | | DIS- | | SEDI- | |----------|------|---------|--------|---------| | | | CHARGE, | | MENT, | | | | IN | SEDI- | DIS- | | | | CUBIC | MENT, | CHARGE, | | | | FEET | SUS- | sus- | | DATE | TIME | PER | PENDED | PENDED | | | | SECOND | (MG/L) | (T/DAY) | | APR 1987 | | | | | | 15 | 1400 | 74 | 6 | 1.2 | | 29 | 1130 | 179 | 9 | 4.3 | | JUN | | | | | | 24 | 1100 | 90 | 7 | 1.7 | | DEC | | | | | | 09 | 1215 | 183 | 17 | 8.4 | ## BED MATERIAL ANALYSES | DATE | TIME | SOLIDS,
VOLA-
TILE IN
BOTTOM
MA-
TERIAL
(MG/KG) | CADMIUM
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS CD) | CHRO-
MIUM,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G) | COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU) | IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE) | LEAD,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS PB) | MANGA-
NESE,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G) | |----------------|---|---|--|--|--|--|--|---| | JUL 1987
21 | 1730 | 31900 | <1 | 110 | 10 | 7400 | 20 | 330 | | DATE | MERCU
RECO
FM BO
TOM I
TER:
(UG, | OV. RECOT- FM EMA- TOMINAL TER | COV. REG
SOT- FM I
MA- TOM
RIAL TEI
G/G (UG | BOT- FA
MA- DIA
RIAL % FI
G/G TH | AT. MA
ALL SIE
AM. DIA
INER % FI | T. MA
VE SIE
M. DIA
NER % FI | T. MA
VE SIE
M. DIA
NER % FI
AN TH | T.
VE
M.
NER
AN | | JUL 1987
21 | <0 | .10 | 10 | 40 | 1 | 9 | 22 | 10 0 | ### 04215000 CAYUGA CREEK NEAR LANCASTER, NY LOCATION.--Lat 42 53'24", long 78 38'43", Erie County, Hydrologic Unit 04120103, on right bank 150 ft upstream fromlow dam in Como Lake Park, 700 ft downstream from bridge on Bowen Road, 800 ft downtream from
Little Buffalo Creek, 2 mi southeast of Lancaster, and 8.7 mi upstream from mouth. DRAINAGE AREA. -- 96.4 mi2. PERIOD OF RECORD: Water years 1988-89. CHEMICAL DATA: 1988 (c), 1989 (a). MINOR ELEMENT DATA: 1988 (c), 1989 (a). PESTICIDE DATA: 1988 (c), 1989 (a). ORGANIC DATA: PCB--1988 (a). NUTRIENT DATA: 1988 (c), 1989 (a). SEDIMENT DATA: 1988 (b), 1989 (a). REMARKS.--Water-discharge data obtained from stream-flow gage at this site. | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | SPE-
CIFIC
CON-
DUCT-
ANCE
LAB
(US/CM) | PH WATER WHOLE FIELD (STAND- ARD UNITS) | TEMPER-
ATURE
WATER
(DEG C) | TUR-
BID-
ITY
(NTU) | OXYGEN,
DIS-
SOLVED
(MG/L) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG) | |--|---|---|--|--|--|---|--|--|---|---|--|---| | MAR 1988 | | | | | | | | | | | | | | 23 | 0830 | 72 | | 382 | 7.8 | 1.0 | 3.4 | | | 160 | 50 | 8.9 | | APR
04 | 1040 | 1440 | | 221 | 7.9 | 11.0 | 160 | | | | | | | 19 | 1100 | 68 | | 374 | 7.1 | 6.0 | 1.6 | | | 160 | 50 | 9.0 | | MAY | | | | | | | | | | | | | | 05 | 1145 | 58 | | 361 | 8.2 | 14.0 | 2.5 | 12.2 | | 1.00 | | | | 17
JUN | 1015 | 84 | | 377 | 7.9 | 16.0 | 2.7 | 8.8 | | 160 | 50 | 9.2 | | 29
SEP | 1600 | 6.9 | 393 | 435 | 8.4 | 21.5 | 2.0 | 9.6 | | 180 | 54 | 12 | | 09 | 1000 | 5.0 | | 471 | 8.2 | 16.0 | | | | 190 | 56 | 13 | | ОСТ
05 | 1000 | 12 | | 460 | 8.1 | 12.0 | | 10.0 | 764 | 200 | 59 | 12 | | NOV | 1000 | 12 | | 400 | 0.1 | 12.0 | | 10.0 | ,,, | 200 | 33 | | | 16 | 0945 | 70 | | 404 | 7.8 | 7.0 | 2.1 | 11.6 | 759 | 170 | 53 | 9.3 | | | | | | | | | | | | | | | | DATE | SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K) | ALKA-
LINITY
LAB
(MG/L
AS
CACO3) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | SOLIDS,
RESIDUE
AT 105
DEG. C,
TOTAL
(MG/L) | SOLIDS,
VOLA-
TILE ON
IGNI-
TION,
TOTAL
(MG/L) | RESIDUE
TOTAL
FIXED
(MG/L) | NITRO-
GEN,
NITRATE
TOTAL
(MG/L
AS N) | | DATE
MAR 1988 | DIS-
SOLVED
(MG/L
AS NA) | SIUM,
DIS-
SOLVED
(MG/L | LINITY
LAB
(MG/L
AS | DIS-
SOLVED
(MG/L | RIDE,
DIS-
SOLVED
(MG/L | RIDE,
DIS-
SOLVED
(MG/L | RESIDUE
AT 180
DEG. C
DIS-
SOLVED | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED | RESIDUE
AT 105
DEG. C,
TOTAL | VOLA-
TILE ON
IGNI-
TION,
TOTAL | TOTAL
FIXED | GEN,
NITRATE
TOTAL
(MG/L | | MAR 1988
23 | DIS-
SOLVED
(MG/L
AS NA) | SIUM,
DIS-
SOLVED
(MG/L | LINITY
LAB
(MG/L
AS | DIS-
SOLVED
(MG/L | RIDE,
DIS-
SOLVED
(MG/L | RIDE,
DIS-
SOLVED
(MG/L | RESIDUE
AT 180
DEG. C
DIS-
SOLVED | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED | RESIDUE
AT 105
DEG. C,
TOTAL | VOLA-
TILE ON
IGNI-
TION,
TOTAL | TOTAL
FIXED | GEN,
NITRATE
TOTAL
(MG/L | | MAR 1988
23
APR | DIS-
SOLVED
(MG/L
AS NA) | SIUM,
DIS-
SOLVED
(MG/L
AS K) | LINITY LAB (MG/L AS CACO3) | DIS-
SOLVED
(MG/L
AS SO4) | RIDE,
DIS-
SOLVED
(MG/L
AS CL) | RIDE,
DIS-
SOLVED
(MG/L
AS F) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | RESIDUE
AT 105
DEG. C,
TOTAL
(MG/L) | VOLA-
TILE ON
IGNI-
TION,
TOTAL
(MG/L) | TOTAL
FIXED
(MG/L) | GEN,
NITRATE
TOTAL
(MG/L
AS N) | | MAR 1988
23
APR
04 | DIS-
SOLVED
(MG/L
AS NA) | SIUM,
DIS-
SOLVED
(MG/L
AS K) | LINITY LAB (MG/L AS CACO3) | DIS-
SOLVED
(MG/L
AS SO4) | RIDE,
DIS-
SOLVED
(MG/L
AS CL) | RIDE,
DIS-
SOLVED
(MG/L
AS F)
0.10 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
228 | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | RESIDUE
AT 105
DEG. C,
TOTAL
(MG/L)
230
532 | VOLA-
TILE ON
IGNI-
TION,
TOTAL
(MG/L) | TOTAL
FIXED
(MG/L)
172
484 | GEN, NITRATE TOTAL (MG/L AS N) 1.13 | | MAR 1988
23
APR | DIS-
SOLVED
(MG/L
AS NA) | SIUM,
DIS-
SOLVED
(MG/L
AS K) | LINITY LAB (MG/L AS CACO3) | DIS-
SOLVED
(MG/L
AS SO4) | RIDE,
DIS-
SOLVED
(MG/L
AS CL) | RIDE,
DIS-
SOLVED
(MG/L
AS F) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | RESIDUE
AT 105
DEG. C,
TOTAL
(MG/L) | VOLA-
TILE ON
IGNI-
TION,
TOTAL
(MG/L) | TOTAL
FIXED
(MG/L) | GEN,
NITRATE
TOTAL
(MG/L
AS N) | | MAR 1988
23
APR
04
19
MAY
05 | DIS-
SOLVED
(MG/L
AS NA) | SIUM,
DIS-
SOLVED
(MG/L
AS K) | LINITY
LAB
(MG/L
AS
CACO3)
123
72
126 | DIS-
SOLVED
(MG/L
AS SO4)
30
27
33 | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
26
12
23 | RIDE,
DIS-
SOLVED
(MG/L
AS F)
0.10
0.10 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
228
152
256
240 | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
204 | RESIDUE
AT 105
DEG. C,
TOTAL
(MG/L)
230
532
260
244 | VOLA-
TILE ON
IGNI-
TION,
TOTAL
(MG/L)
58
48
24 | TOTAL
FIXED
(MG/L)
172
484
236
192 | GEN,
NITRATE
TOTAL
(MG/L
AS N)
1.13
0.410 | | MAR 1988
23
APR
04
19
MAY
05
17 | DIS-
SOLVED
(MG/L
AS NA)
14 | SIUM,
DIS-
SOLVED
(MG/L
AS K) | LINITY
LAB
(MG/L
AS
CACO3)
123
72
126 | DIS-
SOLVED
(MG/L
AS SO4)
30
27
33 | RIDE,
DIS-
SOLVED
(MG/L
AS CL) | RIDE,
DIS-
SOLVED
(MG/L
AS F)
0.10
0.10 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
228
152
256 | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
204 | RESIDUE
AT 105
DEG. C,
TOTAL
(MG/L)
230
532
260 | VOLA- TILE ON IGNI- TION, TOTAL (MG/L) 58 48 24 | TOTAL
FIXED
(MG/L)
172
484
236 | GEN,
NITRATE
TOTAL
(MG/L
AS N)
1.13 | | MAR 1988
23
APR
04
19
MAY
05
17
JUN | DIS-
SOLVED
(MG/L
AS NA)
14

13 | SIUM,
DIS-
SOLVED
(MG/L
AS K)
1.7

1.5 | LINITY
LAB
(MG/L
AS
CACO3)
123
72
126
131 | DIS-
SOLVED
(MG/L
AS SO4)
30
27
33 | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
26
12
23 | RIDE,
DIS-
SOLVED
(MG/L
AS F)
0.10
0.10
0.30 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
228
152
256
240
244 | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
204

205 | RESIDUE
AT 105
DEG. C,
TOTAL
(MG/L)
230
532
260
244
256 | VOLA-
TILE ON
IGNI-
TION,
TOTAL
(MG/L)
58
48
24
52
92 | TOTAL
FIXED
(MG/L)
172
484
236
192 | GEN,
NITRATE
TOTAL
(MG/L
AS N)
1.13
0.410 | | MAR 1988
23
APR
04
19
MAY
05
17 | DIS-
SOLVED (MG/L
AS NA) 14 13 14 16 | SIUM,
DIS-
SOLVED
(MG/L
AS K) | LINITY
LAB
(MG/L
AS
CACO3)
123
72
126 | DIS-
SOLVED
(MG/L
AS SO4)
30
27
33 | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
26
12
23 | RIDE,
DIS-
SOLVED
(MG/L
AS F)
0.10
0.10 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
228
152
256
240 | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
204 | RESIDUE
AT 105
DEG. C,
TOTAL
(MG/L)
230
532
260
244
256
303 | VOLA- TILE ON IGNI- TION, TOTAL (MG/L) 58 48 24 52 92 | TOTAL
FIXED
(MG/L)
172
484
236
192
164 | GEN,
NITRATE
TOTAL
(MG/L
AS N)
1.13
0.410 | | MAR 1988 23 APR 04 19 MAY 05 17 JUN 29 SEP 09 OCT | DIS-
SOLVED
(MG/L
AS NA)
14

13 | SIUM,
DIS-
SOLVED
(MG/L
AS K)
1.7

1.5 | LINITY
LAB
(MG/L
AS
CACO3)
123
72
126
131 | DIS-
SOLVED
(MG/L
AS SO4)
30
27
33 | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
26
12
23 | RIDE,
DIS-
SOLVED
(MG/L
AS F)
0.10
0.10
0.30 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
228
152
256
240
244 | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
204

205 | RESIDUE
AT 105
DEG. C,
TOTAL
(MG/L)
230
532
260
244
256 | VOLA-
TILE
ON
IGNI-
TION,
TOTAL
(MG/L)
58
48
24
52
92 | TOTAL
FIXED
(MG/L)
172
484
236
192
164 | GEN,
NITRATE
TOTAL
(MG/L
AS N)
1.13
0.410 | | MAR 1988
23
APR
04
19
MAY
05
17
JUN
29
SEP
09 | DIS-
SOLVED (MG/L
AS NA) 14 13 14 16 | SIUM,
DIS-
SOLVED
(MG/L
AS K)
1.7

1.5 | LINITY
LAB
(MG/L
AS
CACO3)
123
72
126
131
135 | DIS-
SOLVED
(MG/L
AS SO4)
30
27
33

25 | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
26
12
23 | RIDE,
DIS-
SOLVED
(MG/L
AS F)
0.10
0.10
0.10 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
228
152
256
240
244 | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
204

205

202
235 | RESIDUE
AT 105
DEG. C,
TOTAL
(MG/L)
230
532
260
244
256
303 | VOLA- TILE ON IGNI- TION, TOTAL (MG/L) 58 48 24 52 92 | TOTAL
FIXED
(MG/L)
172
484
236
192
164
206 | GEN,
NITRATE
TOTAL
(MG/L
AS N)
1.13
0.410

0.420
0.170 | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). # 04215000 CAYUGA CREEK NEAR LANCASTER, NY - continued | | | | | "" | IBN QUABI | II DAIA (| concinaco | ., | | | | |------------------|--|---|---|--|---|---|---|---|---|---|---| | DATE | NITRO-
GEN,
NITRITE
TOTAL
(MG/L
AS N) | NITRO-
GEN,
NO2+NO3
TOTAL
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS NH4) | NITRO-
GEN,
ORGANIC
TOTAL
(MG/L
AS N) | NITRO-
GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | NITRO-
GEN,
TOTAL
(MG/L
AS N) | NITRO-
GEN,
TOTAL
(MG/L
AS NO3) | PHOS-
PHORUS
TOTAL
(MG/L
AS P) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P) | PHOS-
PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4) | | MAR 1988 | | | | | | | | | | | | | 23
APR | 0.00 | 1.13 | 0.010 | 0.01 | 0.28 | 0.29 | 1.4 | 6.3 | 0.010 | 0.00 | 0.0 | | 04 | 0.00 | 0.410 | 0.510 | 0.66 | 0.99 | 1.5 | 1.9 | 8.5 | 0.220 | 0.010 | 0.03 | | 19
May | ND | 0.830 | 0.010 | 0.01 | 0.17 | 0.18 | 1.0 | 4.5 | 0.00 | ND | | | 05
17 | ND
0.00 | 0.470
0.420 | 0.020
0.010 | 0.03
0.01 | 0.11
0.36 | 0.13
0.37 | 0.60
0.79 | 2.7
3.5 | 0.010
0.010 | 0.00
0.00 | 0.0 | | JUN
29 | 0.00 | 0.170 | 0.010 | 0.01 | 0.20 | 0.21 | 0.38 | 1.7 | 0.020 | ND | | | SEP
09 | ND | 0.100 | 0.010 | 0.01 | 0.29 | 0.30 | 0.40 | 1.8 | 0.010 | ND | | | OCT | | | | | | | | | | | | | 05
NOV | ND | 0.060 | 0.010 | 0.01 | 0.35 | 0.36 | 0.42 | 1.9 | 0.010 | ND | | | 16 | ND | 0.390 | 0.020 | 0.03 | 0.28 | 0.30 | 0.69 | 3.1 | 0.010 | 0.00 | 0.0 | | DATE | ALUM-
INUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS AL) | ALUM-
INUM,
DIS-
SOLVED
(UG/L
AS AL) | CADMIUM
TOTAL
RECOV-
ERABLE
(UG/L
AS CD) | CADMIUM
DIS-
SOLVED
(UG/L
AS CD) | COPPER,
TOTAL
RECOV-
ERABLE
(UG/L
AS CU) | COPPER,
DIS-
SOLVED
(UG/L
AS CU) | IRON,
TOTAL
RECOV-
ERABLE
(UG/L
AS FE) | IRON,
DIS-
SOLVED
(UG/L
AS FE) | LEAD,
TOTAL
RECOV-
ERABLE
(UG/L
AS PB) | LEAD,
DIS-
SOLVED
(UG/L
AS PB) | MANGA-
NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | | MAR 1988
23 | 120 | <10 | <1 | <1.0 | 2 | <1 | 340 | 16 | < 5 | < 5 | 20 | | APR | | | | | | | | | | | | | 04
19
MAY | 8900
10 | 10 | <1
<1 | <1.0 | 20
3 | 6 | 15000
140 | 35 | 10
<5 | < 5 | 360
20 | | 05 | 60 | | 1 | :, | 3 | | 210 | | <5
 | | 30 | | 17
JUN | 70 | <10 | 5 | <1.0 | 8 | 3 | 270 | 22 | <5 | < 5 | 20 | | 29
SEP | 90 | | <1 | | 4 | | 260 | | <5 | | 70 | | 09 | 60 | | <1 | | 3 | | 190 | | <5 | | 20 | | ОСТ
05 | 40 | <10 | <1 | <1.0 | 3 | 1 | 80 | 20 | <5 | < 5 | 10 | | NOA | | 710 | | 11.0 | | • | | 20 | | ~3 | | | 16 | 20 | | 1 | | 2 | | 210 | | <5 | | 30 | | DATE | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN) | MERCURY
TOTAL
RECOV-
ERABLE
(UG/L
AS HG) | NICKEL,
TOTAL
RECOV-
ERABLE
(UG/L
AS NI) | NICKEL,
DIS-
SOLVED
(UG/L
AS NI) | ZINC,
TOTAL
RECOV-
ERABLE
(UG/L
AS ZN) | ZINC,
DIS-
SOLVED
(UG/L
AS ZN) | BROMO-
FORM
TOTAL
(UG/L) | CARBON-
TETRA-
CHLO-
RIDE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
DI-
BROMO-
METHANE
TOTAL
(UG/L) | CHLORO-
ETHANE
TOTAL
(UG/L) | | MAR 1988
23 | 22 | <0.10 | 6 | <1 | <10 | <3 | ND | ND | ND | ND | ND | | APR | 22 | | | <1 | | <3 | | | | | | | 04
19
MAY | 17 | <0.10
<0.10 | 25
2 | 1 | 70
<10 | 8 | ND
ND | ND
ND | nd
nd | ND
ND | N D
N D | | 05
17
JUN | 10 | <0.10
<0.10 | 6
5 | 1 | <10
<10 |
<3 | 0
ND | 0
ND | 0.0
ND | 0
ND | 0
N D | | 29 | | 0.70 | 4 | | 10 | | ND | ND | ND | ND | ND | | SEP
09
⊙CT | | <0.10 | 2 | | <10 | | ND | ND | ND | ND | ND | | 05 | 13 | <0.10 | 3 | 1 | <10 | <3 | ND | ND | ND | ND | ND | | NOV
16 | | <0.10 | 2 | | <10 | | ND | ND | ND | ND | N D | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). # 04215000 CAYUGA CREEK NEAR LANCASTER, NY - continued ## WATER-QUALITY DATA (continued) | DATE | CHLORO-
FORM
TOTAL
(UG/L) | CIS
1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | DI-
CHLORO-
BROMO-
METHANE
TOTAL
(UG/L) | METHYL-
BROMIDE
TOTAL
(UG/L) | METHYL-
CHLO-
RIDE
TOTAL
(UG/L) | METHYL-
ENE
CHLO-
RIDE
TOTAL
(UG/L) | 1,1,1-
TRI-
CHLORO-
ETHANE
TOTAL
(UG/L) | 1,1-DI-
CHLORO-
ETHANE
TOTAL
(UG/L) | 1,1-DI-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 1,1,2-
TRI-
CHLORO-
ETHANE
TOTAL
(UG/L) | 1,1,2,2
TETRA-
CHLORO-
ETHANE
TOTAL
(UG/L) | |--|---|--|---|---|---|---|---|--|---|---|--| | MAR 1988 | | | | | | | | | | | | | 23 | ND | APR
04 | ND | 19 | ND | MAY
05 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 17 | ND | JUN
29 | ND | SEP | NO | ND | ND | ND | ND | ND | ND | NU | NU | ND | ND | | 09
OCT | ND | 05 | ND | NOV
16 | ND | | | | | | | | | *** | | | 16, | ND | | | 1,2-DI- | | | | | | | | 2- | | | DATE | 1,2-DI-
CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L) | 1,2-DI-
CHLORO-
PROPANE
TOTAL
(UG/L) | 1,2-
TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L) | 1,3-DI-
CHLORO-
BENZENE
TOTAL
(UG/L) | 1,4-DI-
CHLORO-
BENZENE
TOTAL
(UG/L) | TETRA-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | TRANS-
1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | TRI-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L) | VINYL
CHLO-
RIDE
TOTAL
(UG/L) | | MAR 1988 | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L) | CHLORO-
PROPANE
TOTAL
(UG/L) | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L) | CHLO-
RIDE
TOTAL
(UG/L) | | MAR 1988
23 | CHLORO-
BENZENE
TOTAL | CHLORO-
ETHANE
WATER
WHOLE
TOTAL | CHLORO-
PROPANE
TOTAL | TRANSDI
CHLORO-
ETHENE
TOTAL | CHLORO-
BENZENE
TOTAL | CHLORO-
BENZENE
TOTAL | CHLORO-
ETHYL-
ENE
TOTAL | 1,3-DI-
CHLORO-
PROPENE
TOTAL | CHLORO-
ETHYL-
ENE
TOTAL | CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL | CHLO-
RIDE
TOTAL | | MAR 1988 | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L) | CHLORO-
PROPANE
TOTAL
(UG/L) | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L) | CHLO-
RIDE
TOTAL
(UG/L) | | MAR
1988
23
APR
04
19 | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L) | CHLORO-
PROPANE
TOTAL
(UG/L) | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L) | CHLO-
RIDE
TOTAL
(UG/L) | | MAR 1988
23
APR
04 | CHLORO-
BENZENE
TOTAL
(UG/L)
ND | CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L) | CHLORO-
PROPANE
TOTAL
(UG/L)
ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND | CHLORO-
BENZENE
TOTAL
(UG/L)
ND | CHLORO-
BENZENE
TOTAL
(UG/L)
ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
0.3 | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND | CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L)
ND | CHLO-
RIDE
TOTAL
(UG/L)
ND | | MAR 1988
23
APR
04
19
MAY
05 | CHLORO-
BENZENE
TOTAL
(UG/L)
ND
ND
ND | CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L)
ND
ND | CHLORO-
PROPANE
TOTAL
(UG/L)
ND
ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND | CHLORO-
BENZENE
TOTAL
(UG/L)
ND
ND | CHLORO-
BENZENE
TOTAL
(UG/L)
ND
ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
0.3
0.3
ND | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
ND
ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND
ND | CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L)
ND
ND | CHLO-
RIDE
TOTAL
(UG/L)
ND
ND | | MAR 1988
23
APR
04
19
MAY
05
17
JUN
29 | CHLORO-
BENZENE
TOTAL
(UG/L)
ND
ND
ND
ND | CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L)
ND
ND
ND
ND | CHLORO-PROPANE TOTAL (UG/L) ND ND ND O | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND O | CHLORO-BENZENE TOTAL (UG/L) ND ND ND O | CHLORO-ETHYL-ENE TOTAL (UG/L) 0.3 0.3 ND 0.0 | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
ND
ND
ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND ND ND ND O | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND ND ND ND 0 | CHLO-
RIDE
TOTAL
(UG/L)
ND
ND
ND
ND | | MAR 1988
23
APR
04
19
MAY
05
17
JUN
29
SEP
09 | CHLORO-
BENZEME
TOTAL
(UG/L)
ND
ND
ND
ND | CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L)
ND
ND
ND
ND
ND | CHLORO-
PROPANE
TOTAL
(UG/L)
ND
ND
ND
ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND | CHLORO-ETHYL-ENE TOTAL (UG/L) 0.3 0.3 ND 0.0 ND | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
ND
ND
ND
ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND ND ND ND ND ND | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND ND ND ND ND | CHLO-
RIDE
TOTAL
(UG/L)
ND
ND
ND
ND | | MAR 1988
23
APR
04
19
MAY
05
17
JUN
29 | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND | CHLORO-ETHANE WATER WATER WHOLE TOTAL (UG/L) ND ND ND ND ND ND ND | CHLORO-
PROPANE
TOTAL
(UG/L)
ND
ND
ND
ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND | CHLORO-ETHYL-ENE TOTAL (UG/L) 0.3 0.3 ND 0.0 ND | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND ND ND ND ND ND ND | CHLORO-ETHYL-ENE ENE TOTAL (UG/L) ND ND ND ND ND ND ND | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND ND ND ND ND ND ND | CHLO-
RIDE
TOTAL
(UG/L)
ND
ND
ND
ND
ND | # SUSPENDED SEDIMENT DISCHARGE | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND | SEDI-
MENT,
SUS-
PENDED
(MG/L) | SEDI-
MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY) | |----------|------|--|--|--| | MAY 1988 | | | | | | 17 | 1015 | 84 | 19 | 4.3 | | JUN | | | | | | 29 | 1600 | 6.9 | 8 | 0.15 | | SEP | | | | | | 09 | 1000 | 5.0 | 6 | 0.08 | | OCT | | | | | | 05 | 1000 | 12 | 2 | 0.06 | | NOV | | | | | | 16 | 0945 | 70 | 4 | 0.76 | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). # 04215000 CAYUGA CREEK NEAR LANCASTER, NY - continued # BED MATERIAL ANALYSES | DATE | TIME | SOLIDS,
VOLA-
TILE IN
BOTTOM
MA-
TERIAL
(MG/KG) | ALUM-
INUM,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G) | CADMIUM
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS CD) | COPPER,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS CU) | IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE) | LEAD,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS PB) | MANGA-
NESE,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G) | MERCURY
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS HG) | NICKEL,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS NI) | |----------------|--|---|---|--|--|---|--|---|--|--| | JUN 1988
29 | 1600 | 24600 | 3000 | <10 | 10 | 8800 | <100 | 230 | <0.10 | 10 | | DATE | ZINC,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS ZN) | AROCLOR
1221
IN
BOTTOM
MAT.
(UG/KG) | AROCLOR
1248
PCB
BOT.MAT
(UG/KG) | AROCLOR
1254
PCB
BOT.MAT
(UG/KG) | AROCLOR
1260
PCB
BOT.MAT
(UG/KG) | ALDRIN,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | ALPHA
BHC
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | ATRA-
ZINE,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | BETA
BENZENE
HEXA-
CHLOR-
IDE
BOT.MAT
(UG/KG) | CHLOR-DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) | | JUN 1988
29 | 40 | ND | DATE | CHLOR-
PYRIFOS
IN BOT.
MAT.
(UG/KG) | DELTA
BENZENE
HEXA-
CHLOR-
IDE
BOT.MAT
(UG/KG) | DI-
AZINON,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | DI-
ELDRIN,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | ENDO-
SULFAN
ALPHA
BOT.MAT
(UG/KG) | ENDO-
SULFAN
BETA
BOT.MAT
(UG/KG) | ENDO-
SULFAN
SULFATE
BOT.MAT
(UG/KG) | ENDRIN,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | ENDRIN
ALDE-
HYDE
BOT.MAT
(UG/KG) | ETHION,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | | JUN 1988
29 | ND | DATE | HEPTA-
CHLOR,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | HEPTA-CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG) | MALA-
THION,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | METH-
OXY-
CHLOR,
TOT. IN
BOTTOM
MATL.
(UG/KG) | MIREX,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | P, P' DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) | P, P' DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) | P, P' DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) | PARA-
THION,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | TOXA-
PHENE,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | | JUN 1988
29 | ND ### 04215790 BUFFALO RIVER AT OHIO STREET AT BUFFALO, NY LOCATION.--Lat 42 51'42", long 78 52'04", Erie County, Hydrologic Unit 04120103, at Ohio Street bridge, 1.0 mi upstream of mouth. DRAINAGE AREA. -- 427 mi2. PERIOD OF RECORD.--Water years 1971-74, 1987 to current year. CHEMICAL DATA: 1987-88 (c), 1989 (a). MINOR ELEMENT DATA: 1972 (b), 1973-74 (a), 1987-88 (c), 1989 (a). PESTICIDE DATA: 1987 (b), 1988 (c), 1989 (a). NUTRIENT DATA: 1987-88 (c), 1989 (a). SEDIMENT DATA:1987-88 (b), 1989 (a). | DATE | TIME | SPE-
CIFIC
CON-
DUCT-
ANCE
LAB
(US/CM) | PH WATER WHOLE FIELD (STAND- ARD UNITS) | TEMPER-
ATURE
WATER
(DEG C) | TUR-
BID-
ITY
(NTU) | BARO-
METRIC
PRES-
SURE
(MM
OF
HG) | OXYGEN,
DIS-
SOLVED
(MG/L) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K) | |-------------|------|--|---|--------------------------------------|------------------------------|--|-------------------------------------|---|--|--|--|---| | APR 1987 | | | | | | | | | | | | | | 16 | 1445 | | 8.2 | 12.0 | 32 | | 13.0 | 140 | 43 | 7.6 | | | | 27 | 1245 | | 7.7 | 14.0 | 16 | | 6.5 | 150 | 44 | 9.0 | | | | MAY | | | | | | | | | | | | | | 19 | 1200 | 443 | 7.5 | 16.0 | 18 | | | 170 | 50 | 9.8 | | | | JUN | | | | | | | | | | | | | | 25 |
1130 | | 7.7 | 23.0 | 38 | | | | | | | | | JUL
27 | 0830 | | 7 7 | 23.5 | 110 | | | 100 | 2.0 | - 4 | | | | SEP | 0830 | | 7.7 | 23.5 | 110 | | | 100 | 32 | 5 .4 | | | | 28 | 1200 | 338 | 8.0 | 22.0 | 20 | | | | | | | | | NOV | 1200 | 330 | 0.0 | 22.0 | 20 | | | | | | | | | 09 | 0930 | | 7.6 | 8.5 | 14 | | 8.0 | 180 | 53 | 11 | | | | DEC | | | | | | | | | | | | | | 07 | 1400 | | 7.9 | 2.0 | 7.3 | | 12.2 | | | | | | | MAR 1988 | | | | | | | | | | | | | | 21 | 1215 | 429 | 8.0 | 1.0 | 6.7 | | | 140 | 42 | 8.9 | 26 | 2.1 | | APR | | | | | | | | | | | | | | 05 | 0830 | 249 | 7.7 | 10.0 | 120 | | | | | | | | | 20 | 0830 | 431 | 7.8 | 8.5 | 0.0 | | | 160 | 49 | 10 | 21 | 2.2 | | MAY
02 | 0845 | 275 | 7.6 | 9.0 | 38 | | 10.6 | | | | | | | 18 | 0900 | 436 | 7.4 | 14.0 | 38
16 | | 10.6
5.2 | 170 | 50 | 10 | 22 | 2.6 | | JUN | 0900 | 436 | 1.4 | 14.0 | 16 | | 3.2 | 170 | 50 | 10 | 22 | 2.6 | | 29 | 1000 | 423 | 8.0 | 20.0 | 17 | | | 160 | 44 | 11 | 21 | 3.0 | | SEP | 1000 | 423 | 0.0 | 20.0 | 1, | | | 100 | ** | 11 | 21 | 3.0 | | 06 | 0845 | 482 | 7.6 | 19.0 | 16 | | | 160 | 45 | 12 | 34 | 3.9 | | ○ CT | | | | | | | | | | | | | | 04 | 0915 | 458 | 7.4 | 16.0 | 13 | 763 | 5.6 | 170 | 48 | 11 | 27 | 3.5 | | NOV | | | | | | | | | | | | | | 15 | 0800 | 372 | 8.0 | 6.0 | 2 0 | 763 | 10.8 | 140 | 44 | 8.4 | 17 | 2.7 | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). ## 04215790 BUFFALO RIVER AT OHIO STREET AT BUFFALO, NY - continued | DATE | ALKA-
LINITY
LAB
(MG/L
AS
CACO3) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | SOLIDS,
RESIDUE
AT 105
DEG. C,
TOTAL
(MG/L) | SOLIDS,
VOLA-
TILE ON
IGNI-
TION,
TOTAL
(MG/L) | RESIDUE
TOTAL
FIXED
(MG/L) | NITRO-
GEN,
NITRATE
TOTAL
(MG/L
AS N) | NITRO-
GEN,
NITRITE
TOTAL
(MG/L
AS N) | |--|---|---|---|--|--|---|--|---|---|--|---| | APR 1987 | | | | | | | | | | | | | 16
27 | | | | | 18 4
206 | | 289
272 | 4 2
66 | 234
210 | 0.650
0.410 | 0.010
0.020 | | MAY
19 | | | | | 256 | | 280 | 84 | 196 | 0.270 | 0.040 | | JUN
25 | | | | | 188 | | 220 | 56 | 164 | 0.860 | 0.040 | | JUL
27 | | | | | 168 | | 347 | 148 | 184 | 0.430 | 0.010 | | SEP
28 | | | | | 208 | | 232 | 68 | 162 | 0.250 | 0.010 | | NOV
09 | | | | | 232 | | 267 | 78 | 198 | 0.170 | 0.010 | | DEC
07 | | | | | 292 | | 301 | 112 | 204 | 0.650 | 0.00 | | MAR 1988
21 | 113 | 32 | 42 | 0.10 | 236 | 221 | 272 | 50 | 222 | | | | APR
05 | 71 | 29 | 18 | 0.10 | 188 | | 352 | 48 | 304 | 0.440 | 0.00 | | 20
MAY | 128 | 36 | 34 | 0.20 | 244 | 229 | 296 | 52 | 244 | 0.620 | 0.010 | | 02
18 | 82
129 | 33 | 33 | 0.30 | 172
22 4 | 228 | 22 4
236 | 40
48 | 184
188 | 0.420
0.390 | 0.00
0.020 | | JUN
29 | 124 | 32 | 32 | 0.30 | 276 | 218 | 296 | 80 | 216 | 0.220 | 0.020 | | 06 | 110 | 51 | 51 | 0.20 | 312 | 263 | 320 | 56 | 264 | 0.360 | 0.080 | | 04 | 109 | 57 | 40 | 0.10 | 264 | 252 | 300 | 64 | 236 | 0.310 | 0.030 | | NOV
15 | 96 | 47 | 25 | 0.10 | 236 | 202 | 296 | 72 | 224 | 0.390 | 0.00 | | | | | | | | | | | | | | | DATE | NITRO-
GEN,
NO2+NO3
TOTAL
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS NH4) | NITRO-
GEN,
ORGANIC
TOTAL
(MG/L
AS N) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | NITRO-
GEN,
TOTAL
(MG/L
AS N) | NITRO-
GEN,
TOTAL
(MG/L
AS NO3) | PHOS-
PHORUS
TOTAL
(MG/L
AS P) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P) | PHOS-
PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4) | ALUM-
INUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS AL) | | APR 1987 | GEN,
NO2+NO3
TOTAL
(MG/L
AS N) | GEN,
AMMONIA
TOTAL
(MG/L
AS N) | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4) | GEN,
ORGANIC
TOTAL
(MG/L
AS N) | GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | GEN,
TOTAL
(MG/L
AS N) | GEN,
TOTAL
(MG/L
AS NO3) | PHORUS
TOTAL
(MG/L
AS P) | PHORUS ORTHO, DIS- SOLVED (MG/L AS P) | PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4) | INUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS AL) | | APR 1987
16
27 | GEN,
NO2+NO3
TOTAL
(MG/L | GEN,
AMMONIA
TOTAL
(MG/L | GEN,
AMMONIA
TOTAL
(MG/L | GEN,
ORGANIC
TOTAL
(MG/L | GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L | GEN,
TOTAL
(MG/L | GEN,
TOTAL
(MG/L | PHORUS
TOTAL
(MG/L | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L | PHATE,
ORTHO,
DIS-
SOLVED
(MG/L | INUM,
TOTAL
RECOV-
ERABLE
(UG/L | | APR 1987
16
27
MAY
19 | GEN,
NO2+NO3
TOTAL
(MG/L
AS N) | GEN,
AMMONIA
TOTAL
(MG/L
AS N) | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4) | GEN,
ORGANIC
TOTAL
(MG/L
AS N) | GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | GEN,
TOTAL
(MG/L
AS N) | GEN,
TOTAL
(MG/L
AS NO3) | PHORUS
TOTAL
(MG/L
AS P) | PHORUS ORTHO, DIS- SOLVED (MG/L AS P) | PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4) | INUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS AL) | | APR 1987
16
27
MAY
19
JUN
25 | GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
0.660
0.430 | GEN,
AMMONIA
TOTAL
(MG/L
AS N)
0.090
0.320 | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4)
0.12
0.41 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.32
0.30 | GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
0.41
0.62 | GEN,
TOTAL
(MG/L
AS N)
1.1
1.0 | GEN,
TOTAL
(MG/L
AS NO3)
4.7
4.6 | PHORUS
TOTAL
(MG/L
AS P)
0.090
0.070 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P) | PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4) | INUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS AL) | | APR 1987 16 27 MAY 19 JUN 25 JUL 27 | GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
0.660
0.430 | GEN,
AMMONIA
TOTAL
(MG/L
AS N)
0.090
0.320 | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4)
0.12
0.41 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.32
0.30 | GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
0.41
0.62 | GEN,
TOTAL
(MG/L
AS N)
1.1
1.0 | GEN,
TOTAL
(MG/L
AS NO3)
4.7
4.6 | PHORUS
TOTAL
(MG/L
AS P)
0.090
0.070 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
0.00
0.00 | PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4)
0.0
0.0 | INUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS AL) | | APR 1987 16 27 MAY 19 JUN 25 JUL 27 SEP 28 | GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
0.660
0.430
0.310 | GEN,
AMMONIA
TOTAL
(MG/L
AS N)
0.090
0.320
0.360 | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4)
0.12
0.41
0.46 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.32
0.30
0.56 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.41 0.62 0.92 0.46 | GEN,
TOTAL
(MG/L
AS N)
1.1
1.0
1.2 | GEN,
TOTAL
(MG/L
AS NO3)
4.7
4.6
5.4
6.0 | PHORUS
TOTAL
(MG/L
AS P)
0.090
0.070
0.070 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
0.00
0.00
0.00 | PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4)
0.0
0.0 | INUM, TOTAL RECOV- ERABLE (UG/L AS AL) | | APR 1987 16 27 MAY 19 JUN 25 JUL 27 SEP 28 NOV 09 | GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
0.660
0.430
0.310
0.900 | GEN,
AMMONIA
TOTAL
(MG/L
AS N)
0.090
0.320
0.360
0.180 | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4)
0.12
0.41
0.46
0.23 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.32
0.30
0.56 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.41 0.62 0.92 0.46 | GEN,
TOTAL
(MG/L
AS N)
1.1
1.0
1.2
1.4 | GEN,
TOTAL
(MG/L
AS NO3)
4.7
4.6
5.4
6.0 | PHORUS
TOTAL
(MG/L
AS P)
0.070
0.070
0.070
0.020 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
0.00
0.00
0.00 | PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4)
0.0
0.0
0.0 |
INUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS AL) | | APR 1987 16 27 MAY 19 JUN 25 JUL 27 SEP 28 NOV 09 DEC 07 | GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
0.660
0.430
0.310
0.900
0.440 | GEN,
AMMONIA
TOTAL
(MG/L
AS N)
0.090
0.320
0.360
0.180
0.440 | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4)
0.12
0.41
0.46
0.23
0.57 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.32
0.30
0.56
0.28
0.56 | GEN, AM- MONIA + ORGANIC TOTTAL (MG/L AS N) 0.41 0.62 0.92 0.46 1.0 0.71 | GEN,
TOTAL
(MG/L
AS N)
1.1
1.0
1.2
1.4
1.4 | GEN,
TOTAL
(MG/L
AS NO3)
4.7
4.6
5.4
6.0
6.4 | PHORUS
TOTAL
(MG/L
AS P)
0.090
0.070
0.070
0.020
0.360
0.090 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
0.00
0.00
0.00
0.00
0.00 | PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4)
0.0
0.0
0.0
0.06 | INUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS AL) | | APR 1987 16 27 MAY 19 JUN 25 JUL 27 SEP 28 NOV 09 DEC 07 MAR 1988 21 | GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
0.660
0.430
0.310
0.900
0.440
0.260
0.180 | GEN,
AMMONIA
TOTAL
(MG/L
AS N)
0.090
0.320
0.360
0.180
0.440
0.190 | GEN, AMMONIA TOTAL (MG/L AS NH4) 0.12 0.41 0.46 0.23 0.57 0.23 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.32
0.30
0.56
0.28
0.56 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.41 0.62 0.92 0.46 1.0 0.71 | GEN,
TOTAL
(MG/L
AS N)
1.1
1.0
1.2
1.4
1.4
0.97 | GEN,
TOTAL
(MG/L
AS NO3)
4.7
4.6
5.4
6.0
6.4
4.3 | PHORUS
TOTAL
(MG/L
AS P)
0.070
0.070
0.020
0.360
0.090
0.060 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
0.00
0.00
0.00
0.00
0.020
0.020
0.020 | PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4)
0.0
0.0
0.0
0.0
0.0 | INUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS AL) | | APR 1987 16 27 MAY 19 JUN 25 JUL 27 SEP 28 NOV 09 DEC 07 MAR 1988 21 APR 05 | GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
0.660
0.430
0.310
0.900
0.440
0.260
0.180
0.650
0.850 | GEN, AMMONIA TOTAL (MG/L AS N) 0.090 0.320 0.360 0.180 0.440 0.170 0.050 0.520 0.250 | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4)
0.12
0.41
0.23
0.57
0.23
0.22
0.06
0.67 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.32
0.30
0.56
0.28
0.56
0.53
0.24
0.32
0.25 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.41 0.62 0.92 0.46 1.0 0.71 0.41 0.37 0.77 | GEN,
TOTAL
(MG/L
AS N) 1.1 1.0 1.2 1.4 1.4 0.97 0.59 1.0 1.6 1.3 | GEN,
TOTAL
(MG/L
AS NO3)
4.7
4.6
5.4
6.0
6.4
4.3
2.6
4.5
7.2 | PHORUS
TOTAL
(MG/L
AS P)
0.090
0.070
0.020
0.360
0.090
0.060
0.030
0.020 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
0.00
0.00
0.020
0.020
0.010
0.00
0.00 | PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4)
0.0
0.0
0.0
0.06
0.06
0.03
0.0 | INUM, TOTAL RECOV- ERABLE (UG/L AS AL) 220 4600 | | APR 1987 16 27 MAY 19 JUN 25 JUL 27 SEP 28 NOV 09 DEC 07 MAR 1988 21 APR 05 20 MAY | GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
0.660
0.430
0.310
0.900
0.440
0.260
0.180
0.650
0.850
0.440
0.630 | GEN,
AMMONIA
TOTAL
(MG/L
AS N)
0.090
0.320
0.360
0.180
0.180
0.170
0.050
0.520
0.250
0.130 | GEN, AMMONIA TOTAL (MG/L AS NH4) 0.12 0.41 0.46 0.23 0.57 0.23 0.22 0.06 0.67 0.32 0.17 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.32
0.30
0.56
0.28
0.56
0.53
0.24
0.32
0.25 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.41 0.62 0.92 0.46 1.0 0.71 0.41 0.37 0.77 0.85 0.38 | GEN,
TOTAL
(MG/L
AS N)
1.1
1.0
1.2
1.4
0.97
0.59
1.0
1.6 | GEN,
TOTAL
(MG/L
AS NO3)
4.7
4.6
5.4
6.0
6.4
4.3
2.6
4.5
7.2
5.7 | PHORUS
TOTAL
(MG/L
AS P)
0.090
0.070
0.020
0.360
0.090
0.060
0.030
0.020
0.160
0.040 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
0.00
0.00
0.020
0.010
0.00
0.000
0.000 | PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4)
0.0
0.0
0.0
0.0
0.06
0.03
0.0
0.0 | INUM, TOTAL RECOV- ERABLE (UG/L AS AL) 220 4600 480 | | APR 1987 16 27 MAY 19 JUN 25 JUL 27 SEP 28 NOV 09 DEC 07 MAR 1988 21 APR 05 20 MAY 02 18 | GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
0.660
0.430
0.310
0.900
0.440
0.260
0.180
0.650
0.850 | GEN, AMMONIA TOTAL (MG/L AS N) 0.090 0.320 0.360 0.180 0.440 0.170 0.050 0.520 0.250 | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4)
0.12
0.41
0.23
0.57
0.23
0.22
0.06
0.67 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.32
0.30
0.56
0.28
0.56
0.53
0.24
0.32
0.25 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.41 0.62 0.92 0.46 1.0 0.71 0.41 0.37 0.77 | GEN,
TOTAL
(MG/L
AS N) 1.1 1.0 1.2 1.4 1.4 0.97 0.59 1.0 1.6 1.3 | GEN,
TOTAL
(MG/L
AS NO3)
4.7
4.6
5.4
6.0
6.4
4.3
2.6
4.5
7.2 | PHORUS
TOTAL
(MG/L
AS P)
0.090
0.070
0.020
0.360
0.090
0.060
0.030
0.020 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
0.00
0.00
0.020
0.020
0.010
0.00
0.00 | PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4)
0.0
0.0
0.0
0.06
0.06
0.03
0.0 | INUM, TOTAL RECOV- ERABLE (UG/L AS AL) 220 4600 | | APR 1987 16 27 MAY 19 JUN 25 JUL 27 SEP 28 NOV 09 DEC 07 MAR 1988 21 APR 05 20 MAY 21 APR 198 21 APR 21 APR 21 APR 21 APR 220 MAY 29 | GEN, NO2+NO3 TOTAL (MG/L AS N) 0.660 0.430 0.310 0.900 0.440 0.260 0.180 0.650 0.0850 0.440 0.630 0.420 | GEN, AMMONIA TOTAL (MG/L AS N) 0.090 0.320 0.360 0.180 0.440 0.180 0.170 0.050 0.520 0.250 0.130 0.090 | GEN, AMMONIA TOTAL (MG/L AS NH4) 0.12 0.41 0.46 0.23 0.57 0.23 0.22 0.06 0.67 0.32 0.17 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.32
0.30
0.56
0.28
0.56
0.53
0.24
0.32
0.25
0.60
0.25 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.41 0.62 0.92 0.46 1.0 0.71 0.41 0.37 0.77 0.85 0.38 0.49 | GEN,
TOTAL
(MG/L
AS N)
1.1
1.0
1.2
1.4
1.4
0.97
0.59
1.6
1.3
1.0
0.91 | GEN,
TOTAL
(MG/L
AS NO3)
4.7
4.6
5.4
6.0
6.4
4.3
2.6
4.5
7.2
5.7
4.5 | PHORUS
TOTAL
(MG/L
AS P)
0.090
0.070
0.020
0.360
0.090
0.060
0.030
0.020
0.160
0.040 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
0.00
0.00
0.020
0.00
0.020
0.010
0.00
0.0 | PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4)
0.0
0.0
0.0
0.06
0.06
0.03
0.0
0.0
0.0 | INUM, TOTAL RECOV- ERABLE (UG/L AS AL) 220 4600 480 1100 | | APR 1987 16 27 MAY 19 JUN 25 JUL 27 SEP 28 NOV 09 DEC 07 MAR 1988 21 APR 05 20 MAY 29 SEP 06 | GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
0.660
0.430
0.310
0.900
0.440
0.260
0.180
0.650
0.850
0.420
0.410 | GEN, AMMONIA TOTAL (MG/L AS N) 0.090 0.320 0.360 0.180 0.440 0.170 0.050 0.520 0.520 0.130 0.090 0.210 | GEN, AMMONIA TOTAL (MG/L AS NH4) 0.12 0.41 0.46 0.23 0.57 0.23 0.22 0.06 0.67 0.32 0.17 0.12 0.27 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.32
0.30
0.56
0.28
0.56
0.53
0.24
0.32
0.25
0.60
0.25 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.41 0.62 0.92 0.46 1.0 0.71 0.41 0.37 0.77 0.85 0.38 0.49 0.71 | GEN,
TOTAL
(MG/L
AS N)
1.1
1.0
1.2
1.4
0.97
0.59
1.0
1.6
1.3
1.0
0.91 | GEN,
TOTAL
(MG/L
AS NO3)
4.7
4.6
5.4
6.0
6.4
4.3
2.6
4.5
7.2
5.7
4.5 | PHORUS
TOTAL
(MG/L
AS P)
0.070
0.070
0.020
0.360
0.090
0.060
0.030
0.020
0.160
0.040 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
0.00
0.00
0.020
0.010
0.00
0.000
0.020
ND
0.000 | PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4)
0.0
0.0
0.0
0.0
0.06
0.03
0.0
0.0
0.06 | INUM, TOTAL RECOV- ERABLE (UG/L AS AL) 220 4600 480 1100 450 | | APR 1987 16 27 MAY 19 JUN 25 JUL 27 SEP 28 NOV 09 DEC 07 MAR 1988 21 APR 05 20 MAY 02 18 JUN 29 SEP | GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
0.660
0.430
0.310
0.900
0.440
0.260
0.180
0.650
0.850
0.420
0.410 | GEN,
AMMONIA
TOTAL
(MG/L
AS N)
0.320
0.360
0.180
0.440
0.170
0.520
0.520
0.250
0.130
0.090
0.210 | GEN, AMMONIA TOTAL (MG/L AS NH4) 0.12 0.41 0.46 0.23 0.57 0.23 0.22 0.06 0.67 0.32 0.17 0.12 0.27 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.32
0.30
0.56
0.28
0.56
0.24
0.32
0.25
0.60
0.25
0.40
0.50 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.41 0.62 0.92 0.46 1.0 0.71 0.41 0.37 0.77 0.85 0.38 0.49 0.71 0.38 | GEN,
TOTAL
(MG/L
AS N) 1.1 1.0 1.2 1.4 1.4 0.97 0.59 1.0 1.6 1.3 1.0 0.91 1.1 | GEN,
TOTAL
(MG/L
AS NO3)
4.7
4.6
5.4
6.0
6.4
4.3
2.6
4.5
7.2
5.7
4.5 | PHORUS
TOTAL
(MG/L
AS P)
0.090
0.070
0.020
0.360
0.090
0.060
0.030
0.020
0.160
0.040
0.100
0.060 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
0.00
0.00
0.020
0.010
0.00
0.00
0.00
0.0 | PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4)
0.0
0.0
0.0
0.06
0.0
0.06
0.0
0.0
0.0 | INUM, TOTAL RECOV- ERABLE (UG/L AS AL) 220 4600 480 1100 450 540 | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). # 04215790 BUFFALO RIVER AT OHIO STREET AT BUFFALO, NY - continued # WATER-QUALITY DATA (continued) MANGA- | DATE |
ALUM-
INUM,
DIS-
SOLVED
(UG/L
AS AL) | CADMIUM
TOTAL
RECOV-
ERABLE
(UG/L
AS CD) | CADMIUM
DIS-
SOLVED
(UG/L
AS CD) | COPPER,
TOTAL
RECOV-
ERABLE
(UG/L
AS CU) | COPPER,
DIS-
SOLVED
(UG/L
AS CU) | IRON,
TOTAL
RECOV-
ERABLE
(UG/L
AS FE) | IRON,
DIS-
SOLVED
(UG/L
AS FE) | LEAD,
TOTAL
RECOV-
ERABLE
(UG/L
AS PB) | LEAD,
DIS-
SOLVED
(UG/L
AS PB) | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN) | |---|--|--|--|---|--|---|---|---|--|---|---| | APR 1987 | | | | | | | | | | | | | 16
27 | | <10
<10 | | <10
10 | | 2700
1 4 00 | | <100
28 | | 110
110 | | | MAY
19
JUN | <1 | <10 | | 10 | | 1600 | | 9 | | 110 | | | 25 | | <10 | | 10 | ~- | 1500 | | | | 70 | | | JUL
27
SEP | | <10 | 1.0 | 20 | 4 | 1100 | | < 5 | <5 | 100 | | | 28 | | <10 | | <10 | | 1100 | | <100 | | 50 | | | NOV
09 | | <1 | | 7 | | 1100 | | <5 | | 70 | | | DEC
07 | | <1 | <1.0 | 7 | 5 | 470 | | 7 | <5 | 50 | | | MAR 1988
21 | <10 | <1 | <1.0 | 4 | 2 | 570 | 29 | <5 | < 5 | 70 | 53 | | APR
05 | | <1 | | 18 | | 7600 | | < 5 | | 130 | | | 20
MAY | 10 | 2 | <1.0 | 5 | 4 | 1100 | 45 | < 5 | < 5 | 120 | 110 | | 02
18 |
<10 | 1
6 | <1.0 | 11
10 | 2 | 1900
960 | 27 | 9
< 5 |
< 5 | 70
130 |
7 4 | | JUN
29 | | 1 | | 6 | | 1200 | | < 5 | | 140 | | | SEP
06 | | <1 | | 8 | | 780 | | < 5 | | 80 | | | OCT
04 | 10 | <1 | <1.0 | 9 | 1 | 830 | 17 | <5 | <5 | 50 | 7 | | NOV
15 | ~- | <1 | | 7 | | 1300 | | < 5 | | 70 | | | | | | | | | | | | | | | | DATE | MERCURY
TOTAL
RECOV-
ERABLE
(UG/L
AS HG) | NICKEL,
TOTAL
RECOV-
ERABLE
(UG/L
AS NI) | NICKEL,
DIS-
SOLVED
(UG/L
AS NI) | ZINC,
TOTAL
RECOV-
ERABLE
(UG/L
AS ZN) | ZINC,
DIS-
SOLVED
(UG/L
AS ZN) | PHENOL
(C6H-
5OH)
TOTAL
(UG/L) | BROMO-
FORM
TOTAL
(UG/L) | CARBON-
TETRA-
CHLO-
RIDE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
DI -
BROMO-
METHANE
TOTAL
(UG/L) | CHLORO-
ETHANE
TOTAL
(UG/L) | | APR 1987 | TOTAL
RECOV-
ERABLE
(UG/L
AS HG) | TOTAL
RECOV-
ERABLE
(UG/L
AS NI) | DIS-
SOLVED
(UG/L
AS NI) | TOTAL
RECOV-
ERABLE
(UG/L
AS ZN) | DIS-
SOLVED
(UG/L
AS ZN) | (C6H-
5OH)
TOTAL
(UG/L) | FORM
TOTAL
(UG/L) | TETRA-
CHLO-
RIDE
TOTAL
(UG/L) | BENZENE
TOTAL
(UG/L) | DI-
BROMO-
METHANE
TOTAL
(UG/L) | ETHANE
TOTAL
(UG/L) | | APR 1987
16
27 | TOTAL
RECOV-
ERABLE
(UG/L | TOTAL
RECOV-
ERABLE
(UG/L | DIS-
SOLVED
(UG/L | TOTAL
RECOV-
ERABLE
(UG/L | DIS-
SOLVED
(UG/L | (C6H-
5OH)
TOTAL | FORM
TOTAL | TETRA-
CHLO-
RIDE
TOTAL | BENZENE
TOTAL | DI -
BROMO-
METHANE
TOTAL | ETHANE
TOTAL | | APR 1987
16
27
MAY
19 | TOTAL
RECOV-
ERABLE
(UG/L
AS HG) | TOTAL
RECOV-
ERABLE
(UG/L
AS NI) | DIS-
SOLVED
(UG/L
AS NI) | TOTAL
RECOV-
ERABLE
(UG/L
AS ZN) | DIS-
SOLVED
(UG/L
AS ZN) | (C6H-
5OH)
TOTAL
(UG/L) | FORM TOTAL (UG/L) | TETRA-
CHLO-
RIDE
TOTAL
(UG/L) | BENZENE
TOTAL
(UG/L)
ND | DI-
BROMO-
METHANE
TOTAL
(UG/L) | ETHANE
TOTAL
(UG/L)
ND | | APR 1987
16
27
MAY
19
JUN
25 | TOTAL
RECOV-
ERABLE
(UG/L
AS HG)
<0.10
0.10 | TOTAL
RECOV-
ERABLE
(UG/L
AS NI)
<100 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV- ERABLE (UG/L AS ZN) 20 <10 | DIS-
SOLVED
(UG/L
AS ZN) | (C6H-
5OH)
TOTAL
(UG/L) | FORM TOTAL (UG/L) ND ND | TETRA-
CHLO-
RIDE
TOTAL
(UG/L)
ND
ND | BENZENE
TOTAL
(UG/L)
ND
ND | DI-
BROMO-
METHANE
TOTAL
(UG/L)
ND
ND | ETHANE
TOTAL
(UG/L)
ND
ND | | APR 1987 16 27 MAY 19 JUN 25 JUL 27 | TOTAL RECOV- ERABLE (UG/L AS HG) <0.10 0.10 <0.10 | TOTAL
RECOV-
ERABLE
(UG/L
AS NI)
<100
2 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV- ERABLE (UG/L AS ZN) 20 <10 | DIS-
SOLVED
(UG/L
AS ZN) | (C6H-
5OH)
TOTAL
(UG/L) | FORM TOTAL (UG/L) ND ND ND | TETRA-CHLO-RIDE TOTAL (UG/L) ND ND | BENZENE
TOTAL
(UG/L)
ND
ND | DI-
BROMO-
METHANE
TOTAL
(UG/L)
ND
ND | ETHANE TOTAL (UG/L) ND ND ND | | APR 1987 16 27 MAY 19 JUN 25 JUL 27 SEP 28 | TOTAL RECOV- ERABLE (UG/L AS HG) <0.10 <0.10 <0.10 | TOTAL
RECOV-
ERABLE
(UG/L
AS NI)
<100
2 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL
RECOV-
ERABLE
(UG/L
AS ZN)
20
<10
40 | DIS-
SOLVED
(UG/L
AS ZN) | (C6H-
5OH)
TOTAL
(UG/L) | FORM TOTAL (UG/L) ND ND ND | TETRA-CHLO-RIDE TOTAL (UG/L) ND ND | BENZENE
TOTAL
(UG/L)
ND
ND | DI-
BROMO-
METHANE
TOTAL
(UG/L)
ND
ND | ETHANE TOTAL (UG/L) ND ND ND ND | | APR 1987 16 27 MAY 19 JUN 25 JUL 27 SEP 28 NOV 09 | TOTAL RECOV-ERABLE (UG/L AS HG) <0.10 | TOTAL
RECOV-
ERABLE
(UG/L
AS NI)
<100
2

3 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV- ERABLE (UG/L AS ZN) 20 <10 40 30 <10 | DIS-
SOLVED
(UG/L
AS ZN) | (C6H-
50H)
TOTAL
(UG/L) | FORM TOTAL (UG/L) ND ND ND ND | TETRA-CHLO-RIDE TOTAL (UG/L) ND ND ND | BENZENE
TOTAL
(UG/L)
ND
ND
ND | DI-
BROMO-
METHANE
TOTAL
(UG/L)
ND
ND
ND | ETHANE TOTAL (UG/L) ND ND ND ND | | APR 1987 16 27 MAY 19 JUN 25 JUL 27 SEP 28 NOV 09 DEC 07 | TOTAL RECOV- ERABLE (UG/L AS HG) <0.10 0.10 <0.10 <0.10 <0.10 | TOTAL RECOV- ERABLE (UG/L AS NI) <100 2 3 <100 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV- ERABLE (UG/L AS ZN) 20 <10 40 30 <10 10 | DIS-
SOLVED
(UG/L
AS ZN) | (C6H-
50H)
TOTAL
(UG/L) | FORM TOTAL (UG/L) ND ND ND ND ND ND | TETRA-CHLO-RIDE RIDE TOTAL (UG/L) ND ND ND ND ND | BENZENE TOTAL (UG/L) ND ND ND ND ND | DI- BROMO- METHANE TOTAL (UG/L) ND ND ND ND ND | ETHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND | | APR 1987 16 27 MAY 19 JUN 25 JUL 27 SEP 28 NOV 09 DEC 07 MAR 1988 21 | TOTAL RECOV- RABLE (UG/L AS HG) <0.10 | TOTAL RECOV- ERABLE (UG/L AS NI) <100 2 3 <100 4 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL
RECOV-
ERABLE
(UG/L
AS ZN) 20 <10 40 30 <10 10 <10 | DIS-
SOLVED
(UG/L
AS ZN) | (C6H-
50H)
TOTAL
(UG/L) | FORM TOTAL (UG/L) ND | TETRA-CHLO-RIDE RIDE TOTAL (UG/L) ND N | BENZENE TOTAL (UG/L) ND | DI- BROMO- METHANE TOTAL (UG/L) ND ND ND ND ND ND ND | ETHANE TOTAL (UG/L) ND | | APR 1987 16 27 MAY 19 JUN 25 JUL 27 SEP 28 NOV 09 DEC 07 MAR 1988 21 APR 05 | TOTAL RECOV- REABLE (UG/L AS HG) <0.10 | TOTAL RECOVERABLE (UG/L AS NI) <100 2 3 <100 4 <1 2 10 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV-ERABLE (UG/L AS ZN) 20 <10 40 30 <10 10 10 40 410 40 40 40 40 | DIS-
SOLVED
(UG/L
AS ZN) | (C6H-
50H)
TOTAL
(UG/L) | FORM TOTAL (UG/L) ND | TETRA-CHLO-RIDE RIDE TOTAL (UG/L) ND | BENZENE TOTAL (UG/L) ND | DI- BROMO- METHANE TOTAL (UG/L) ND | ETHANE TOTAL (UG/L) ND | | APR 1987 16 27 MAY 19 JUN 25 JUL 27 SEP 28 NOV 09 DEC 07 MAR 1988 21 APR 05 20 MAY | TOTAL RECOV- ERABLE (UG/L AS HG) <0.10 | TOTAL RECOV-ERABLE (UG/L AS NI) <100 2 3 <100 4 <1 2 10 12 | DIS- SOLVED (UG/L AS NI) <1 1 5 1 | TOTAL RECOV-ERABLE (UG/L AS ZN) 20 <10 40 30 <10 10 40 20 10 20 10 20 10 40 20 10 40 20 10 40 20 40 20 40 20 40 40 20 40 40 20 40 40 20 40 40 40 40 40 40 40 40 40 4 | DIS-
SOLVED
(UG/L
AS ZN) | (C6H-
50H)
TOTAL
(UG/L) | FORM TOTAL (UG/L) ND | TETRA-CHLO-RIDE RIDE TOTAL (UG/L) ND | BENZENE TOTAL (UG/L) ND | DI- BROMO- METHANE TOTAL (UG/L) ND | ETHANE TOTAL (UG/L) ND | | APR 1987 16 27 MAY 19 JUN 25 JUL 27 SEP 28 NOV 09 DEC 07 MAR 1988 21 APR 05 20 MAY 02 18 | TOTAL RECOV- REABLE (UG/L AS HG) <0.10 | TOTAL RECOVERABLE (UG/L AS NI) <100 2 3 <100 4 <1 2 10 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV-ERABLE (UG/L AS ZN) 20 <10 40 30 <10 10 10 40 410 40 40 40 40 | DIS-
SOLVED
(UG/L
AS ZN) | (C6H-
50H)
TOTAL
(UG/L) | FORM TOTAL (UG/L) ND | TETRA-CHLO-RIDE RIDE TOTAL (UG/L) ND | BENZENE TOTAL (UG/L) ND | DI- BROMO- METHANE TOTAL (UG/L) ND | ETHANE TOTAL (UG/L) ND | | APR 1987 16 27 MAY 19 JUN 25 Z7 SEP 28 NOV 09 DEC 07 MAR 1988 21 APR 05 APR 05 APR 198 JUN 20 MAY 20 MAY 29 | TOTAL RECOV- ERABLE (UG/L AS HG) <0.10 | TOTAL RECOVERABLE (UG/L AS NI) <100 2 3 <100 4 <1 2 10 12 10 12 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV-ERABLE (UG/L AS ZN) 20 <10 40 30 <10 10 10 40 20 10 40 20 20 20 | DIS-
SOLVED
(UG/L
AS ZN) | (C6H-
50H)
TOTAL
(UG/L) | FORM TOTAL (UG/L) ND | TETRA-CHLO-RIDE RIDE TOTAL (UG/L) ND | BENZENE TOTAL (UG/L) ND | DI- BROMO- METHANE TOTAL (UG/L) ND | ETHANE TOTAL (UG/L) ND | | APR 1987 16 27 MAY 19 JUN 25 JUL 27 SEP 28 NOV 09 DEC 07 MAR 1988 21 APR 05 20 MAY 02 MAY 02 18 JUN 29 SEP 06 | TOTAL RECOV- ERABLE (UG/L AS
HG) <0.10 | TOTAL RECOV-ERABLE (UG/L AS NI) <100 2 3 <100 4 <1 10 12 10 6 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV-ERABLE (UG/L AS ZN) 20 <10 40 30 <10 10 40 20 10 20 10 40 20 10 | DIS-
SOLVED
(UG/L
AS ZN) | (C6H-
50H)
TOTAL
(UG/L) | FORM TOTAL (UG/L) ND | TETRA-CHLO-RIDE RIDE TOTAL (UG/L) ND N | BENZENE TOTAL (UG/L) ND | DI- BROMO- METHANE TOTAL (UG/L) ND | ETHANE TOTAL (UG/L) ND | | APR 1987 16 27 MAY 19 JUN 25 JUL 27 SEP 28 NOV 09 DEC 07 MAR 1988 21 APR 05 20 MAY 02 18 JUN 29 SEP | TOTAL RECOV- ERABLE (UG/L AS HG) <0.10 | TOTAL RECOVERABLE (UG/L AS NI) <100 2 3 <100 4 <1 2 10 12 10 6 8 | DIS-
SOLVED (UG/L
AS NI) | TOTAL RECOV- ERABLE (UG/L AS ZN) 20 <10 40 30 <10 10 <10 20 10 20 10 10 10 10 | DIS-
SOLVED
(UG/L
AS ZN) | (C6H-
50H)
TOTAL
(UG/L) | FORM TOTAL (UG/L) ND | TETRA-CHLO-RIDE TOTAL (UG/L) ND N | BENZENE TOTAL (UG/L) ND | DI- BROMO- METHANE TOTAL (UG/L) ND | ETHANE TOTAL (UG/L) ND | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). ## STREAMS TRIBUTARY TO LAKE ERIE ### 04215790 BUFFALO RIVER AT OHIO STREET AT BUFFALO, NY - continued | DATE | CHLORO-
FORM
TOTAL
(UG/L) | CIS
1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | DI-
CHLORO-
BROMO-
METHANE
TOTAL
(UG/L) | METHYL-
BROMIDE
TOTAL
(UG/L) | METHYL-
CHLO-
RIDE
TOTAL
(UG/L) | METHYL-
ENE
CHLO-
RIDE
TOTAL
(UG/L) | 1,1,1-
TRI-
CHLORO-
ETHANE
TOTAL
(UG/L) | 1,1-DI-
CHLORO-
ETHANE
TOTAL
(UG/L) | 1,1-DI-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 1,1,2-
TRI-
CHLORO-
ETHANE
TOTAL
(UG/L) | 1,1,2,2
TETRA-
CHLORO-
ETHANE
TOTAL
(UG/L) | |--|---|--|---|---|---|---|---|--|---|---|---| | APR 1987
16
27 | ND
ND | ND
ND | ND
ND | ND
ND | ИD | ND
ND | ND
ND | ND
ND | ND
ND | ND
ND | ND
ND | | MAY
19 | ND | JUN
25 | ND | JUL
27 | | | | | | | | | | | | | SEP 28 | ND | ND | ND | ND | N D | ND | ND | ND | ND | ND | ND | | NOV
09 | ND | DEC 07 | | | | | | ND | | | - | - | ND | | MAR 1988 | ND | ND | ND | ND | ND | | ND | ND | ND | ND | | | 21
APR | ND | ND | ND | ND | ND | 0.5 | ND | ND | ND | ND | ND | | 05
20
May | ND
0 | 0
ND | ND
ND | ND
ND | ND
ND | и р | 0
ND | 0
ND | ND
ND | 0
ND | N D
0 | | 02
18
JUN | ND
0 | 0
ND | ND
0 | ND
0 | ND
O | N D | 0
ND | 0
ND | ND
0 | 0
ND | N D | | 29 | 0.1 | ND | ND | ND | ND | ND | 0.2 | ND | ND | ND | ND | | 06 | 0.1 | ND | OCT
04 | ND ИD | ND | ND | | NOV
15 | 0.1 | ND | | | | | | | | | | | | | | DATE | 1,2-DI-
CHLORO-
BENZENE
TOTAL
(UG/L) | 1,2-DI-
CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L) | 1,2-DI-
CHLORO-
PROPANE
TOTAL
(UG/L) | 1,2-
TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L) | 1,3-DI-
CHLORO-
BENZENE
TOTAL
(UG/L) | 1,4-DI-
CHLORO-
BENZENE
TOTAL
(UG/L) | TETRA-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | TRANS-
1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | TRI-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 2-
CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L) | VINYL
CHLO-
RIDE
TOTAL
(UG/L) | | APR 1987 | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L) | CHLORO-
PROPANE
TOTAL
(UG/L) | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L) | CHLO-
RIDE
TOTAL
(UG/L) | | APR 1987
16
27 | CHLORO-
BENZENE
TOTAL | CHLORO-
ETHANE
WATER
WHOLE
TOTAL | CHLORO-
PROPANE
TOTAL | TRANSDI
CHLORO-
ETHENE
TOTAL | CHLORO-
BENZENE
TOTAL | CHLORO-
BENZENE
TOTAL | CHLORO-
ETHYL-
ENE
TOTAL | 1,3-DI-
CHLORO-
PROPENE
TOTAL | CHLORO-
ETHYL-
ENE
TOTAL | CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL | CHLO-
RIDE
TOTAL | | APR 1987
16
27
MAY
19 | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L) | CHLORO-
PROPANE
TOTAL
(UG/L) | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L) | CHLO-
RIDE
TOTAL
(UG/L) | | APR 1987
16
27
MAY
19
JUN
25 | CHLORO-
BENZENE
TOTAL
(UG/L)
ND
ND | CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L)
ND | CHLORO-
PROPANE
TOTAL
(UG/L)
ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND | CHLORO-
BENZENE
TOTAL
(UG/L)
ND
ND | CHLORO-
BENZENE
TOTAL
(UG/L)
ND
ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND
ND | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND | CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L)
ND | CHLO-
RIDE
TOTAL
(UG/L)
ND | | APR 1987 16 27 MAY 19 JUN 25 JUL 27 | CHLORO-
BENZENE
TOTAL
(UG/L)
ND
ND | CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L)
ND
ND | CHLORO-
PROPANE
TOTAL
(UG/L)
ND
ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND | CHLORO-
BENZENE
TOTAL
(UG/L)
ND
ND | CHLORO-
BENZENE
TOTAL
(UG/L)
ND
ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND
ND | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
ND
ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND
ND | CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L)
ND
ND | CHLO- RIDE TOTAL (UG/L) ND ND | | APR 1987 16 27 MAY 19 JUN 25 JUL 27 SEP 28 | CHLORO-
BENZENE
TOTAL
(UG/L)
ND
ND | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND ND ND | CHLORO-
PROPANE
TOTAL
(UG/L)
ND
ND
ND | TRANSDI
CHLORO-
E'THENE
TOTAL
(UG/L)
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND
ND | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
ND
ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND
ND | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND ND ND | CHLO-
RIDE
TOTAL
(UG/L)
ND
ND | | APR 1987 16 27 MAY 19 JUN 25 JUL 27 SEP 28 NOV | CHLORO- BENZENE TOTAL (UG/L) ND ND ND ND ND ND | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND ND ND ND ND | CHLORO-
PROPANE
TOTAL
(UG/L)
ND
ND
ND
ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND
ND
ND | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
ND
ND
ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND
ND
ND | CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L)
ND
ND | CHLO-
RIDE
TOTAL
(UG/L)
ND
ND
ND | | APR 1987 16 27 MAY 19 JUN 25 JUL 27 SEP 28 NOV 09 DEC | CHLORO-
BENZENE
TOTAL
(UG/L)
ND
ND
ND | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND ND ND ND ND ND | CHLORO-
PROPANE
TOTAL
(UG/L)
ND
ND
ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
ND
ND
ND | CHLORO-ETHYL-ENE ENE TOTAL (UG/L) ND N | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND ND ND ND ND | CHLO-
RIDE
TOTAL
(UG/L)
ND
ND
ND
ND | | APR 1987 16 27 MAY 19 JUN 25 JUL 27 SEP 28 NOV 09 DEC 07 MAR 1988 | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND | CHLORO-PROPANE TOTAL (UG/L) ND N | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND N | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND N | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND N | CHLORO-ETHYL-ENETOTAL (UG/L) ND N | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND | CHLO- RIDE TOTAL (UG/L) ND ND ND ND ND ND | | APR 1987 16 27 MAY 19 JUN 25 JUL 27 SEP 28 NOV 09 DEC 07 MAR 1988 21 APR | CHLORO- BENZENE TOTAL (UG/L) ND | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND | CHLORO-PROPANE TOTAL (UG/L) ND N | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND | CHLOROBENZENE TOTAL (UG/L) ND | CHLORO-BENZENE TOTAL (UG/L) ND N | CHLORO-ETHYL-ENE TOTAL (UG/L) ND N | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND N | CHLORO-ETHYL-ENE ENE TOTAL
(UG/L) ND N | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND | CHLO- RIDE TOTAL (UG/L) ND | | APR 1987 16 27 MAY 19 JUN 25 JUL 27 SEP 28 NOV 09 DEC 07 MAR 1988 21 APR 05 20 | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND | CHLORO-PROPANE TOTAL (UG/L) ND N | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND | CHLOROBENZENE TOTAL (UG/L) ND | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND N | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND N | CHLORO-ETHYL-ENETOTAL (UG/L) ND N | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND | CHLO- RIDE TOTAL (UG/L) ND | | APR 1987 16 27 MAY 19 JUN 25 JUL 27 SEP 28 NOV 09 DEC 07 MAR 1988 21 APR 05 20 MAY | CHLORO-BENZENE TOTAL (UG/L) ND N | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND | CHLORO-PROPANE TOTAL (UG/L) ND N | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND
ND | CHLOROBENZENE TOTAL (UG/L) ND | CHLORO-BENZENE TOTAL (UG/L) ND N | CHLORO-ETHYL-ENE TOTAL (UG/L) ND N | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND N | CHLORO-ETHYL-ENE ENE TOTAL (UG/L) ND N | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND | CHLO- RIDE TOTAL (UG/L) ND | | APR 1987 16 27 MAY 19 JUN 25 JUL 27 SEP 28 NOV 09 DEC 07 MAR 1988 21 APR 05 20 MAY 02 18 JUN 29 | CHLORO-BENZENE TOTAL (UG/L) ND N | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND | CHLORO-PROPANE TOTAL (UG/L) ND N | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND
ND
ND
ND | CHLOROBENZENE TOTAL (UG/L) ND | CHLOROBENZENE TOTAL (UG/L) ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND N | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND N | CHLORO-ETHYL-ENE ENE TOTAL (UG/L) ND N | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND | CHLO- RIDE TOTAL (UG/L) ND | | APR 1987 16 27 MAY 19 JUN 25 JUL 27 SEP 28 NOV 09 DEC 07 MAR 1988 21 APR 05 20 MAY 02 18 JUN 29 SEP 06 | CHLORO-BENZENE TOTAL (UG/L) ND N | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND | CHLORO-PROPANE TOTAL (UG/L) ND N | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND
ND
ND
ND | CHLOROBENZENE TOTAL (UG/L) ND | CHLOROBENZENE TOTAL (UG/L) ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND N | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND N | CHLORO-ETHYL-ENE ENE TOTAL (UG/L) ND N | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND | CHLO-RIDE TOTAL (UG/L) ND | | APR 1987 16 27 MAY 19 JUN 25 JUL 27 SEP 28 NOV 09 DEC 07 MAR 1988 21 APR 05 20 MAY 02 18 JUN 29 SEP | CHLORO-BENZENE TOTAL (UG/L) ND N | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND | CHLORO-PROPANE TOTAL (UG/L) ND N | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND
ND
ND
ND
ND | CHLOROBENZENE TOTAL (UG/L) ND | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND N | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND N | CHLORO-ETHYL- ENE ENE TOTAL (UG/L) ND | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND | CHLO- RIDE TOTAL (UG/L) ND | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). ### STREAMS TRIBUTARY TO LAKE ERIE ### 04215790 BUFFALO RIVER AT OHIO STREET AT BUFFALO, NY - continued ### SUSPENDED SEDIMENT DISCHARGE | DATE | TIME | SEDI-
MENT,
SUS-
PENDED
(MG/L) | |-----------|------|--| | APR 1987 | | | | 16 | 1445 | 48 | | 27 | 1245 | 54 | | MAY | | | | 19 | 1200 | 65 | | JUN | | | | 25 | 1130 | 52 | | NOV
09 | 0930 | 30 | | DEC | 0930 | 30 | | 07 | 1400 | 10 | | MAY 1988 | 1400 | 10 | | 18 | 0900 | 33 | | JUN | | | | 29 | 1000 | 40 | | SEP | | | | 06 | 0845 | 23 | | oct
• | 0015 | 20 | | 04
NOV | 0915 | 28 | | 15 | 0800 | 32 | | 10 | 0300 | 26 | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). #### ST. LAWRENCE RIVER MAIN STEM ### 04216060 NIAGARA RIVER AT ANDERSON PARK, BUFFALO, NY LOCATION.--Lat 42 54'53", long 78 54'12", Erie Coutny, Hydrologic Unit 04120104, at Anderson Park (Broderick Park) dock at foot of Ferry Street on Squaw Island, Buffalo, 0.6 mi downstream from Peace Bridge. DRAINAGE AREA. -- 263,700 mi2. PERIOD OF RECORD.--Water years 1987 to 1989. CHEMICAL DATA: 1987-88 (c), 1989 (a). MINOR ELEMENT DATA: 1987-88 (c), 1989 (a). PESTICIDE DATA: 1987 (b), 1988 (c), 1989 (a). NUTRIENT DATA: 1987-88 (c), 1989 (a). SEDIMENT DATA: 1987-88 (b), 1989 (a). REMARKS--Water-discharge records obtained from daily discharge furnished by Detroit District Corp. of Engineers and Canada Department of the Environment. | DATE | TIME | DIS-
CHARGE,
IN
CUBIC
FEET
PER
SECOND | SPE-
CIFIC
CON-
DUCT-
ANCE
LAB
(US/CM) | PH WATER WHOLE FIELD (STAND- ARD UNITS) | TEMPER-
ATURE
WATER
(DEG C) | TUR-
BID-
ITY
(NTU) | BARO-
METRIC
PRES-
SURE
(MM
OF
HG) | OXYGEN,
DIS-
SOLVED
(MG/L) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | |-----------|------|---|--|---|--------------------------------------|------------------------------|--|-------------------------------------|---|--|--|--| | APR 1987 | | | | | | | | | | | | | | 14 | 1500 | 246000 | | 8.0 | 11.0 | 5.3 | | 14.1 | 190 | 60 | 10 | | | 27 | 1100 | 248000 | | 8.3 | 7.0 | 1.5 | | 12.4 | 130 | 39 | 8.5 | | | MAY | | | | | | | | | | | | | | 19 | 1030 | 234000 | 301 | 8.1 | 11.0 | 2.8 | | | 130 | 37 | 8.4 | | | JUN | | | | | | | | | | | | | | 25 | 1030 | 236000 | | 8.3 | 21.0 | 7.6 | | | 130 | 37 | 8.4 | | | JUL | 0045 | 0.40000 | | | | | | | | • • | | | | 27 | 0915 | 243000 | | 8.1 | 24.5 | 10 | | | 130 | 38 | 8.3 | | | SEP | 1110 | 227000 | 202 | 0.6 | 22.0 | | | | | | | | | 28
NOV | 1110 | 227000 | 292 | 8.6 | 22.0 | | | | | | | | | 09 | 1020 | 214000 | | 8.0 | 8.5 | 4.8 | | 10.6 | 130 | 37 | 8.2 | | | DEC | 1020 | 214000 | | 0.0 | 0.5 | 4.0 | | 10.6 | 130 | 31 | 0.2 | | | 07 | 0945 | 207000 | | 8.4 | 5.0 | 3.8 | | 11.4 | 100 | 31 | 6.5 | | | MAR 1988 | | 20, | | • • • | 3.0 | 3.0 | | | 100 | J. | 0.5 | | | 21 | 1115 | 208000 | 285 | 8.5 | 0.5 | 2.5 | | | 120 | 35 | 8.0 | 9.8 | | APR | | | | | | | | | | | | | | 06 | 0830 | 212000 | 272 | 7.7 | 3.0 | 16 | | | | | | | | 18 | 1040 | 211000 | 262 | | 1.0 | 3.8 | | | 110 | 32 | 7.3 | 9.4 | | MAY | | | | | | | | | | | | | | 03 | 1015 | 217000 | 283 | 8.2 | 9.0 | 4.6 | | 11.2 | | | | | | 16 | 1020 | 223000 | 300 | 8.4 | 11.0 | 2.5 | | 11.0 | 130 | 37 | 8.7 | 10 | | JUN | | | | | | | | | | | | | | 29 | 0900 | 203 0 00 | 295 | 8.4 | 19.0 | 3.9 | | | 120 | 36 | 8.5 | 9.5 | | SEP
07 | 1015 | 203000 | 285 | 8.2 | 20.0 | 2.2 | | | 100 | 33 | 0.6 | 0.0 | | OCT | 1015 | 203000 | 285 | 8.2 | 20.0 | 2.2 | | | 120 | 33 | 8.6 | 9.0 | | 03 | 0830 | 192000 | 294 | 8.2 | 17.0 | 2.0 | 763 | 7.6 | 130 | 38 | 9.0 | 9.8 | | NOV | 0030 | 132000 | 234 | 0.2 | 17.0 | 2.0 | 763 | 7.6 | 130 | 36 | 3.0 | 9.0 | | 14 | 0830 | 205000 | 302 | 8.3 | 8.0 | 8.0 | 763 | 10.2 | 130 | 38 | 9.1 | 10 | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). #### ST. LAWRENCE RIVER MAIN STEM ### 04216060 NIAGARA RIVER AT ANDERSON PARK, BUFFALO, NY - continued #### WATER-QUALITY DATA (continued) | DATE | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K) | ALKA-
LINITY
LAB
(MG/L
AS
CACO3) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4) | DIS-
SOLV
(MG/ | , RID
DI
ED SOL
L (MG | O- RE
E, AT
S- D
VED | SIDUE SU
180 CC
DEG. C TU
DIS-
SOLVED S | NSTI-
ENTS, | SOLIDS,
RESIDUE
AT 105
DEG. C,
TOTAL
(MG/L) | SOLIDS,
VOLA-
TILE ON
IGNI-
TION,
TOTAL
(MG/L) | RESIDUE
TOTAL
FIXED
(MG/L) | NITRO-
GEN,
NITRATE
TOTAL
(MG/L
AS N) | NITRO-
GEN,
NITRITE
TOTAL
(MG/L
AS N) | |--|---|--|---|---|--|--|---|--------------------------------------|--|--
---|--|--| | APR 1987 | | | | | | | | | | | | | | | 14 | | | | | _ | _ | 168 | | 174 | 54 | 148 | | ND | | 27 | | | | | _ | _ | 156 | | 172 | 50 | 126 | | ND | | MAY | | | | | | | | | | | | | | | 19 | | | | ~- | - | - | 168 | | 192 | 60 | 132 | | ND | | JUN | | | | | | | 1.00 | | 175 | | 144 | 0 220 | 0.00 | | 25
JUL | | | | ~- | - | - | 166 | | 175 | 52 | 144 | 0.230 | 0.00 | | 27 | | | | | _ | _ | 164 | | 185 | 116 | 52 | | ND | | SEP | | | | | | | | | ••• | | | | | | 28 | | | | | - | - | | | 162 | | | 0.090 | 0.00 | | NOV | | | | | | | 160 | | 170 | 5.0 | 110 | | | | 09
DEC | | | | | - | - | 160 | | 170 | 56 | 118 | | ND | | 07 | | | | | _ | _ | 176 | | 196 | 80 | 116 | | ND | | MAR 1988 | | | | | | | | | | | | | | | 21 | 1.4 | 97 | 25 | 17 | 0 | .20 | 162 | 155 | 170 | 46 | 124 | | | | APR | | 07 | 20 | 1.0 | ^ | 20 | 1.00 | | 222 | 44 | 100 | 0 200 | 0.00 | | 06
18 | 1.2 | 87
82 | 28
2 4 | 16
16 | | .20
.20 | 168
176 | 139 | 232
1 84 | 44
32 | 188
152 | 0.290 | 0.00
ND | | MAY | 1.2 | 02 | 4.4 | 10 | U | .20 | 170 | 133 | 104 | 32 | 132 | | ND | | 03 | | 94 | | | - | - | 180 | | 196 | 28 | 168 | 0.300 | 0.00 | | 16 | 1.4 | 97 | 21 | 15 | 0 | .20 | 188 | 151 | 200 | 96 | 104 | 0.320 | 0.00 | | JUN | | | 25 | | • | 20 | | 150 | 200 | 0.4 | 11. | 0 250 | | | 29
SEP | 1.4 | 100 | 25 | 15 | U | .30 | 188 | 156 | 200 | 84 | 116 | 0.250 | 0.00 | | 07 | 1.2 | 95 | 25 | 15 | 0 | .10 | 164 | 149 | 180 | 60 | 120 | 0.240 | 0.00 | | OCT | | | | | _ | | | | | | | | | | 03 | 1.4 | 96 | 30 | 15 | 0 | .10 | 176 | 161 | 192 | 80 | 112 | 0.210 | 0.00 | | NOV
14 | 1.6 | 98 | 30 | 15 | • | .10 | 180 | 163 | 192 | 76 | 116 | | ND | | 14 | 1.0 | 36 | 30 | 13 | U | .10 | 180 | 103 | 192 | 76 | 110 | | ND | | DATE | NIT
GE
NO2+
TOT
(MG
AS | N, GI
NO3 AMMO
AL TO:
/L (MO | EN, G
ONIA AMM
FAL TO
G/L (M | EN,
ONIA O
TAL '
G/L | GEN, | NITRO-
GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | NITRO- | NITR
GEN
TOTA
(MG/
AS NO | , PHORU
L TOTA
L (MG) | JS DIS-
NL SOLVI
'L (MG/I | JS PHATHO, ORTHOUGH DISCOURTS SOLVED SOLVED. | TE, INU
HO, TOT.
S- REC'
/ED ERAI
/L (UG | M,
AL
OV-
BLE
/L | | | | | | | | | | | | | | | | | APR 1987 | | 200 0 | 020 | 0 02 | 0.26 | 0.20 | 0 67 | , | | 110 110 | | | | | 14
27 | | | | 0.03
0.04 | 0.26
0.11 | 0.28 | | | | | | | | | MAY | | | | | | | | | | | | | | | 19 | 0. | 140 0 | .040 | 0.05 | 0.08 | 0.12 | 0.26 | 1. | 2 0.0 | 10 ND | | - | - | | JUN
25 | 0. | 230 0. | .030 | 0.04 | 0.15 | 0.18 | 0.41 | 1. | 8 0.0 | 20 ND | | | _ | | JUL | | | | | | | | | | | | | | | 27
SEP | 0. | 120 0. | .040 | 0.05 | 0.14 | 0.18 | | | | | 0. | .0 | - | | 28 | | | | | | 0.10 | 0.30 | 1. | 3 0.0 | 0.0 | | | | | 11011 | 0. | 090 0 | .020 | 0.03 | 0.29 | 0.31 | | | | | 00 0 | .0 | - | | NOV | | | | | | 0.31 | 0.40 | 1. | 8 0.0 | 010 0.0 | | | | | 09 | | | | 0.03 | 0.29 | | 0.40 | 1. | 8 0.0 | 010 0.0 | | | | | 09
DEC
07 | o.
o. | 200 0. | .020 | | | 0.31 | 0.40 | 1. | 8 0.0
7 0.0 | 010 0.0 | 00 0 | .0 | - | | 09
DEC
07
MAR 1988 | 0. | 200 0.
210 0. | .020 | 0.03 | 0.16 | 0.31
0.18
0.17 | 0.40
0.38
0.38 | 1.
1. | 8 0.0
7 0.0
7 0.0 | 010 0.0
010 0.0
020 0.0 | 00 0 | .0 | - | | 09
DEC
07
MAR 1988
21 | 0. | 200 0.
210 0. | .020 | 0.03 | 0.16 | 0.31 | 0.40
0.38
0.38 | 1.
1. | 8 0.0
7 0.0
7 0.0 | 010 0.0
010 0.0
020 0.0 | 00 0 | .0 | - | | 09
DEC
07
MAR 1988
21
APR | 0.
0. | 200 0.
210 0.
250 0. | .020
.00 | 0.03 | 0.16 | 0.31
0.18
0.17 | 0.40
0.38
0.38
0.46 | 1.
1.
1. | 8 0.0
7 0.0
7 0.0
0 0.0 | 010 0.0
010 0.0
020 0.0
010 0.0 | 00 0 | 0 | - | | 09 DEC 07 MAR 1988 21 APR 06 18 | 0.
0.
0. | 200 0.
210 0.
250 0.
290 0. | .020
.00
.010 | 0.03
0.0
0.01 | 0.16
0.17
0.20 | 0.31
0.18
0.17
0.21 | 0.40
0.38
0.38
0.46 | 1.
1.
2. | 8 0.0
7 0.0
7 0.0
0 0.0
5 0.0 | 010 0.0
010 0.0
020 0.0
010 0.0 | 00 0. | 0 | -
-
60 | | 09 DEC 07 MAR 1988 21 APR 06 18 MAY | 0.
0.
0. | 200 0.
210 0.
250 0.
290 0.
270 0. | .020
.00
.010
.270 | 0.03
0.0
0.01
0.35
0.03 | 0.16
0.17
0.20
0.46
0.16 | 0.31
0.18
0.17
0.21
0.73
0.18 | 0.40
0.38
0.38
0.46
1.0 | 1.
1.
2.
4. | 8 0.0
7 0.0
7 0.0
0 0.0
5 0.0 | 010 0.0
010 0.0
020 0.0
010 0.0 | 00 0.00 0.00 0.00 0.00 | 0 | -
-
60
400
130 | | 09 DEC 07 MAR 1988 21 APR 06 18 MAY 03 | 0.
0.
0.
0. | 200 0.
210 0.
250 0.
290 0.
270 0. | .020
.00
.010
.270
.020 | 0.03
0.0
0.01
0.35
0.03 | 0.16
0.17
0.20
0.46
0.16 | 0.31
0.18
0.17
0.21
0.73
0.18 | 0.40
0.38
0.38
0.46
1.0
0.45 | 1.
1.
2.
4.
2. | 8 0.0
7 0.0
7 0.0
0 0.0
5 0.0
5 0.0 | 010 0.0
010 0.0
020 0.0
010 0.0
010 ND | 00 0.00 | 0 | -
60
400
130 | | 09 DEC 07 MAR 1988 21 APR 06 18 MAY | 0.
0.
0.
0. | 200 0.
210 0.
250 0.
290 0.
270 0. | .020
.00
.010
.270
.020 | 0.03
0.0
0.01
0.35
0.03 | 0.16
0.17
0.20
0.46
0.16 | 0.31
0.18
0.17
0.21
0.73
0.18 | 0.40
0.38
0.38
0.46
1.0
0.45 | 1.
1.
2.
4.
2. | 8 0.0
7 0.0
7 0.0
0 0.0
5 0.0
5 0.0 | 010 0.0
010 0.0
020 0.0
010 0.0
010 ND | 00 0.00 0.00 0.00 0.00 | 0 | -
-
60
400
130 | | 09 DEC 07 MAR 1988 21 APR 06 18 MAY 03 | 0.
0.
0.
0. | 200 0.
210 0.
250 0.
290 0.
270 0.
300 0.
320 0. |
.020
.00
.010
.270
.020 | 0.03
0.0
0.01
0.35
0.03
0.03 | 0.16
0.17
0.20
0.46
0.16
0.25
0.21 | 0.31
0.18
0.17
0.21
0.73
0.18
0.27 | 0.40
0.38
0.38
0.46
1.0
0.45
0.57 | 1.
1.
2.
4.
2. | 8 0.0
7 0.0
7 0.0
0 0.0
5 0.0
0 0.0
4 0.0 | 010 0.0
010 0.0
020 0.0
010 0.0
020 ND
010 ND | 00 0.00 | 0 | -
60
400
130 | | 09 DEC 07 MAR 1988 21 APR 06 18 MAY 03 16 JUN 29 SEP | 0.
0.
0.
0.
0. | 200 0. 210 0. 250 0. 290 0. 270 0. 300 0. 320 0. | .020
.00
.010
.270
.020
.020
.010 | 0.03
0.0
0.01
0.35
0.03
0.03
0.01 | 0.16
0.17
0.20
0.46
0.16
0.25
0.21 | 0.31
0.18
0.17
0.21
0.73
0.18
0.27
0.22 | 0.40
0.38
0.38
0.46
1.0
0.45
0.57
0.54 | 1. 1. 2. 4. 2. 2. 2. | 8 0.0
7 0.0
0 0.0
5 0.0
0 0.0
5 0.0
3 0.0 | 010 0.0
010 0.0
020 0.0
010 0.0
020 ND
010 ND | 00 0.00 | 0 | -
60
400
130
140
90 | | 09 DEC 07 MAR 1988 21 APR 06 18 MAY 03 16 JUN 29 SEP 07 | 0.
0.
0.
0.
0. | 200 0. 210 0. 250 0. 290 0. 270 0. 300 0. 320 0. | .020
.00
.010
.270
.020
.020
.010 | 0.03
0.0
0.01
0.35
0.03
0.03 | 0.16
0.17
0.20
0.46
0.16
0.25
0.21 | 0.31
0.18
0.17
0.21
0.73
0.18
0.27 | 0.40
0.38
0.38
0.46
1.0
0.45
0.57
0.54 | 1.
1.
2.
4.
2.
2. | 8 0.0
7 0.0
0 0.0
5 0.0
0 0.0
5 0.0
3 0.0 | 010 0.0
010 0.0
020 0.0
010 0.0
020 ND
010 ND | 00 0.00 | 0 | -
60
400
430
140
90 | | 09 DEC 07 MAR 1988 21 APR 06 18 MAY 03 16 JUN 29 SEP 07 OCT | 0.
0.
0.
0.
0.
0. | 200 0. 210 0. 250 0. 290 0. 270 0. 300 0. 320 0. 250 0. | .020
.00
.010
.270
.020
.020
.010 | 0.03
0.0
0.01
0.35
0.03
0.03
0.01
0.13 | 0.16
0.17
0.20
0.46
0.16
0.25
0.21
0.18 | 0.31
0.18
0.17
0.21
0.73
0.18
0.27
0.22
0.28 | 0.40
0.38
0.38
0.46
1.0
0.45
0.57
0.54 | 1. 1. 2. 4. 2. 2. 1. | 8 0.0
7 0.0
0 0.0
5 0.0
0 0.0
5 0.0
4 0.0
9 0.0 | 010 0.0 010 0.0 020 0.0 010 0.0 020 ND 010 ND 020 ND 010 ND 010 ND | 00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 | 0 | 60
400
130
140
90 | | 09 DEC 07 MAR 1988 21 APR 06 18 MAY 03 16 JUN 29 SEP 07 OCT 03 | 0.
0.
0.
0.
0.
0. | 200 0. 210 0. 250 0. 290 0. 270 0. 300 0. 320 0. 250 0. | .020
.00
.010
.270
.020
.020
.010 | 0.03
0.0
0.01
0.35
0.03
0.03
0.01 | 0.16
0.17
0.20
0.46
0.16
0.25
0.21 | 0.31
0.18
0.17
0.21
0.73
0.18
0.27
0.22 | 0.40
0.38
0.38
0.46
1.0
0.45
0.57
0.54 | 1. 1. 2. 4. 2. 2. 1. | 8 0.0
7 0.0
7 0.0
0 0.0
5 0.0
5 0.0
4 0.0
9 0.0 | 010 0.0 010 0.0 020 0.0 010 0.0 020 ND 010 ND 020 ND 010 ND 010 ND | 00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 | 0 | -
60
400
130
140
90 | | 09 DEC 07 MAR 1988 21 APR 06 18 MAY 03 16 JUN 29 SEP 07 OCT | 0.
0.
0.
0.
0.
0. | 200 0. 210 0. 250 0. 290 0. 270 0. 300 0. 320 0. 250 0. 240 0. | .020
.00
.010
.270
.020
.020
.010
.100
.010 | 0.03
0.0
0.01
0.35
0.03
0.03
0.01
0.13 | 0.16
0.17
0.20
0.46
0.16
0.25
0.21
0.18 | 0.31
0.18
0.17
0.21
0.73
0.18
0.27
0.22
0.28 | 0.40
0.38
0.38
0.46
1.0
0.45
0.57
0.54
0.53 | 1. 1. 2. 4. 2. 2. 2. 2. | 8 0.0
7 0.0
0 0.0
5 0.0
0 0.0
4 0.0
3 0.0
9 0.0 | 010 0.0 010 0.0 020 0.0 010 0.0 020 ND 010 ND 010 ND 010 ND | 00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 | 0 | 60
400
130
140
90 | Table 4.--Selected water-quality and bottom-material data
from streams in New York, 1987-88 (continued). ## ST. LAWRENCE RIVER MAIN STEM ## 04216060 NIAGARA RIVER AT ANDERSON PARK, BUFFALO, NY - continued | DATE | ALUM-
INUM,
DIS-
SOLVED
(UG/L
AS AL) | CADMIUM
TOTAL
RECOV-
ERABLE
(UG/L
AS CD) | CADMIUM
DIS-
SOLVED
(UG/L
AS CD) | COPPER,
TOTAL
RECOV-
ERABLE
(UG/L
AS CU) | COPPER,
DIS-
SOLVED
(UG/L
AS CU) | IRON,
TOTAL
RECOV-
ERABLE
(UG/L
AS FE) | IRON,
DIS-
SOLVED
(UG/L
AS FE) | LEAD,
TOTAL
RECOV-
ERABLE
(UG/L
AS PB) | LEAD,
DIS-
SOLVED
(UG/L
AS PB) | MANGA-
NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN) | |--|---|---|---|--|---|---|---|---|--|---|---| | APR 1987 | | | | | | | | | | | | | 14
27 | | <10
<10 | | 20
10 | | 240
110 | | <100
5 | | 10
10 | | | MAY | | | | | | | | | | | | | 19
JUN | | <10 | | <10 | | 190 | | <100 | | <10 | | | 25
JUL | | <10 | <1.0 | <10 | 8 | 430 | | 8 | < 5 | 20 | | | 27
SEP | | <10 | | 20 | | 540 | | 9 | | 30 | | | 28
NOV | | <10 | | 10 | | 250 | | <100 | | 10 | 10 | | 09
DEC | | <1 | | 5 | | 320 | | 5 | | 20 | | | 07
MAR 1988 | | <1 | <1.0 | 9 | 2 | 260 | | 7 | <5 | 10 | | | 21
APR | <10 | <1 | <1.0 | 24 | 1 | 340 | 11 | <5 | <5 | <10 | 5 | | 06
18 | 10 | <1
1 | <1.0 | 9
5 |
1 | 670
230 | 8 | <5
<5 |
< 5 | 20
20 |
5 | | MAY
03 | | 1 | | 6 | | 290 | | < 5 | | 10 | | | 16
JUN | <10 | <1 | <1.0 | 6 | 2 | 240 | <3 | <5 | <5 | 20 | 1 | | 29
SEP | | 2 | | 6 | | 300 | | <5 | | 20 | | | 07
OCT | | <1 | | 5 | ~- | 160 | | < 5 | | 10 | | | 03 | 10 | 1 | <1.0 | 6 | 1 | 160 | 23 | < 5 | <5 | 10 | 3 | | 14 | | <1 | | 3 | | 590 | | < 5 | | 40 | | | | | | | | | | | | | | | | DATE | MERCURY
TOTAL
RECOV-
ERABLE
(UG/L
AS HG) | NICKEL,
TOTAL
RECOV-
ERABLE
(UG/L
AS NI) | NICKEL,
DIS-
SOLVED
(UG/L
AS NI) | ZINC,
TOTAL
RECOV-
ERABLE
(UG/L
AS ZN) | ZINC,
DIS-
SOLVED
(UG/L
AS ZN) | PHENOL
(C6H-
5OH)
TOTAL
(UG/L) | BROMO-
FORM
TOTAL
(UG/L) | CARBON-
TETRA-
CHLO-
RIDE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
DI-
BROMO-
METHANE
TOTAL
(UG/L) | CHLORO-
ETHANE
TOTAL
(UG/L) | | | TOTAL
RECOV-
ERABLE
(UG/L | TOTAL
RECOV-
ERABLE
(UG/L | DIS-
SOLVED
(UG/L | TOTAL
RECOV-
ERABLE
(UG/L | DIS-
SOLVED
(UG/L | (C6H-
5OH)
TOTAL | FORM
TOTAL | TETRA-
CHLO-
RIDE
TOTAL | BENZENE
TOTAL | DI-
BROMO-
METHANE
TOTAL | ethane
total | | DATE
APR 1987
14 | TOTAL
RECOV-
ERABLE
(UG/L | TOTAL
RECOV-
ERABLE
(UG/L | DIS-
SOLVED
(UG/L | TOTAL
RECOV-
ERABLE
(UG/L
AS ZN) | DIS-
SOLVED
(UG/L | (C6H-
5OH)
TOTAL | FORM
TOTAL | TETRA-
CHLO-
RIDE
TOTAL | BENZENE
TOTAL | DI-
BROMO-
METHANE
TOTAL | ethane
total | | APR 1987 | TOTAL
RECOV-
ERABLE
(UG/L
AS HG) | TOTAL
RECOV-
ERABLE
(UG/L
AS NI) | DIS-
SOLVED
(UG/L
AS NI) | TOTAL
RECOV-
ERABLE
(UG/L
AS ZN) | DIS-
SOLVED
(UG/L
AS ZN) | (C6H-
5OH)
TOTAL
(UG/L) | FORM
TOTAL
(UG/L) | TETRA-
CHLO-
RIDE
TOTAL
(UG/L) | BENZENE
TOTAL
(UG/L) | DI-
BROMO-
METHANE
TOTAL
(UG/L) | ETHANE
TOTAL
(UG/L) | | APR 1987
14
27
MAY
19 | TOTAL
RECOV-
ERABLE
(UG/L
AS HG) | TOTAL
RECOV-
ERABLE
(UG/L
AS NI) | DIS-
SOLVED
(UG/L
AS NI) | TOTAL
RECOV-
ERABLE
(UG/L
AS ZN) | DIS-
SOLVED
(UG/L
AS ZN) | (C6H-
5OH)
TOTAL
(UG/L) | FORM TOTAL (UG/L) | TETRA-
CHLO-
RIDE
TOTAL
(UG/L) | BENZENE
TOTAL
(UG/L) | DI-
BROMO-
METHANE
TOTAL
(UG/L) | ETHANE
TOTAL
(UG/L)
ND | | APR 1987
14
27
MAY
19
JUN
25 | TOTAL RECOV- ERABLE (UG/L AS HG) <0.10 0.10 | TOTAL RECOV- ERABLE (UG/L AS NI) <100 <1 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV- ERABLE (UG/L AS ZN) 10 <10 | DIS-
SOLVED
(UG/L
AS ZN) | (C6H-
5OH)
TOTAL
(UG/L) | FORM TOTAL (UG/L) ND ND | TETRA-
CHLO-
RIDE
TOTAL
(UG/L)
ND | BENZENE
TOTAL
(UG/L)
ND
ND | DI-
BROMO-
METHANE
TOTAL
(UG/L)
ND | ETHANE
TOTAL
(UG/L)
ND
ND | | APR 1987 14 27 MAY 19 JUN 25 JUL 27 | TOTAL
RECOV-
ERABLE
(UG/L
AS HG)
<0.10
0.10 | TOTAL RECOV- ERABLE (UG/L AS NI) <100 <1 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV- ERABLE (UG/L AS ZN) 10 <10 | DIS-
SOLVED
(UG/L
AS ZN) | (C6H-
50H)
TOTAL
(UG/L) | FORM TOTAL (UG/L) ND ND | TETRA-CHLO-RIDE TOTAL (UG/L) ND ND | BENZENE
TOTAL
(UG/L)
ND
ND | DI-
BROMO-
METHANE
TOTAL
(UG/L)
ND
ND | ETHANE
TOTAL
(UG/L)
ND
ND | | APR 1987 14 27 MAY 19 JUN 25 JUL 27 SEP 28 | TOTAL RECOV- ERABLE (UG/L AS HG) <0.10 0.10 <0.10 <0.10 | TOTAL RECOV- ERABLE (UG/L AS NI) <100 <1 <100 <1 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV- ERABLE (UG/L AS ZN) 10 <10 <10 | DIS-
SOLVED
(UG/L
AS ZN) | (C6H-
50H)
TOTAL
(UG/L) | FORM TOTAL (UG/L) ND ND | TETRA-CHLO-RIDE TOTAL (UG/L) ND ND | BENZENE
TOTAL
(UG/L)
ND
ND | DI-
BROMO-
METHANE
TOTAL
(UG/L)
ND
ND | ETHANE
TOTAL
(UG/L)
ND
ND | | APR 1987 14 27 MAY 19 JUN 25 JUL 27 SEP 28 NOV | TOTAL RECOV- ERABLE (UG/L AS HG) <0.10 0.10 <0.10 <0.10 0.10 | TOTAL RECOV- BERABLE (UG/L AS NI) <100 <1 <100 <1 <200 <1 2 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV-ERABLE (UG/L AS ZN) 10 <10 10 10 | DIS-
SOLVED
(UG/L
AS ZN) | (C6H-
50H)
TOTAL
(UG/L) | FORM
TOTAL
(UG/L)
ND
ND
ND | TETRA-CHLO-RIDE TOTAL (UG/L) ND ND ND | BENZENE
TOTAL
(UG/L)
ND
ND
ND | DI-
BROMO-
METHANE
TOTAL
(UG/L)
ND
ND
ND | ETHANE
TOTAL
(UG/L)
ND
ND
ND | | APR 1987 14 27 MAY 19 JUN 25 JUL 27 SEP 28 NOV 09 DEC 07 | TOTAL RECOV- ERABLE (UG/L AS HG) <0.10 0.10 <0.10 <0.10 <0.10 | TOTAL RECOV- ERABLE (UG/L AS NI) <100 <1 <100 <1 2 <100 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV- ERABLE (UG/L AS ZN) 10 <10 10 <10 <10 <10 | DIS-
SOLVED
(UG/L
AS ZN) | (C6H-
50H)
TOTAL
(UG/L) | FORM TOTAL (UG/L) ND ND ND ND ND | TETRA- CHLO- RIDE TOTAL (UG/L) ND ND ND ND ND | BENZENE
TOTAL
(UG/L)
ND
ND
ND
ND | DI- BROMO- METHANE TOTAL (UG/L) ND ND ND ND ND | ETHANE TOTAL (UG/L) ND ND ND ND ND | | APR 1987 14 27 MAY 19 JUN 25 JUL 27 SEP 28 NOV 09 DEC | TOTAL RECOV- ERABLE (UG/L AS HG) <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 | TOTAL RECOV- ERABLE (UG/L AS NI) <100 <1 <100 <1 2 <100 <1 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOVERABLE (UG/L AS ZN) 10 <10 10 <10 10 <10 10 <10 | DIS-
SOLVED
(UG/L
AS ZN) | (C6H-
50H)
TOTAL
(UG/L) | FORM TOTAL (UG/L) ND ND ND ND ND ND ND ND | TETRA-CHLO-RIDE TOTAL (UG/L) ND N | BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND | DI- BROMO- METHANE TOTAL (UG/L) ND ND ND ND ND ND ND | ETHANE TOTAL (UG/L) ND | | APR 1987 14 27 MAY 19 JUN 25 JUL 27 SEP 28 NOV 09 DEC 07 MAR 1988 21 APR | TOTAL RECOV- ERABLE (UG/L AS HG) <0.10 0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 | TOTAL RECOV- REABLE (UG/L AS NI) <100 <1 <100 <1 2 <100 <1 5 4100 <1 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOVERABLE (UG/L AS ZN) 10 <10 10 10 10 10 10 10 10 10 10 | DIS-
SOLVED
(UG/L
AS 2N) | (C6H-
50H)
TOTAL
(UG/L) | FORM TOTAL (UG/L) ND | TETRA- CHLO- RIDE TOTAL (UG/L) ND | BENZENE TOTAL (UG/L) ND | DI- BROMO- METHANE TOTAL (UG/L) ND | ETHANE TOTAL (UG/L) ND | | APR 1987 14 27 MAY 19 JUN 25 JUL 27 SEP 28 NOV 09 DEC 07 MAR 1988 21 | TOTAL RECOV- ERABLE (UG/L AS HG) <0.10 0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 | TOTAL RECOV- ERABLE (UG/L AS NI) <100 <1 <100 <1 <100 <1 5 <100 <1 5 <100 <1 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV-ERABLE (UG/L AS ZN) 10 <10 10 10 10 10 30 | DIS-
SOLVED
(UG/L
AS 2N) | (C6H-
50H)
TOTAL
(UG/L) | FORM TOTAL (UG/L) ND | TETRA- CHLO- RIDE TOTAL (UG/L) ND | BENZENE TOTAL (UG/L) ND | DI- BROMO- METHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND | ETHANE TOTAL (UG/L) ND | | APR 1987 14 27 MAY 19 JUN 25 JUL 27 SEP 28 NOV 09 DEC 07 MAR 1988 21 APR 06 18 MAY 03 | TOTAL RECOV- ERABLE (UG/L AS HG) <0.10 | TOTAL RECOV- REABLE (UG/L AS NI) <100 <1 <100 <1 <100 <1 5 4 5 4 7 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOVERABLE (UG/L AS ZN) 10 <10 10 10 10 10 10 10 10 10 10 | DIS-
SOLVED
(UG/L
AS 2N) | (C6H-
50H)
TOTAL
(UG/L) | FORM TOTAL (UG/L) ND | TETRA-CHLO-RIDE TOTAL (UG/L) ND N | BENZENE TOTAL (UG/L) ND | DI- BROMO- METHANE TOTAL (UG/L) ND | ETHANE TOTAL (UG/L) ND | | APR 1987 14 27 MAY 19 JUN 25 JUL 27 SEP 28 NOV 09 DEC 07 MAR 1988 21 APR 06 18 MAY 03 16 JUN | TOTAL RECOV- ERABLE (UG/L AS HG) <0.10 | TOTAL RECOV- RECOV- ERABLE (UG/L AS NI) <100 <1 <100 <1 2 <100 <1 5 4 7 1 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOVERABLE (UG/L AS ZN) 10 <10 10 10 10 10 10 10 10 10 10 |
DIS-
SOLVED
(UG/L
AS 2N) | (C6H-
50H)
TOTAL
(UG/L) | FORM TOTAL (UG/L) ND | TETRA-CHLO-RIDE TOTAL (UG/L) ND N | BENZENE TOTAL (UG/L) ND | DI- BROMO- METHANE TOTAL (UG/L) ND | ETHANE TOTAL (UG/L) ND | | APR 1987 14 27 MAY 19 JUN 25 JUL 27 SEP 28 NOV 09 DEC 07 MAR 1988 21 APR 06 18 MAY 03 16 JUN 29 SEP | TOTAL RECOV- REABLE (UG/L AS HG) <0.10 | TOTAL RECOV- REABLE (UG/L AS NI) <100 <1 <100 <1 <100 <1 5 4 5 4 7 | DIS-
SOLVED
(UG/L
AS NI) <1 <1 <1 4 5 | TOTAL RECOVERABLE (UG/L AS ZN) 10 <10 10 10 10 10 10 10 10 10 10 | DIS-
SOLVED
(UG/L
AS 2N) <10 10 4 3 | (C6H-
50H)
TOTAL
(UG/L) | FORM TOTAL (UG/L) ND | TETRA-CHLO-RIDE TOTAL (UG/L) ND N | BENZENE TOTAL (UG/L) ND | DI- BROMO- METHANE TOTAL (UG/L) ND | ETHANE TOTAL (UG/L) ND | | APR 1987 14 27 MAY 19 JUN 25 JUL 27 SEP 28 NOV 09 DEC 07 MAR 1988 21 APR 06 18 MAY 03 16 JUN 29 | TOTAL RECOV- ERABLE (UG/L AS HG) <0.10 | TOTAL RECOV- ERABLE (UG/L AS NI) <100 <1 <100 <1 2 <100 <1 5 4 5 4 7 1 10 | DIS-
SOLVED
(UG/L
AS NI) <1 <1 <1 5 5 | TOTAL RECOVERABLE (UG/L AS ZN) 10 <10 10 10 10 10 10 10 10 10 10 | DIS-
SOLVED
(UG/L
AS 2N) | (C6H-
50H)
TOTAL
(UG/L) | FORM TOTAL (UG/L) ND | TETRA-CHLO-RIDE TOTAL (UG/L) ND N | BENZENE TOTAL (UG/L) ND | DI- BROMO- METHANE TOTAL (UG/L) ND | ETHANE TOTAL (UG/L) ND | | APR 1987 14 27 MAY 19 JUN 25 JUL 27 SEP 28 NOV 09 DEC 07 MAR 1988 21 APR 06 18 MAY 03 16 JUN 29 SEP O7 OCT | TOTAL RECOV- REABLE (UG/L AS HG) <0.10 | TOTAL RECOV- ERABLE (UG/L AS NI) <100 <1 <100 <1 2 <100 <1 5 4 5 4 7 1 100 1 | DIS-
SOLVED
(UG/L
AS NI) <1 <1 <1 4 5 | TOTAL RECOVERABLE (UG/L AS ZN) 10 <10 10 10 10 10 10 10 10 210 210 | DIS-
SOLVED
(UG/L
AS 2N) <10 10 4 <3 <3 | (C6H-
50H)
TOTAL
(UG/L) | FORM TOTAL (UG/L) ND | TETRA-CHLO-RIDE RIDE TOTAL (UG/L) ND N | BENZENE TOTAL (UG/L) ND | DI- BROMO- METHANE TOTAL (UG/L) ND | ETHANE TOTAL (UG/L) ND | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). ### ST. LAWRENCE RIVER MAIN STEM ## 04216060 NIAGARA RIVER AT ANDERSON PARK, BUFFALO, NY - continued | DATE | CHLORO-
FORM
TOTAL
(UG/L) | CIS
1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | DI-
CHLORO-
BROMO-
METHANE
TOTAL
(UG/L) | METHYL-
BROMIDE
TOTAL
(UG/L) | METHYL-
CHLO-
RIDE
TOTAL
(UG/L) | METHYL-
ENE
CHLO-
RIDE
TOTAL
(UG/L) | 1,1,1-
TRI-
CHLORO-
ETHANE
TOTAL
(UG/L) | 1,1-DI-
CHLORO-
ETHANE
TOTAL
(UG/L) | 1,1-DI-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 1,1,2-
TRI-
CHLORO~
ETHANE
TOTAL
(UG/L) | 1,1,2,2
TETRA-
CHLORO-
ETHANE
TOTAL
(UG/L) | |---|---|---|---|---|---|---|---|--|---|---|--| | APR 1987
14
27 | ND
ND | MAY
19 | ND | JUN
25 | ND | JUL
27 | | | ~= | | | | | | ~- | | | | SEP
28 | ND | NOV 09 | ND | DEC | | | | | | | | | | | | | 07
MAR 1988 | ND | 21
APR | ND | ND | ND | ND | ND | 0.5 | ND | ND | ND | ND | ND | | 06
18 | ND
ND | N D
N D | ND
ND | MAY
03 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 16
JUN | ND | 29
SEP | ND | ND | ND | ND | ND | ND | 0.1 | ND | ND | ND | ND | | 07 | ND | OCT 03 | ND | NOV
14 | ND | N D | ND | ND | ND | 0.5 | ND | ND | ND | ND | ND | | | | | | | | | | | | | | | DATE | 1,2-DI-
CHLORO-
BENZENE
TOTAL
(UG/L) | 1,2-DI-
CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L) | 1,2-DI-
CHLORO-
PROPANE
TOTAL
(UG/L) | 1,2-
TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L) | 1,3-DI-
CHLORO-
BENZENE
TOTAL
(UG/L) | 1,4-DI-
CHLORO-
BENZENE
TOTAL
(UG/L) | TETRA-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | TRANS-
1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | TRI-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 2-
CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L) | VINYL
CHLO-
RIDE
TOTAL
(UG/L) | | APR 1987 | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L) | CHLORO-
PROPANE
TOTAL
(UG/L) | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L) | CHLO-
RIDE
TOTAL
(UG/L) | | APR 1987
14
27 | CHLORO-
BENZENE
TOTAL | CHLORO-
ETHANE
WATER
WHOLE
TOTAL | CHLORO-
PROPANE
TOTAL | TRANSDI
CHLORO-
ETHENE
TOTAL | CHLORO-
BENZENE
TOTAL | CHLORO-
BENZENE
TOTAL | CHLORO-
ETHYL~
ENE
TOTAL | 1,3-DI-
CHLORO-
PROPENE
TOTAL | CHLORO-
ETHYL-
ENE
TOTAL | CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL | CHLO-
RIDE
TOTAL | | APR 1987
14
27
MAY
19 | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L) | CHLORO-
PROPANE
TOTAL
(UG/L) | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L) | CHLO-
RIDE
TOTAL
(UG/L) | | APR 1987
14
27
MAY
19
JUN
25 | CHLORO-
BENZENE
TOTAL
(UG/L)
ND
ND | CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L)
ND
ND | CHLORO-
PROPANE
TOTAL
(UG/L)
ND
ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND | CHLORO-
BENZENE
TOTAL
(UG/L)
ND
ND | CHLORO-
BENZENE
TOTAL
(UG/L)
ND
ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND | CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L)
ND | CHLO-
RIDE
TOTAL
(UG/L)
ND
ND | | APR 1987
14
27
MAY
19
JUN | CHLORO-
BENZENE
TOTAL
(UG/L)
ND
ND | CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L)
ND
ND | CHLORO-
PROPANE
TOTAL
(UG/L)
ND
ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND | CHLORO-
BENZENE
TOTAL
(UG/L)
ND
ND | CHLORO-
BENZENE
TOTAL
(UG/L)
ND
ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND
ND | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
ND
ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND
ND | CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L)
ND
ND | CHLO-
RIDE
TOTAL
(UG/L)
ND
ND | | APR 1987 14 27 MAY 19 JUN 25 JUL | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND | CHLORO-
ETHANE WATER WHOLE TOTAL (UG/L) ND ND ND | CHLORO-
PROPANE
TOTAL
(UG/L)
ND
ND
ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND | CHLORO-
BENZENE
TOTAL
(UG/L)
ND
ND
ND | CHLORO-
BENZENE
TOTAL
(UG/L)
ND
ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND
ND
ND | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
ND
ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND
ND
ND | CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L)
ND
ND | CHLO-
RIDE
TOTAL
(UG/L)
ND
ND
ND | | APR 1987 14 27 MAY 19 JUN 25 JUL 27 SEP 28 NOV | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND ND ND ND ND | CHLORO-
PROPANE
TOTAL
(UG/L)
ND
ND
ND
ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND | CHLORO-BENZENE TOTAL (UG/L) ND N | CHLORO-ETHYL-ENE TOTAL (UG/L) ND ND ND ND ND ND ND | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND ND ND ND ND ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND
ND
ND | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND ND ND ND ND | CHLO-
RIDE
TOTAL
(UG/L)
ND
ND
ND | | APR 1987 14 27 MAY 19 JUN 25 JUL 27 SEP 28 NOV 09 DEC | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND ND ND ND ND ND ND | CHLORO-PROPANE TOTAL (UG/L) ND N | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND N | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND N | CHLORO-ETHYL-ENE ENE TOTAL (UG/L) ND N | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND ND ND ND ND ND | CHLO-RIDE TOTAL (UG/L) ND | | APR 1987 14 27 MAY 19 JUN 25 JUL 27 SEP 28 NOV 09 DEC 07 MAR 1988 | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO- ETHANE WATER WHOLE TOTAL (UG/L) ND | CHLORO-PROPANE TOTAL (UG/L) ND N | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND N | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND N | CHLORO-ETHYL-ENE
ENE TOTAL (UG/L) ND N | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND | CHLO-RIDE TOTAL (UG/L) ND N | | APR 1987 14 27 MAY 19 JUN 25 JUL 27 SEP 28 NOV 09 DEC 07 MAR 1988 21 APR | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND | CHLORO-PROPANE TOTAL (UG/L) ND N | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND N | CHLOROBENZENE TOTAL (UG/L) ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND N | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND N | CHLORO- ETHYL- ENE TOTAL (UG/L) ND | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND | CHLO-RIDE TOTAL (UG/L) ND N | | APR 1987 14 27 MAY 19 JUN 25 JUL 27 SEP 28 NOV 09 DEC 07 MAR 1988 21 APR 06 18 | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO- ETHANE WATER WHOLE TOTAL (UG/L) ND | CHLORO-PROPANE TOTAL (UG/L) ND N | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND N | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND N | CHLORO-ETHYL-ENE ENE TOTAL (UG/L) ND N | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND | CHLO-RIDE TOTAL (UG/L) ND N | | APR 1987 14 27 MAY 19 JUN 25 JUL 27 SEP 28 NOV 09 DEC 07 MAR 1988 21 APR 06 18 MAY 03 16 | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO- ETHANE WATER WHOLE TOTAL (UG/L) ND | CHLORO-PROPANE TOTAL (UG/L) ND N | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND
ND | CHLOROBENZENE TOTAL (UG/L) ND | CHLOROBENZENE TOTAL (UG/L) ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND N | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND N | CHLORO-ETHYL-ENE ENE TOTAL (UG/L) ND N | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND | CHLO-RIDE TOTAL (UG/L) ND N | | APR 1987 14 27 MAY 19 JUN 25 JUL 27 SEP 28 NOV 09 DEC 07 MAR 1988 21 APR 06 18 MAY 03 16 JUN 29 | CHLORO-BENZENE TOTAL (UG/L) ND N | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND | CHLORO-PROPANE TOTAL (UG/L) ND N | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND N | CHLOROBENZENE TOTAL (UG/L) ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND N | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND N | CHLORO-ETHYL-ENE ENE TOTAL (UG/L) ND N | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND | CHLO-RIDE TOTAL (UG/L) ND N | | APR 1987 14 27 MAY 19 JUN 25 JUL 27 SEP 28 NOV 09 DEC 07 MAR 1988 21 APR 06 18 MAY 03 16 JUN 29 SEP | CHLORO-BENZENE TOTAL (UG/L) ND N | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND | CHLORO-PROPANE TOTAL (UG/L) ND N | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND
ND
ND
ND
ND | CHLOROBENZENE TOTAL (UG/L) ND | CHLOROBENZENE TOTAL (UG/L) ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND N | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND N | CHLORO-ETHYL-ENE ENE TOTAL (UG/L) ND N | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND | CHLO-RIDE TOTAL (UG/L) ND N | | APR 1987 14 27 MAY 19 JUN 25 JUL 27 SEP 28 NOV 09 DEC 07 MAR 1988 21 APR 06 18 MAY 03 16 JUN 29 SEP | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND | CHLORO-PROPANE TOTAL (UG/L) ND N | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND | CHLOROBENZENE TOTAL (UG/L) ND | CHLOROBENZENE TOTAL (UG/L) ND | CHLORO-ETHYL-ENE ENE TOTAL (UG/L) ND N | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND N | CHLORO-ETHYL- ENE TOTAL (UG/L) ND | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND | CHLO-RIDE TOTAL (UG/L) ND N | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). ### ST. LAWRENCE RIVER MAIN STEM ## 04216060 NIAGARA RIVER AT ANDERSON PARK, BUFFALO, NY - continued ## SUSPENDED SEDIMENT DISCHARGE | DATE | TIME | DIS-
CHARGE,
IN
CUBIC
FEET
PER
SECOND | SEDI-
MENT,
SUS-
PENDED
(MG/L) | | |-----------|------|---|--|------| | APR 1987 | | | | | | 14 | 1500 | 246000 | 9 | 5980 | | MAY
19 | 1030 | 234000 | 5 | 3160 | | JUN | 1030 | 234000 | , | 3160 | | 25 | 1030 | 236000 | 12 | 7650 | | 09 | 1020 | 214000 | 8 | 4620 | | MAY 1988 | 1020 | 214000 | 8 | 4620 | | 16 | 1020 | 223000 | 6 | 3610 | | JUN | | | _ | | | 29
SEP | 0900 | 203000 | 7 | 3840 | | 07 | 1015 | 203000 | 5 | 2740 | | ΩT | | | | | | 03 | 0830 | 192000 | 5 | 2590 | | NOV
14 | 0830 | 205000 | 15 | 8300 | | | -000 | | 10 | | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). #### NIAGARA RIVER BASIN ### 04217122 TONOWANDA CREEK NEAR EAST PEMBROKE, NY LOCATION.--Lat 42 59'58", long 78 18'38", Genesse County, Hydrologic Unit 04120104, at bridge on County Highway 30 near East Pembroke. DRAINAGE AREA. -- 200 mi2. PERIOD OF RECORD.--Water years 1987 to 1989. CHEMICAL DATA: 1987-88 (c), 1989 (a). MINOR ELEMENT DATA: 1987-88 (c), 1989 (a). PESTICIDE DATA: 1987-88 (c), 1989 (a). ORGANIC DATA: PCB--1988 (a). NUTRIENT DATA: 1987-88 (c), 1989 (a). SEDIMENT DATA: 1987-88 (b), 1989 (a). REMARKS.--Water-discharge data based on records from stream-flow gage 04217000 Tonowanda Creek at Batavia and 04217500 Tonowanda Creek near Alabama. | DATE | TIME | DIS- CHARGE, IN CUBIC FEET PER SECOND | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | SPE-
CIFIC
CON-
DUCT-
ANCE
LAB
(US/CM) | PH WATER WHOLE FIELD (STAND- ARD UNITS) | TEMPER-
ATURE
WATER
(DEG C) | TUR-
BID-
ITY
(NTU) | BARO-
METRIC
PRES-
SURE
(MM
OF
HG) | OXYGEN,
DIS-
SOLVED
(MG/L) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG) | |-----------|------|---------------------------------------|---|--|---|--------------------------------------|------------------------------|--|-------------------------------------|---|--|--| | APR 1987 | | | | | | | | | | | | | | 15 | 1200 | E370 | | | 8.0 | 13.5 | 15 | | 12.7 | 170 | 52 | 9.5 | | 28 | 1130 | E180 | | | 7.9 | 12.0 | 14 | | 8.6 | 210 | 62 | 13 | | MAY | | | | | | | | | | | | | | 20 | 1030 | E68 | | 575 | 7.6 | 14.5 | 7.8 | | 7.9 | 220 | 67 | 14 | | JUN | | | | | | | | | | | | | | 22 | 1315 | E74 | | | 7.7 | 21.0 | 12 | | | | | | | JUL
22 | 1515 | E180 | | | 7.7 | 28.5 | 66 | | 6.9 | 140 | 45 | 7.6 | | SEP | 1212 | £180 | | | 7.7 | 20.5 | 00 | | 0.3 | 140 | 43 | 7.0 | | 30 | 1100 | E100 | | 556 | 7.7 | 22.0 | 20 | | | | | | | NOV | 1100 | 5100 | | 330 | , , , | 22 | | | | | | | | 19 | 1130 | E190 | | | 7.8 | 6.0 | 24 | | 13.2 | 230 | 68 | 14 | | DEC | | | | | | | | | | | | | | 08 | 1130 | E190 | | | 8.0 | 1.5 | 7.4 | | 12.0 | | | | | MAR 1988 | | | | | | | | | | | | | | 22 | 1000 | E140 | | 488 | 8.2 | 2.0 | 8.8 | | | 210 | 61 | 13 | | APR | | | | | ~ . | 40.0 | | | | | | | | 06 | 1230 | 520 | | 364 | 7.4 | 13.0 | 46 | | | 220 | 64 | 14 | | 18
May | 1230 | E160 | | 471 | | | 7.3 | | | 220 | 64 | 14 | | 03 | 1145 | 283 | | 405 | 8.0 | 11.0 | 12 | | 10.0 | | | | | 16 | 1200 | 145 | | 507 | 8.2 | 19.0 | 15 | | 8.4 | 220 | 65 | 15 | | JUN | 1200 | 143 | | 30, | 0.2 | 25.0 | 15 | | ••• | 220 | 05 | | | 30 | 0945 | E24 | 685 | 683 | 7.4 | 17.0 | 3.5 | | 6.0 | 260 | 73 | 19 | | SEP | | _ | | | | | | | | | | | | 07 | 1145 | E34 | | 595 | 7.4 | 17.0 | 16 | | | 210 | 61 | 15 | | OCT | | | | | | | | | | | | | | 03 | 1300 | 20 | | 580 | 7.2 | 15.0 | 12 | 763 | 5.6 | 220 | 63 | 16 | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). ## 04217122 TONOWANDA CREEK NEAR EAST PEMBROKE, NY - continued | DATE | SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K) | ALKA-
LINITY
LAB
(MG/L
AS
CACO3) | SULFA
DIS-
SOLV
(MG/
AS SO | ATE RII
DIS
VED SOI
'L (MG | DE, R
S-
LVED S
G/L (| LUO- | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | SOLII
SUM (
CONST
TUENT
DIS
SOLV
(MG, | OF SOL
TI- RES
TS, AT
S- DEG
VED TO | IDS,
IDUE T
105
. C, | COLIDS,
VOLA-
PILE ON
IGNI-
TION,
TOTAL
(MG/L) | RESIDUE
TOTAL
FIXED
(MG/L) | NITRO-
GEN,
NITRATE
TOTAL
(MG/L
AS N) | |---------------|--|---|---|--|-------------------------------------|--------------------------------|-------------|--|---|---|-------------------------------|--|-------------------------------------|--| | APR 1987 | | | | | | | | | | | | | | | | 15 | | | | | . , | | | 204 | | - | 255 | 6 | 234 | 0.930 | | 28 | | | | | | | | 286 | | - | 310 | 70 | 240 | 1.04 | | MAY
20 | | | | | | | | 328 | | _ | 338 | 96 | 248 | 0.860 | | JUN | | | | | | | | | | | | | | | | 22 | | | | | - | | | 312 | | - | 334 | 70 | 288 | 1.03 | | JUL
22 | | | | | _ | | | 228 | | _ | 296 | 96 | 184 | | | SEP | | | | | | | | 220 | | | 230 | 90 | 104 | | | 30 | | | | | - | | | 308 | | - | 358 | 64 | 320 | 0.940 | | NOV
19 | | | | | _ | | | 288 | | | 351 | 80 | 260 | 0.830 | | DEC | | | | | | | | 200 | | _ | 221 | 80 | 260 | 0.830 | | 08 | | | | | - | | | 296 | | - | 301 | 88 | 240 | 1.08 | | MAR 1988 | | 1.0 | 160 | 2.2 | , | • | 0.20 | 274 | | 200 | 202 | 40 | 254 |
 | 22
APR | 20 | 1.9 | 168 | 32 | 3 | - | 0.20 | 274 | • | 260 | 302 | 48 | 254 | | | 06 | | | 135 | 28 | 1 | | 0.10 | 216 | - | | 300 | 52 | 248 | 0.750 | | 18
May | 17 | 1.9 | 176 | 28 | 2 | 7 | 0.20 | 316 | : | 258 | 320 | 64 | 256 | 1.06 | | 03 | | | 155 | | _ | | | 252 | _ | - | 272 | 48 | 224 | 0.720 | | 16 | 18 | 2.3 | 190 | 28 | 2 | 8 | 0.30 | 320 | : | 271 | 352 | 120 | 232 | 0.830 | | JUN
30 | 37 | 4.0 | 218 | 40 | 5 | ۵ | 0.30 | 409 | | 364 | 455 | 111 | 344 | 0.860 | | SEP | 3, | ••• | 210 | 40 | 3 | | 0.30 | 407 | | 304 | 433 | | 311 | 0.000 | | 07 | 31 | 3.9 | 169 | 50 | 5 | 1 | 0.20 | 360 | : | 315 | 416 | 96 | 320 | 1.55 | | ост
03 | 34 | 4.6 | 166 | 51 | 4 | 7 | 0.40 | 324 | | 316 | 368 | 88 | 280 | 1.94 | | | NITR
GEN
NITRI | , GE | EN, G | TRO-
EN,
ONIA | NITRO-
GEN,
AMMONIA | NITRO-
GEN,
ORGANIC | MONIA | AM-
A + NI | TRO-
EN, | NITRO-
GEN, | PHOS-
PHORUS | | US PHA | OS-
ATE,
IHO,
IS- | | | TOTA | | | TAL | TOTAL | TOTAL | TOTA | | TAL | TOTAL | TOTAL | | | LVED | | DAT | | | | G/L | (MG/L | (MG/L | (MG/ | | G/L | (MG/L | (MG/I | | | 3/L | | | AS N |) AS | N) AS | N) | AS NH4) | AS N) | AS N | I) AS | N) | AS NO3) | AS P) | AS P |) AS I | PO4) | | APR 198 | 7 | | | | | | | | | | | | | | | 15 | | | | .080 | 0.10 | 0.19 | | | 1.2 | 5.4 | 0.07 | | | 0.03 | | 28
MAY | 0.0 | 60 1. | .10 0 | .310 | 0.40 | 0.69 | 9 1. | .0 | 2.1 | 9.3 | 0.13 | 30 0. | 010 (| 0.03 | | 20 | 0.1 | 10 0. | .970 0 | .380 | 0.49 | 0.03 | 3 0. | .41 | 1.4 | 6.1 | 0.17 | 70 0. | 090 (| 0.28 | | JUN
22 | 0.5 | 00 1 | .53 0 | .280 | 0.36 | 0.34 | 1 0 | . 62 | 2.2 | 9.5 | 0.31 | 10 0 | 150 (| 0.46 | | JUL | | | | .200 | 0.50 | 0.5 | | . 02 | 2.2 | ,,, | 0.0. | | | | | 22 | | 0. | .770 0 | .180 | 0.23 | 0.25 | 50. | .43 | 1.2 | 5.3 | 0.21 | 10 0. | 060 (| 0.18 | | SEP
30 | 0.0 | 80 1. | .02 0 | .270 | 0.35 | 0.60 | 0. | .87 | 1.9 | 8.4 | 0.28 | 30 0. | 130 | 0.40 | | VON | | | | | | | | | | | | | | | | 19 | 0.0 | 30 0. | .860 0 | .300 | 0.39 | 0.2 | 1 0. | .51 | 1.4 | 6.1 | 0.24 | 10 0. | 060 (| 0.18 | | 08 | | 10 1. | .09 0 | .220 | 0.28 | 0.40 | 0. | .62 | 1.7 | 7.6 | 0.12 | 20 0. | 00 (| 0.0 | | MAR 198
22 | | 1. | .27 0 | .190 | 0.24 | 0.24 | 4 0. | .43 | 1.7 | 7.5 | 0.16 | 50 0. | 090 | 0.28 | | APR | | | | | | | | | | | | | | | | 06
18 | | | | .230 | 0.30
0.30 | 0.47 | | | 1.5
1.8 | 6.4
7.8 | 0.08 | | | 0.0
0.37 | | MAY | | | | .250 | 0.50 | 0.44 | - 0. | | | , | 0.21 | | | | | 03 | | | | .080 | 0.10 | 0.30 | | | 1.1 | 5.0 | 0.11 | | | 0.0 | | 16
JUN | 0.0 | 50 0. | .880 0 | .100 | 0.13 | 0.39 | 9 0. | .49 | 1.4 | 6.1 | 0.18 | 30 0. | 00 (| 0.0 | | 30
SEP | 0.4 | 90 1 | .35 0 | .130 | 0.17 | 0.82 | 2 0. | .95 | 2.3 | 10 | 0.40 | 0. | 190 | 0.58 | | 07 | 0.2 | 60 1 | .81 0 | .520 | 0.67 | 0.78 | 3 1. | . 3 | 3.1 | 14 | 0.63 | 30 0. | 360 | 1.1 | | ОСТ
03 | 0.2 | 00 2 | .14 0 | .430 | 0.55 | 0.7 | 7 1. | . 2 | 3.3 | 15 | 0.39 | 90 0. | 280 | 0.86 | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). ### 04217122 TONOWANDA CREEK NEAR EAST PEMBROKE, NY - continued | | | | | | IEK-QUALI | | | | | | | |--|--|--|--|--|---|---|---|---|--|--|---| | DATE | ALUM-
INUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS AL) | ALUM-
INUM,
DIS-
SOLVED
(UG/L
AS AL) | CADMIUM
TOTAL
RECOV-
ERABLE
(UG/L
AS CD) | CADMIUM
DIS-
SOLVED
(UG/L
AS CD) | COPPER,
TOTAL
RECOV-
ERABLE
(UG/L
AS CU) | COPPER,
DIS-
SOLVED
(UG/L
AS CU) | IRON,
TOTAL
RECOV-
ERABLE
(UG/L
AS FE) | IRON,
DIS-
SOLVED
(UG/L
AS FE) | LEAD,
TOTAL
RECOV-
ERABLE
(UG/L
AS PB) | LEAD,
DIS-
SOLVED
(UG/L
AS PB) | MANGA-
NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | | APR 1987 | | | | | | | | | | | | | 15 | | | <10
<10 | | <10
10 | | 890
940 | | <100
14 | | 60
100 | | 28
MAY | | | ~ 10 | | 10 | | 340 | | 14 | | 100 | | 20 | | | <10 | 1.0 | 10 | 3 | 640 | | 35 | <5 | 150 | | JUN
22 | | | <10 | | <10 | | 780 | | | | 100 | | JUL
22 | | | <10 | | 30 | | 2900 | | <5 | | 110 | | SEP
30 | | | <10 | <1.0 | 10 | 2 | 1200 | | <100 | < 5 | 120 | | NOV
19 | | | <1 | | 11 | | 1800 | | < 5 | | 100 | | DEC 08 | | | <1 | | 8 | | 510 | | < 5 | | 70 | | MAR 1988
22 | 200 | <10 | <1 | <1.0 | 3 | <1 | 540 | 10 | < 5 | < 5 | 80 | | APR | 4000 | | .4 | | 12 | | 6200 | | | | 150 | | 06
18
MAY | 4000
220 | 10 | <1
 | <1.0 | | | 6200
580 | 15 | <5
 | | 70 | | 03 | 350 | | 2 | | 51 | | 890 | | 6 | | 80 | | 16 | 410 | 20 | 7 | <1.0 | 7 | 1 | 880 | 20 | < 5 | <5 | 130 | | JUN
30 | 210 | | <1 | | 3 | | 660 | | < 5 | | 260 | | SEP
07 | 430 | | <1 | | 5 | | 1000 | | < 5 | | 140 | | ОСТ
03 | 330 | <10 | <1 | <1.0 | 4 | <1 | 770 | 14 | < 5 | < 5 | 110 | | | | | | | | | | | | | | | DATE | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN) | MERCURY
TOTAL
RECOV-
ERABLE
(UG/L
AS HG) | NICKEL,
TOTAL
RECOV-
ERABLE
(UG/L
AS NI) | NICKEL,
DIS-
SOLVED
(UG/L
AS NI) | ZINC,
TOTAL
RECOV-
ERABLE
(UG/L
AS ZN) | ZINC,
DIS-
SOLVED
(UG/L
AS ZN) | BROMO-
FORM
TOTAL
(UG/L) | CARBON-
TETRA-
CHLO-
RIDE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
DI-
BROMO-
METHANE
TOTAL
(UG/L) | CHLORO-
ETHANE
TOTAL
(UG/L) | | | NESE,
DIS-
SOLVED
(UG/L | TOTAL
RECOV-
ERABLE
(UG/L | TOTAL
RECOV-
ERABLE
(UG/L | DIS-
SOLVED
(UG/L | TOTAL
RECOV-
ERABLE
(UG/L | DIS-
SOLVED
(UG/L | FORM
TOTAL | TETRA-
CHLO-
RIDE
TOTAL | BENZENE
TOTAL | DI-
BROMO-
METHANE
TOTAL | ETHANE
TOTAL | | APR 1987
15 | NESE,
DIS-
SOLVED
(UG/L | TOTAL
RECOV-
ERABLE
(UG/L | TOTAL
RECOV-
ERABLE
(UG/L
AS NI) | DIS-
SOLVED
(UG/L | TOTAL
RECOV-
ERABLE
(UG/L | DIS-
SOLVED
(UG/L | FORM
TOTAL | TETRA-
CHLO-
RIDE
TOTAL | BENZENE
TOTAL | DI-
BROMO-
METHANE
TOTAL | ETHANE
TOTAL | | APR 1987
15
28 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL
RECOV-
ERABLE
(UG/L
AS HG) | TOTAL
RECOV-
ERABLE
(UG/L
AS NI) | DIS-
SOLVED
(UG/L
AS NI) | TOTAL
RECOV-
ERABLE
(UG/L
AS ZN) | DIS-
SOLVED
(UG/L
AS ZN) | FORM
TOTAL
(UG/L) | TETRA-
CHLO-
RIDE
TOTAL
(UG/L) | BENZENE
TOTAL
(UG/L) | DI-
BROMO-
METHANE
TOTAL
(UG/L) | ETHANE
TOTAL
(UG/L) | | APR 1987
15
28
MAY
20 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL
RECOV-
ERABLE
(UG/L
AS HG) | TOTAL
RECOV-
ERABLE
(UG/L
AS NI) | DIS-
SOLVED
(UG/L
AS NI) | TOTAL
RECOV-
ERABLE
(UG/L
AS ZN) | DIS-
SOLVED
(UG/L
AS ZN) | FORM TOTAL (UG/L) | TETRA-
CHLO-
RIDE
TOTAL
(UG/L) | BENZENE
TOTAL
(UG/L) | DI-
BROMO-
METHANE
TOTAL
(UG/L) | ETHANE
TOTAL
(UG/L)
ND | | APR 1987
15
28
MAY | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV- ERABLE (UG/L AS HG) <0.10 0.10 | TOTAL
RECOV-
ERABLE
(UG/L
AS NI)
<100 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL
RECOV-
ERABLE
(UG/L
AS ZN)
<10 | DIS-
SOLVED
(UG/L
AS ZN) | FORM
TOTAL
(UG/L)
ND
ND | TETRA-
CHLO-
RIDE
TOTAL
(UG/L)
ND | BENZENE
TOTAL
(UG/L)
ND
ND | DI-
BROMO-
METHANE
TOTAL
(UG/L)
ND | ETHANE TOTAL (UG/L) ND ND | | APR 1987
15
28
MAY
20
JUN
22
JUL
22 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL
RECOV-
ERABLE
(UG/L
AS HG)
<0.10
0.10 | TOTAL
RECOV-
ERABLE
(UG/L
AS NI)
<100 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV- ERABLE (UG/L AS ZN) <10 10 <10 | DIS-
SOLVED
(UG/L
AS ZN) | FORM
TOTAL
(UG/L)
ND
ND | TETRA-CHLO-RIDE TOTAL (UG/L) ND ND | BENZENE
TOTAL
(UG/L)
ND
ND | DI-
BROMO-
METHANE
TOTAL
(UG/L)
ND
ND | TOTAL (UG/L) ND ND ND | | APR 1987
15
28
MAY
20
JUN
22
JUL
22
SEP
30 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV- ERABLE (UG/L AS HG) <0.10 0.10 <0.10 <0.10 | TOTAL RECOV- ERABLE (UG/L AS NI) <100 5 <1 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL
RECOV-
ERABLE
(UG/L
AS ZN)
<10
10 | DIS-
SOLVED
(UG/L
AS ZN) | FORM
TOTAL
(UG/L)
ND
ND
ND | TETRA-
CHLO-
RIDE
TOTAL
(UG/L)
ND
ND | BENZENE
TOTAL
(UG/L)
ND
ND
ND | DI-
BROMO-
METHANE
TOTAL
(UG/L)
ND
ND | ETHANE TOTAL (UG/L) ND ND ND ND | | APR 1987 15 28 MAY 20 JUN 22 JUL 22 SEP 30 NOV 19 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV- ERABLE (UG/L AS HG) <0.10 0.10 <0.10 <0.10 <0.10 | TOTAL RECOV- ERABLE (UG/L AS NI) <100 5 <1 <1 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV- ERABLE (UG/L AS ZN) <10 10 <10 20 | DIS-
SOLVED
(UG/L
AS ZN) | FORM TOTAL (UG/L) ND ND ND
ND ND | TETRA-CHLO-RIDE RIDE TOTAL (UG/L) ND ND ND ND | BENZENE TOTAL (UG/L) ND ND ND ND ND | DI- BROMO- METHANE TOTAL (UG/L) ND ND ND ND | ETHANE TOTAL (UG/L) ND ND ND ND ND ND | | APR 1987 15 28 MAY 20 JUN 22 JUL 22 SEP 30 NOV 19 DEC 08 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV- REABLE (UG/L AS HG) <0.10 | TOTAL RECOV- ERABLE (UG/L AS NI) <100 5 <1 <1 <100 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV- REABLE (UG/L AS ZN) <10 10 20 <10 | DIS-
SOLVED
(UG/L
AS ZN) 20 <10 | FORM TOTAL (UG/L) ND ND ND ND ND ND | TETRA-CHLO-RIDE TOTAL (UG/L) ND N | BENZENE TOTAL (UG/L) ND | DI- BROMO- METHANE TOTAL (UG/L) ND ND ND ND ND | ETHANE TOTAL (UG/L) ND | | APR 1987 15 28 MAY 20 JUN 22 JUL 22 SEP 30 NOV 19 DEC 08 MAR 1988 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV- ERABLE (UG/L AS HG) <0.10 | TOTAL RECOV- ERABLE (UG/L AS NI) <100 5 <1 <1 <100 1 1 | DIS-
SOLVED
(UG/L
AS NI)

1

<1
 | TOTAL RECOV- ERABLE (UG/L AS ZN) <10 10 20 <10 20 20 | DIS-
SOLVED
(UG/L
AS ZN) 20 <10 | FORM TOTAL (UG/L) ND | TETRA-CHLO-RIDE RIDE TOTAL (UG/L) ND | BENZENE TOTAL (UG/L) ND | DI- BROMO- METHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND | ETHANE TOTAL (UG/L) ND | | APR 1987 15 28 MAY 20 JUN 22 JUL 22 SEP 30 NOV 19 DEC 08 MAR 1988 22 APR | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV- REABLE (UG/L AS HG) <0.10 | TOTAL RECOV- ERABLE (UG/L AS NI) <100 5 <1 <1 <100 1 1 1 | DIS-
SOLVED
(UG/L
AS NI) 1 <1 3 | TOTAL RECOV- REABLE (UG/L AS ZN) <10 10 20 <10 20 20 10 | DIS-
SOLVED
(UG/L
AS ZN) 20 <10 <3 | FORM TOTAL (UG/L) ND | TETRA-CHLO-RIDE TOTAL (UG/L) ND N | BENZENE TOTAL (UG/L) ND | DI- BROMO- METHANE TOTAL (UG/L) ND | ETHANE TOTAL (UG/L) ND | | APR 1987 15 28 MAY 20 JUN 22 SEP 30 NOV 19 DEC 08 MAR 1988 22 APR 06 18 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV- ERABLE (UG/L AS HG) <0.10 | TOTAL RECOV- ERABLE (UG/L AS NI) <100 5 <1 <1 <100 1 1 | DIS-
SOLVED
(UG/L
AS NI)

1

<1
 | TOTAL RECOV- ERABLE (UG/L AS ZN) <10 10 20 <10 20 20 | DIS-
SOLVED
(UG/L
AS ZN) 20 <10 | FORM TOTAL (UG/L) ND | TETRA-CHLO-RIDE RIDE TOTAL (UG/L) ND | BENZENE TOTAL (UG/L) ND | DI- BROMO- METHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND | ETHANE TOTAL (UG/L) ND | | APR 1987 15 28 MAY 20 JUN 22 SEP 30 NOV 19 DEC 08 MAR 1988 22 APR 06 18 MAY | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV-ERABLE (UG/L AS HG) <0.10 | TOTAL RECOV- ERABLE (UG/L AS NI) <100 5 <1 <1 <100 1 1 1 1 12 | DIS-
SOLVED
(UG/L
AS NI) 1 <1 3 | TOTAL RECOV- REABLE (UG/L AS ZN) <10 10 20 <10 20 20 10 30 <10 | DIS-
SOLVED
(UG/L
AS ZN) 20 <10 <3 | FORM TOTAL (UG/L) ND | TETRA-CHLO-RIDE TOTAL (UG/L) ND N | BENZENE TOTAL (UG/L) ND | DI- BROMO- METHANE TOTAL (UG/L) ND | ETHANE TOTAL (UG/L) ND | | APR 1987 15 28 MAY 20 JUN 22 SEP 30 NOV 19 DEC 08 MAR 1988 22 APR 06 18 MAY 03 16 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV- ERABLE (UG/L AS HG) <0.10 | TOTAL RECOV- ERABLE (UG/L AS NI) <100 5 <1 <1 <100 1 1 1 | DIS-
SOLVED
(UG/L
AS NI) 1 <1 3 | TOTAL RECOV- ERABLE (UG/L AS ZN) <10 10 20 <10 20 20 10 30 | DIS-
SOLVED
(UG/L
AS ZN) 20 <10 <3 | FORM TOTAL (UG/L) ND | TETRA-CHLO-RIDE TOTAL (UG/L) ND N | BENZENE TOTAL (UG/L) ND | DI- BROMO- BROMO- METHANE TOTAL (UG/L) ND | ETHANE TOTAL (UG/L) ND | | APR 1987 15 28 MAY 20 JUN 22 SEP 30 NOV 19 DEC 08 MAR 1988 22 APR 06 18 MAY 03 16 JUN 30 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV-ERABLE (UG/L AS HG) <0.10 | TOTAL RECOV- ERABLE (UG/L AS NI) <100 5 <1 <100 1 1 1 1 8 | DIS-
SOLVED
(UG/L
AS NI) 1 <1 3 | TOTAL RECOV- ERABLE (UG/L AS ZN) <10 10 20 <10 20 20 10 30 <10 10 10 | DIS-
SOLVED
(UG/L
AS ZN) 20 <10 <3 <3 | FORM TOTAL (UG/L) ND | TETRA-CHLO-RIDE RIDE TOTAL (UG/L) ND N | BENZENE TOTAL (UG/L) ND | DI- BROMO- BROMO- METHANE TOTAL (UG/L) ND | ETHANE TOTAL (UG/L) ND | | APR 1987 15 28 MAY 20 JUN 22 SEP 30 NOV 19 DEC 08 MAR 1988 22 APR 06 18 MAY 03 16 JUN | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV-ERABLE (UG/L AS HG) <0.10 | TOTAL RECOV- ERABLE (UG/L AS NI) <100 5 <1 <1 <100 1 1 1 12 8 7 | DIS-
SOLVED
(UG/L
AS NI) 3 1 | TOTAL RECOV- REABLE (UG/L AS ZN) <10 10 20 <10 20 10 30 <10 10 10 <10 10 10 10 | DIS-
SOLVED
(UG/L
AS ZN) 20 <10 <3 <3 4 | FORM TOTAL (UG/L) ND | TETRA-CHLO-RIDE TOTAL (UG/L) ND N | BENZENE TOTAL (UG/L) ND | DI- BROMO- BROMO- METHANE TOTAL (UG/L) ND | ETHANE TOTAL (UG/L) ND | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). # 04217122 TONOWANDA CREEK NEAR EAST PEMBROKE, NY - continued | DATE | CHLORO-
FORM
TOTAL
(UG/L) | CIS
1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | DI-
CHLORO-
BROMO-
METHANE
TOTAL
(UG/L) | METHYL-
BROMIDE
TOTAL
(UG/L) | METHYL-
CHLO-
RIDE
TOTAL
(UG/L) | METHYL-
ENE
CHLO-
RIDE
TOTAL
(UG/L) | 1,1,1-
TRI-
CHLORO-
ETHANE
TOTAL
(UG/L) | 1,1-DI-
CHLORO-
ETHANE
TOTAL
(UG/L) | 1,1-DI-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 1,1,2-
TRI-
CHLORO-
ETHANE
TOTAL
(UG/L) | 1,1,2,2
TETRA-
CHLORO-
ETHANE
TOTAL
(UG/L) | |--|---|--|---|---|---|---|---|--|---|---|--| | APR 1987 | | | | | | | | | | | | | 15 | ND | 28 | ND | MAY
20 | ND | JUN | | | | | | | | | | | | | JUL | ND | 22
SEP | ND | 30
NOV | ND | 19
DEC | ND | 08
MAR 1988 | ND | 22
APR | 0.2 | ND | ND | ND | ND | 0.5 | ND | ND | ND | ND | ND | | 06 | ND | 18 | ND | MAY
03 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 16 | ND | JUN | ND | MD | ND | 30
SEP | ND | ND | ND | ND | ND | | ND | ND | ND | ND | ND | | 07
OCT | ND | ND | ND | ND | ND | ND | NU | ND | ND | ND | NU | | 03 | 0.2 | ND | | | | | | | | | | | | | | DATE | 1,2-DI-
CHLORO-
BENZENE
TOTAL
(UG/L) | 1,2-DI-
CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L) | 1,2-DI-
CHLORO-
PROPANE
TOTAL
(UG/L) | 1,2-
TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L) | 1,3-DI-
CHLORO-
BENZENE
TOTAL
(UG/L) | 1,4-DI-
CHLORO-
BENZENE
TOTAL
(UG/L) | TETRA-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | TRANS-
1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | TRI-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 2-
CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L) | VINYL
CHLO-
RIDE
TOTAL
(UG/L) | | DATE
APR 1987 | CHLORO-
BENZENE
TOTAL | CHLORO-
ETHANE
WATER
WHOLE
TOTAL | CHLORO-
PROPANE
TOTAL | TRANSDI
CHLORO-
ETHENE
TOTAL | CHLORO-
BENZENE
TOTAL | CHLORO-
BENZENE
TOTAL | CHLORO-
ETHYL-
ENE
TOTAL | 1,3-DI-
CHLORO-
PROPENE
TOTAL | CHLORO-
ETHYL-
ENE
TOTAL | CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL | CHLO-
RIDE
TOTAL | | APR 1987
15 | CHLORO-
BENZENE
TOTAL
(UG/L)
ND | CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L) | CHLORO-
PROPANE
TOTAL
(UG/L) | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L) | CHLO-
RIDE
TOTAL
(UG/L) | | APR 1987
15
28 | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L) | CHLORO-
PROPANE
TOTAL
(UG/L) | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L) | CHLO-
RIDE
TOTAL
(UG/L) | | APR 1987
15
28
MAY
20 | CHLORO-
BENZENE
TOTAL
(UG/L)
ND | CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L) | CHLORO-
PROPANE
TOTAL
(UG/L) | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L) | CHLO-
RIDE
TOTAL
(UG/L) | | APR 1987
15
28
MAY
20
JUN
22 | CHLORO-
BENZENE
TOTAL
(UG/L)
ND
ND | CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L)
ND | CHLORO-
PROPANE
TOTAL
(UG/L)
ND
ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND | CHLORO-
BENZENE
TOTAL
(UG/L)
ND
ND | CHLORO-
BENZENE
TOTAL
(UG/L)
ND
ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND | CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L)
ND |
CHLO-
RIDE
TOTAL
(UG/L)
ND
ND | | APR 1987
15
28
MAY
20
JUN
22
JUL
22 | CHLORO-
BENZENE
TOTAL
(UG/L)
ND
ND | CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L)
ND
ND | CHLORO-
PROPANE
TOTAL
(UG/L)
ND
ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND | CHLORO-
BENZENE
TOTAL
(UG/L)
ND
ND | CHLORO-
BENZENE
TOTAL
(UG/L)
ND
ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND
ND | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
ND
ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND
ND | CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L)
ND
ND | CHLO-
RIDE
TOTAL
(UG/L)
ND
ND | | APR 1987 15 28 MAY 20 JUN 22 JUL 22 SEP 30 | CHLORO-
BENZENE
TOTAL
(UG/L)
ND
ND
ND | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND ND ND | CHLORO-
PROPANE
TOTAL
(UG/L)
ND
ND
ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND
ND | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
ND
ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND
ND | CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L)
ND
ND | CHLO-
RIDE
TOTAL
(UG/L)
ND
ND
ND | | APR 1987 15 28 MAY 20 JUN 22 JUL 22 SEP 30 NOV 19 | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND | CHLORO- ETHANE WATER WHOLE TOTAL (UG/L) ND ND ND ND | CHLORO-
PROPANE
TOTAL
(UG/L)
ND
ND
ND
ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND
ND
ND | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
ND
ND
ND | CHLORO-ETHYL- ENE TOTAL (UG/L) ND ND ND ND ND | CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L)
ND
ND
ND | CHLO-
RIDE
TOTAL
(UG/L)
ND
ND
ND
ND | | APR 1987 15 28 MAY 20 JUN 22 JUL 22 SEP 30 NOV | CHLORO-
BENZENE
TOTAL
(UG/L)
ND
ND
ND
ND | CHLORO-ETHANE WATER WATER WHOLE TOTAL (UG/L) ND ND ND ND ND | CHLORO-
PROPANE
TOTAL
(UG/L)
ND
ND
ND
ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND | CHLORO-ETHYL-ENE TYOTAL (UG/L) ND N | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND | CHLORO-ETHYL-ENE ENE TOTAL (UG/L) ND N | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND ND ND ND ND | CHLO-
RIDE
TOTAL
(UG/L)
ND
ND
ND
ND | | APR 1987 15 28 MAY 20 JUN 22 JUL 22 SEP 30 NOV 19 DEC 08 MAR 1988 | CHLORO- BENZENE TOTAL (UG/L) ND | CHLORO- ETHANE WATER WHOLE TOTAL (UG/L) ND | CHLORO-PROPANE TOTAL (UG/L) ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-ETHYL-ENE ENE TOTAL (UG/L) ND N | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND N | CHLORO-ETHYL-ENE ENE TOTAL (UG/L) ND N | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND | CHLO- RIDE TOTAL (UG/L) ND | | APR 1987 15 28 MAY 20 JUN 22 JUL 22 SEP 30 NOV 19 DEC 08 | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND ND ND ND ND ND ND | CHLORO-
PROPANE
TOTAL
(UG/L)
ND
ND
ND
ND
ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND
ND
ND
ND | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND N | CHLORO-ETHYL-ENE ENE TOTAL (UG/L) ND N | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND ND ND ND ND ND ND ND ND | CHLO- RIDE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND | | APR 1987 15 28 MAY 20 JUN 22 SEP 30 NOV 19 DEC 08 MAR 1988 22 APR 06 | CHLORO-BENZENE TOTAL (UG/L) ND N | CHLORO- ETHANE WATER WHOLE TOTAL (UG/L) ND | CHLORO-PROPANE TOTAL (UG/L) ND | TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-ETHYL-ENE ENE TOTAL (UG/L) ND N | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND N | CHLORO-ETHYL-ENE ENE TOTAL (UG/L) ND N | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND | CHLO- RIDE TOTAL (UG/L) ND | | APR 1987 15 28 MAY 20 JUN 22 SEP 30 NOV 19 DEC 08 MAR 1988 22 APR 06 18 | CHLORO-BENZENE TOTAL (UG/L) ND N | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND | CHLORO-PROPANE TOTAL (UG/L) ND N | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND N | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND N | CHLORO-ETHYL-ENE ENE TOTAL (UG/L) ND N | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND | CHLO-
RIDE
TOTAL
(UG/L)
ND
ND
ND
ND
ND
ND | | APR 1987 15 28 MAY 20 JUN 22 SEP 30 NOV 19 DEC 08 MAR 1988 22 APR 06 18 MAY 03 | CHLORO-BENZENE TOTAL (UG/L) ND N | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND N | CHLORO-PROPANE TOTAL (UG/L) ND N | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-ETHYL-ENE ENE TOTAL (UG/L) ND N | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND N | CHLORO-ETHYL-ENE ENE TOTAL (UG/L) ND N | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND | CHLO-RIDE RIDE TOTAL (UG/L) ND | | APR 1987 15 28 MAY 20 JUN 22 SEP 30 NOV 19 DEC 08 MAR 1988 22 APR 06 18 MAY 03 16 JUN | CHLOROBENZENE TOTAL (UG/L) ND | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND | CHLORO-PROPANE TOTAL (UG/L) ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND
ND
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-ETHYL-ENE ENE ENE TOTAL (UG/L) ND N | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND N | CHLORO-ETHYL- ENE ENE TOTAL (UG/L) ND | CHLORO-ETHYL- VINYL-ETHER TOTAL (UG/L) ND | CHLO- RIDE TOTAL (UG/L) ND | | APR 1987 15 28 MAY 20 JUN 22 SEP 30 NOV 19 DEC 08 MAR 1988 22 APR 06 18 MAY 03 16 JUN 30 SEP | CHLORO-BENZENE TOTAL (UG/L) ND N | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND | CHLORO-PROPANE TOTAL (UG/L) ND | TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-ETHYL-ENE ENE TOTAL (UG/L) ND N | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND N | CHLORO-ETHYL- ENE TOTAL (UG/L) ND | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND | CHLO- RIDE TOTAL (UG/L) ND | | APR 1987 15 28 MAY 20 JUN 22 SEP 30 NOV 19 DEC 08 MAR 1988 22 APR APR APR APR O6 18 MAY 03 16 JUN 30 | CHLOROBENZENE TOTAL (UG/L) ND | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND | CHLORO-PROPANE TOTAL (UG/L) ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND
ND
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-ETHYL-ENE ENE ENE TOTAL (UG/L) ND N | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND N | CHLORO-ETHYL- ENE ENE TOTAL (UG/L) ND | CHLORO-ETHYL- VINYL-ETHER TOTAL (UG/L) ND | CHLO- RIDE TOTAL (UG/L) ND | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). ## 04217122 TONOWANDA CREEK NEAR EAST PEMBROKE, NY - continued ## SUSPENDED SEDIMENT DISCHARGE | DATE | TIME | DIS-
CHARGE,
IN
CUBIC
FEET
PER
SECOND | SEDI-
MENT,
SUS-
PENDED
(MG/L) | SEDI-
MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY) | |----------|------|---|--|--| | APR 1987 | | | | | | 15 | 1200 | E370 | 29 | | | 28 | 1130 | E180 | 24 | | | DEC | | | | | | 08 | 1130 | E190 | 11 | | | MAY 1988 | | | | | | 16 | 1200 | 145 | 30 | 12 | | SEP | | | | | | 07 | 1145 | E34 | 22 | | | OCT | | | | | | 03 | 1300 | 20 | 16 | 0.86 | | | | | | | #### BED MATERIAL ANALYSES | DATE JUL 1987 22 JUN 1988 30 | TIME | SOLIDS, VOLA- FILE IN SOUTTOM MA- TERIAL (MG/KG) 25100 53400 | INUM,
RECOV. | CADMIUM
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS CD) | CHRC MIUN RECC FM BC TOM N TERM (UG. | M, REMOV. FM : DOT- TOM MA- TE IAL (UG/G) AS | COV. RE BOT- FM MA- TOM RIAL TE G/G (U CU) AS | COV. RE BOT- FM MA- TOM RIAL TE | COV. NE BOT- RE MA- FM RIAL TOM G/G TE | SE, RE COV. FM BOT- TOM I MA- TE GRIAL (U IG/G) AS | COV. RE
BOT- FM
MA- TON
RIAL TE | ECOV. R
BOT- FM
MA- TO
ERIAL T
UG/G (| INC,
ECOV.
BOT-
M MA-
ERIAL
UG/G
S ZN)
40 | |-------------------------------|---|--|--|--|--------------------------------------|--|---|--|--|--|---|---|--| | DATE | AROCLA
1221
IN
BOTTO
MAT
(UG/K | AROCI
124
M PCI
BOT.I | 48 125
B PCE
MAT BOT.M | 4 126
PC
AT BOT. | LOR
0 1
B 1 | ALDRIN, TOTAL IN BOT- IOM MA- TERIAL (UG/KG) | ALPHA
BHC
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | ATRA-
ZINE,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | BETA
BENZENE
HEXA-
CHLOR-
I DE
BOT.MAT
(UG/KG) |
CHLOR-
DANE,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | CHLOR-
PYRIFOS
IN BOT.
MAT.
(UG/KG) | DELTA BENZENE HEXA- CHLOR- IDE BOT.MAT (UG/KG) | | | JUL 1987
22
JUN 1988 | | | | - | - | | | | | | | | | | 30 | ND | ND | 7. | 0 иг |) | ND | | DATE | DI-
AZINO
TOTA
IN BO
TOM M
TERI
(UG/K | L TOT.
T- IN B
A- TOM
AL TER | IN,
AL ENDO
OT-SULFA
MA-ALPH
IAL BOT.M | N SULF
A BET
AT BOT | 'AN
'A :
MAT I | ENDO-
SULFAN
SULFATE
BOT.MAT
(UG/KG) | ENDRIN,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | ENDRIN
ALDE-
HYDE
BOT.MAT
(UG/KG) | ETHION,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | HEPTA-
CHLOR,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | HEPTA-
CHLOR
EPOXIDE
TOT. IN
BOTTOM
MATL.
(UG/KG) | MALA-
THION,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | | | JUL 1987
22 | | _ | | _ | | | | | | | | | | | JUN 1988
30 | ND | ND | ND | NI |) | ND | | DATE | METH
OXY-
CHLO
TOT.
BOTT
MAT
(UG/K | MIR
R, TOT
IN IN B
OM TOM:
L. TER | AL TOTA OT- IN BO MA- TOM M IAL TERI | DI
L TOI
T- IN E
A- TOM
AL TEF | MA- ' | P,P' DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) | PARA-
THION,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) | BED
MAT.
FALL
DIAM.
% FINER
THAN
.004 MM | BED
MAT.
SIEVE
DIAM.
% FINER
THAN
.062 MM | BED
MAT.
SIEVE
DIAM.
% FINER
THAN
.125 MM | BED
MAT.
SIEVE
DIAM.
% FINER
THAN
2.00 MM | | | JUL 1987 | | - | | | | | | | 0 | 3 | 8 | 98 | | | JUN 1988
30 | ND | ND | ND | | 1.0 | ND | ND | ND | | | | | | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). ### 04218054 TONOWANDA CREEK AT PENDLETON, NY LOCATION.-- Lat 43 05'10", long 78 43'40", Erie County, Hydrologic Unit 042120104, at bridge on New Road at Pendleton and 0.3 mi upstream from the Erie Canal. DRAINAGE AREA. -- 396 mi2. PERIOD OF RECORD.--Water years 1987 to 1989. CHEMICAL DATA: 1987-88 (c), 1989 (a). MINOR ELEMENT DATA: 1987-88 (c), 1989 (a). PESTICIDE DATA: 1987-88 (c), 1989 (a). ORGANIC DATA: PCB--1988 (a). NUTRIENT DATA: 1987-88 (c), 1989 (a). SEDIMENT DATA: 1987 (b), 1988-89 (a). REMARKS.--Water-discharge data based on records from stream-flow gage 04218000 Tonowanda Creek at Rapids. | DATE | TIME | DIS- CHARGE, IN CUBIC FEET PER SECOND | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | SPE-
CIFIC
CON-
DUCT-
ANCE
LAB
(US/CM) | PH WATER WHOLE FIELD (STAND- ARD UNITS) | TEMPER-
ATURE
WATER
(DEG C) | TUR-
BID-
ITY
(NTU) | BARO-
METRIC
PRES-
SURE
(MM
OF
HG) | OXYGEN,
DIS-
SOLVED
(MG/L) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG) | |-----------|------|---------------------------------------|---|--|---|--------------------------------------|------------------------------|--|-------------------------------------|---|--|--| | APR 1987 | | | | | | | | | | | | | | 15 | 0900 | E1000 | | | 8.0 | 12.5 | 22 | | 12.2 | 200 | 62 | 11 | | 28 | 0900 | E320 | | | 8.1 | 13.0 | 6.6 | | 9.2 | 310 | 92 | 19 | | MAY | | | | | | | | | | | | | | 20 | 0845 | E150 | | | 8.0 | 15.5 | 20 | | | 350 | 110 | 19 | | JUN | | | | | | | | | | | | | | 22 | 1115 | E60 | | | 8.0 | 21.0 | 23 | | | 300 | 93 | 16 | | JUL | | | | | | | | | | | | | | 22 | 1030 | E620 | | | 8.1 | 27.5 | 22 | | 7.1 | 260 | 82 | 13 | | SEP | | | | | | | | | | | | | | 30 | 0900 | E150 | | 588 | 8.0 | 22.0 | 30 | | 6.4 | | | | | NOV | | | | | | | | | | | | | | 19 | 0900 | E290 | | | 8.0 | 5.0 | 30 | | 14.9 | 270 | 83 | 16 | | DEC | | | | | | | | | | | | | | 08 | 0930 | E500 | | | 8.1 | 1.5 | 11 | | 13.0 | | | | | MAR 1988 | | -200 | | | | | | | | 050 | 00 | | | 22 | 1200 | E320 | | 608 | 8.3 | 1.0 | 7.8 | | | 270 | 80 | 16 | | APR
06 | 1345 | E2000 | | 355 | 7.7 | 13.0 | 120 | | | | | | | 18 | 1330 | E310 | | 637 | 8.3 | 8.0 | 6.0 | | | 280 | 85 | 16 | | MAY | 1330 | 2310 | | 637 | 0.3 | 8.0 | 6.0 | | | 200 | 65 | 10 | | 03 | 1245 | E640 | | 435 | 8.1 | 11.0 | 17 | | | | | | | 17 | 1215 | E310 | | 694 | 7.9 | 16.0 | 21 | | 7.4 | 310 | 95 | 18 | | JUN | 1213 | 2310 | | 034 | 7.3 | 10.0 | 21 | | | 310 | ,, | 10 | | 29 | 1030 | E43 | 958 | 949 | 7.4 | 20.5 | 14 | | 8.0 | 390 | 120 | 23 | | SEP | 1000 | 242 | ,,, | ,,,, | | 20.5 | | | 0.0 | 330 | 120 | 25 | | 07 | 1300 | E47 | | 569 | 7.9 | 19.0 | 19 | | | 230 | 70 | 14 | | OCT | | | | 307 | | 25.0 | | | | | | | | 03 | 1115 | E36 | | 705 | 7.7 | 15.0 | 22 | 763 | 5.8 | 300 | 91 | 17 | | | | | | | | | | | | | | | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). ### 04218054 TONOWANDA CREEK AT PENDLETON, NY - continued | | SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K) | ALKA-
LINITY
LAB
(MG/L
AS
CACO3) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | SOLIDS,
RESIDUE
AT 105
DEG. C,
TOTAL
(MG/L) | SOLIDS,
VOLA-
TILE ON
IGNI-
TION,
TOTAL
(MG/L) | RESIDUE
TOTAL
FIXED
(MG/L) | NITRO-
GEN,
NITRATE
TOTAL
(MG/L
AS N) | |-----------|--|---|---|---|---|--|--|---|--|--|-------------------------------------|--| | APR 1987 | | | | | | | | | | | | | | 15 | | | | | | | 256 | | 316 | 44 | 276 | 0.960 | | 28 | | | | | | | 394 | | 430 | 116 | 342 | 4.10 | | MAY | | | | | | | | | | | | | | 20 | | | | | | | 540 | | 568 | 164 | 404 | 1.13 | | JUN | | | | | | | | | | | | | | 22 | | | | | -~ | | 480 | | 538 | 134 | 404 | 0.670 | | JUL | | | | | | | 252 | | 205 | 400 | 200 | | | 22
SEP | | | | | | | 372 | | 397 | 128 | 288 | | | 30 | | | | ~- | | | 352 | | 405 | 84 | 336 | 0.930 | | NOV | | | | | | | 332 | | 403 | 04 | 336 | 0.330 | | 19 | | | | ~- | | | 404 | | 451 | 72 | 340 | 0.610 | | DEC | | | | | | | | | | | 3.0 | 0.010 | | 08 | | | | ~ - | | | 348 | | 360 | 136 | 284 | | | MAR 1988 | | | | | | | | | | | | | | 22 | 23 | 2.0 | 174 | 83 | 38 | 0.20 | 370 | 347 | 390 | 82 | 308 | | | APR | | | | | | | | | | | | | | 06 | | | 118 | 39 | 18 | 0.20 | 2 4 8 | | 416 | 92 | 324 | 0.600 | | 18 | 20 | 1.8 | 194 | 88 | 36 | 0.20 | 416 | 363 | 460 | 64 | 396 | 0.830 | | MAY | | | | | | | | | | | | | | 03 | | | 145 | | | | 276 | | 312 | 72 | 240 | 0.510 | | 17 | 24 | 2.4 | 197 | 110 | 38 | 0.30 | 492 | 406 | 528 | 172 | 356 | 0.960 | | JUN
29 | 38 | 3.0 | 193 | 220 | 62 | 0.40 | 673 | 582 | 784 | 223 | 5.01 | | | SEP | 36 | 3.0 | 193 | 220 | 62 | 0.40 | 6/3 | 582 | /84 | 223 | 561 | | | 07 | 20 | 2.8 | 145 | 99 | 32 | 0.20 | 404 | 325 | 420 | 104 | 316 | 0.820 | | OCT | 20 | 2.0 | 127 | 23 | 32 | 0.20 | 404 | 323 | 420 | 104 | 310 | 0.620 | | 03 | 30 | 3.4 | 176 | 120 | 46 | 0.30 | 432 | 414 | 484 | 112 | 372 | 0.890 | | | | | - | | | | - 7- | | | | = / = | | | DATE | NITRO-
GEN,
NITRITE
TOTAL
(MG/L
AS N) | NITRO-
GEN,
NO2+NO3
TOTAL
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS NH4) | NITRO-
GEN,
ORGANIC
TOTAL
(MG/L
AS N) | NITRO-
GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | NITRO-
GEN,
TOTAL
(MG/L
AS N) | NITRO-
GEN,
TOTAL
(MG/L
AS NO3) | PHOS-
PHORUS
TOTAL
(MG/L
AS P) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P) | PHOS-
PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4) | |-----------|--|--|--|--|--|---|---|---|--|---|---| | APR 1987 | | | | | | | | | | | | | 15 | 0.010 | 0.970 | 0.030 | 0.04 | 0.36 | 0.39 | 1.4 | 6.0 | 0.080 | 0.020 | 0.06 | | 28 | 0.170 | 4.27 | 3.70 | 4.8 | 4.8 | 8.5 | 13 | 57 | 0.080 | 0.010 | 0.03 | | MAY | | | | | | | | | | | | | 20 | 0.020 | 1.15 | 0.060 | 0.08 | 0.18 | 0.24 | 1.4 | . 6.2 | 0.120 | 0.040 | 0.12 | | JUN | | | | | | | | | | | | | 22 | 0.010 | 0.680 | 0.050 | 0.06 | 0.27 | 0.32 | 1.0 | 4.4 | 0.130 | 0.020 | 0.06 | | JUL | | | | | | | | | | | | | 22 | | 0.690 | 0.050 | 0.06 | 0.24 | 0.29 | 0.98 | 4.3 |
0.100 | 0.070 | 0.21 | | SEP | | | | | | | | | | | | | 30 | 0.010 | 0.940 | 0.050 | 0.06 | 0.49 | 0.54 | 1.5 | 6.6 | 0.160 | 0.00 | 0.0 | | NOV | | | | | | | | | | | | | 19 | 0.010 | 0.620 | 0.030 | 0.04 | 0.24 | 0.27 | 0.89 | 3.9 | 0.140 | 0.040 | 0.12 | | DEC | | | | | | | | | | | | | 08 | | | | | | | | | | | | | MAR 1988 | | | | 2 25 | | • • • | | | | | | | 22 | | 1.08 | 0.040 | 0.05 | 0.27 | 0.31 | 1.4 | 6.2 | 0.060 | 0.030 | 0.09 | | APR
06 | 0.00 | 0.600 | 1.20 | 1.5 | 1.5 | 2.7 | 3.3 | | 0.140 | 0.00 | 0.0 | | 18 | 0.010 | 0.840 | 0.010 | 0.01 | 0.36 | 0.37 | 1.2 | 15
5.4 | 0.140 | 0.00 | | | MAY | 0.010 | 0.840 | 0.010 | 0.01 | 0.36 | 0.37 | 1.2 | 3.4 | 0.040 | 0.00 | 0.0 | | 03 | 0.010 | 0.520 | 0.030 | 0.04 | 0.31 | 0.34 | 0.86 | 3.8 | 0.080 | 0.00 | 0.0 | | 17 | 0.010 | 0.920 | 0.070 | 0.09 | 0.47 | 0.54 | 1.5 | 6.8 | 0.120 | 0.020 | 0.06 | | JUN | 0.030 | 0.990 | 0.070 | 0.03 | 0.47 | 0.54 | 1.3 | 0.0 | 0.120 | 0.020 | 0.00 | | 29 | ND | ND | 0.050 | 0.06 | 0.34 | 0.39 | | | 0.130 | 0.00 | 0.0 | | SEP | IVD | 140 | 0.030 | 3.00 | 3.34 | 0.55 | | | 0.130 | 0.00 | 0.0 | | 07 | 0.020 | 0.840 | 0.030 | 0.04 | 0.33 | 0.36 | 1.2 | 5.3 | 0.110 | 0.030 | 0.09 | | OCT | 0.020 | 0.040 | 0.030 | 3.04 | 3.33 | 3.30 | 1.2 | 3.3 | 0.110 | 0.050 | 0.05 | | 03 | 0.010 | 0.900 | 0.040 | 0.05 | 0.47 | 0.51 | 1.4 | 6.2 | 0.160 | 0.090 | 0.28 | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). ## 04218054 TONOWANDA CREEK AT PENDLETON, NY - continued | DATE | ALUM-
INUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS AL) | ALUM-
INUM,
DIS-
SOLVED
(UG/L
AS AL) | CADMIUM
TOTAL
RECOV-
ERABLE
(UG/L
AS CD) | CADMIUM
DIS-
SOLVED
(UG/L
AS CD) | COPPER,
TOTAL
RECOV-
ERABLE
(UG/L
AS CU) | COPPER,
DIS-
SOLVED
(UG/L
AS CU) | IRON,
TOTAL
RECOV-
ERABLE
(UG/L
AS FE) | IRON,
DIS-
SOLVED
(UG/L
AS FE) | LEAD,
TOTAL
RECOV-
ERABLE
(UG/L
AS PB) | LEAD,
DIS-
SOLVED
(UG/L
AS PB) | MANGA-
NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | |--|--|---|---|--|--|---|---|---|--|---|---| | APR 1987 | | | | | | | | | | | | | 15
28 | | | <10
<10 | | <10
10 | | 1100
4 50 | | <100
5 | | 50
50 | | MAY | | | | | | | | | | | | | 20
JUN | | | <10 | 1.0 | 10 | 3 | 950 | | <5 | <5 | 90 | | 22 | | | <10 | | <10 | | 630 | | <5 | | 90 | | JUL
22 | | | <10 | | 30 | | 1000 | | <5 | | 60 | | SEP
30 | | | <10 | <1.0 | 10 | 2 | 1300 | | <100 | <5 | 90 | | NOV
19 | | | <1 | | 6 | | 1500 | | <5 | | 50 | | DEC 08 | | | <1 | | 5 | | 630 | | 5 | | 40 | | MAR 1988
22 | 230 | <10 | <1 | <1.0 | 2 | 2 | 460 | 19 | <5 | <5 | 50 | | APR
06 | 1300 | | <1 | | 7 | | 2500 | | < 5 | | 100 | | 18
MAY | 100 | 10 | 1 | <1.0 | 11 | 3 | 420 | 17 | <5 | <5 | 60 | | 03 | 410
510 |
<10 | 2
4 |
<1.0 | 9
10 | 2 | 8 4 0
9000 | 13 | <5
<5 |
< 5 | 50
110 | | JUN | | | | | | | | | | | | | 29
SEP | 810 | | <1 | | 7 | | 1400 | | 11 | | 230 | | 07
⊙CT | 460 | | <1 | | 5 | | 830 | | <5 | | 60 | | 03 | 610 | <10 | 1 | <1.0 | 8 | 1 | 980 | 12 | <5 | <5 | 90 | | | | | | | | | | | | | | | DATE | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN) | MERCURY
TOTAL
RECOV-
ERABLE
(UG/L
AS HG) | NICKEL,
TOTAL
RECOV-
ERABLE
(UG/L
AS NI) | NICKEL,
DIS-
SOLVED
(UG/L
AS NI) | ZINC,
TOTAL
RECOV-
ERABLE
(UG/L
AS ZN) | ZINC,
DIS-
SOLVED
(UG/L
AS ZN) | BROMO-
FORM
TOTAL
(UG/L) | CARBON-
TETRA-
CHLO-
RIDE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
DI-
BROMO-
METHANE
TOTAL
(UG/L) | CHLORO-
ETHANE
TOTAL
(UG/L) | | APR 1987 | NESE,
DIS-
SOLVED
(UG/L | TOTAL
RECOV-
ERABLE
(UG/L
AS HG) | TOTAL
RECOV-
ERABLE
(UG/L
AS NI) | DIS-
SOLVED
(UG/L | TOTAL
RECOV-
ERABLE
(UG/L
AS ZN) | DIS-
SOLVED
(UG/L | FORM
TOTAL
(UG/L) | TETRA-
CHLO-
RIDE
TOTAL
(UG/L) | BENZENE
TOTAL
(UG/L) | DI-
BROMO-
METHANE
TOTAL
(UG/L) | ETHANE
TOTAL
(UG/L) | | APR 1987
15
28 | NESE,
DIS-
SOLVED
(UG/L | TOTAL
RECOV-
ERABLE
(UG/L | TOTAL
RECOV-
ERABLE
(UG/L | DIS-
SOLVED
(UG/L
AS NI) | TOTAL
RECOV-
ERABLE
(UG/L | DIS-
SOLVED
(UG/L
AS ZN) | FORM
TOTAL | TETRA-
CHLO-
RIDE
TOTAL | BENZENE
TOTAL | DI-
BROMO-
METHANE
TOTAL | ETHANE
TOTAL | | APR 1987
15
28
MAY
20 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL
RECOV-
ERABLE
(UG/L
AS HG) | TOTAL RECOV-
ERABLE (UG/L AS NI) | DIS-
SOLVED
(UG/L
AS NI) | TOTAL
RECOV-
ERABLE
(UG/L
AS ZN) | DIS-
SOLVED
(UG/L
AS ZN) | FORM TOTAL (UG/L) ND | TETRA-
CHLO-
RIDE
TOTAL
(UG/L) | BENZENE
TOTAL
(UG/L) | DI-
BROMO-
METHANE
TOTAL
(UG/L) | ETHANE
TOTAL
(UG/L)
ND | | APR 1987
15
28
MAY
20
JUN
22 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV- ERABLE (UG/L AS HG) <0.10 0.10 | TOTAL
RECOV-
ERABLE
(UG/L
AS NI)
<100
2 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV- ERABLE (UG/L AS ZN) 10 <10 | DIS-
SOLVED
(UG/L
AS ZN) | FORM TOTAL (UG/L) ND ND | TETRA-
CHLO-
RIDE
TOTAL
(UG/L)
ND
ND | BENZENE
TOTAL
(UG/L)
ND
ND | DI-
BROMO-
METHANE
TOTAL
(UG/L)
ND | ETHANE
TOTAL
(UG/L)
ND
ND | | APR 1987
15
28
MAY
20
JUN
22
JUL
22 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV- ERABLE (UG/L AS HG) <0.10 0.10 <0.10 | TOTAL
RECOV-
ERABLE
(UG/L
AS NI)
<100
2 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV- ERABLE (UG/L AS ZN) 10 <10 | DIS-
SOLVED
(UG/L
AS ZN) | FORM TOTAL (UG/L) ND ND ND | TETRA-CHLO-RIDE TOTAL (UG/L) ND ND | BENZENE
TOTAL
(UG/L)
ND
ND | DI-
BROMO-
METHANE
TOTAL
(UG/L)
ND
ND | TOTAL
(UG/L)
ND
ND | | APR 1987 15 28 MAY 20 JUN 22 JUL 22 SEP 30 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV-ERABLE (UG/L AS HG) <0.10 0.10 <0.10 <0.10 | TOTAL RECOV-ERABLE (UG/L AS NI) | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV- ERABLE (UG/L AS ZN) 10 <10 10 | DIS-
SOLVED
(UG/L
AS ZN) | FORM TOTAL (UG/L) ND ND ND ND | TETRA- CHLO- RIDE TOTAL (UG/L) ND ND ND | BENZENE
TOTAL
(UG/L)
ND
ND
ND | DI-
BROMO-
METHANE
TOTAL
(UG/L)
ND
ND
ND | ETHANE TOTAL (UG/L) ND ND ND ND | | APR 1987 15 28 MAY 20 JUN 22 JUL 22 SEP 30 NOV 19 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV-ERABLE (UG/L AS HG) <0.10 0.10 <0.10 <0.10 <0.10 | TOTAL RECOV-ERABLE (UG/L AS NI) | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV- ERABLE (UG/L AS ZN) 10 <10 10 20 30 | DIS-
SOLVED
(UG/L
AS ZN) | FORM TOTAL (UG/L) ND ND ND ND | TETRA- CHLO- RIDE TOTAL (UG/L) ND ND ND ND | BENZENE
TOTAL
(UG/L)
ND
ND
ND
ND | DI-
BROMO-
METHANE
TOTAL
(UG/L)
ND
ND
ND | ETHANE TOTAL (UG/L) ND ND ND ND ND ND | | APR 1987 15 28 MAY 20 JUN 22 JUL 22 SEP 30 NOV 19 DEC 08 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV-ERABLE (UG/L AS HG) <0.10 0.10 <0.10 <0.10 <0.10 <0.10 <0.10 | TOTAL RECOV-ERABLE (UG/L AS NI) | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV- ERABLE (UG/L AS ZN) 10 <10 10 20 30 20 | DIS-
SOLVED
(UG/L
AS ZN) 10 <10 | FORM TOTAL (UG/L) ND ND ND ND ND ND | TETRA- CHLO- RIDE TOTAL (UG/L) ND ND ND ND ND ND | BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND | DI-
BROMO-
METHANE
TOTAL
(UG/L)
ND
ND
ND
ND | ETHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND | | APR 1987 15 28 MAY 20 JUN 22 SEP 30 NOV 19 DEC 08 MAR 1988 22 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV-ERABLE (UG/L AS HG) <0.10 0.10 <0.10 <0.10 <0.10 <0.10 -0.10 | TOTAL RECOV- PERABLE (UG/L AS NI) <1000 2 <1 <1 <1 <1 <1 <7 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV- ERABLE (UG/L AS ZN) 10 <10 20 30 20 10 | DIS-
SOLVED
(UG/L
AS ZN) | FORM TOTAL (UG/L) ND | TETRA-CHLO-RIDE RIDE TOTAL (UG/L) ND | BENZENE TOTAL (UG/L) ND | DI-
BROMO-
METHANE
TOTAL
(UG/L)
ND
ND
ND
ND | ETHANE TOTAL (UG/L) ND | | APR 1987 15 28 MAY 20 JUN 22 SEP 30 NOV 19 DEC 08 MAR 1988 22 APR 06 18 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV-ERABLE (UG/L AS HG) <0.10 | TOTAL RECOV-ERABLE (UG/L AS NI) <100 2 <1 <1 <100 7 2 2 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV-ERABLE (UG/L AS ZN) 10 <10 10 20 30 20 10 | DIS-
SOLVED
(UG/L
AS ZN) 10 <10 | FORM TOTAL (UG/L) ND | TETRA- CHLO- RIDE TOTAL (UG/L) ND | BENZENE TOTAL (UG/L) ND | DI-
BROMO-
METHANE
TOTAL
(UG/L)
ND
ND
ND
ND
ND | ETHANE TOTAL (UG/L) ND | | APR 1987 15 28 MAY 20 JUN 22 SEP 30 NOV 19 DEC 08 MAR 1988 22 APR 06 18 MAY 03 17 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV-ERABLE (UG/L AS HG) <0.10 | TOTAL RECOVERABLE (UG/L AS NI) <100 2 <1 <1 <1 <10 <7 2 3 7 | DIS-SOLVED (UG/L AS NI) | TOTAL RECOVERABLE
(UG/L AS ZN) 10 <10 10 20 30 20 10 10 10 10 10 10 10 | DIS-
SOLVED
(UG/L
AS ZN) 10 <10 <3 | FORM TOTAL (UG/L) ND | TETRA-CHLO-RIDE RIDE TOTAL (UG/L) ND | BENZENE TOTAL (UG/L) ND | DI- BROMO- METHANE TOTAL (UG/L) ND | ETHANE TOTAL (UG/L) ND | | APR 1987 15 28 MAY 20 JUN 22 SEP 30 NOV 19 DEC 08 MAR 1988 22 APR 06 18 MAY 03 17 JUN 29 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV-ERABLE (UG/L AS HG) <0.10 | TOTAL RECOV-ERABLE (UG/L AS NI) <100 2 <1 <1 <1 <1 <10 <7 <1 <10 <10 <10 <10 <10 <10 <10 <10 <10 | DIS-
SOLVED
(UG/L
AS NI) 2 <1 5 2 | TOTAL RECOVERABLE (UG/L AS ZN) 10 <10 10 20 30 20 10 10 <10 <10 <10 <10 <10 | DIS-
SOLVED
(UG/L
AS 2N) 10 <10 <3 <3 | FORM TOTAL (UG/L) ND | TETRA-CHLO-RIDE RIDE TOTAL (UG/L) ND | BENZENE TOTAL (UG/L) ND | DI-
BROMO-
METHANE
TOTAL
(UG/L)
ND
ND
ND
ND
ND
ND
ND | ETHANE TOTAL (UG/L) ND | | APR 1987 15 28 MAY 20 JUN 22 SEP 30 NOV 19 DEC 08 MAR 1988 22 APR 06 18 MAY 03 17 JUN | NESE, DIS- SOLVED (UG/L AS MN) 90 50 40 61 | TOTAL RECOV-ERABLE (UG/L AS HG) <0.10 | TOTAL RECOV- RERABLE (UG/L AS NI) <1000 2 <11 <1 <1 <100 7 2 3 7 5 6 4 | DIS- SOLVED (UG/L AS NI) 2 <1 2 <1 2 | TOTAL RECOVERABLE (UG/L AS ZN) 10 <10 10 20 30 20 10 10 <10 <10 <10 <10 <10 | DIS-
SOLVED
(UG/L
AS ZN) 10 <10 <3 <3 5 | FORM TOTAL (UG/L) ND | TETRA-CHLO-RIDE TOTAL (UG/L) ND N | BENZENE TOTAL (UG/L) ND | DI-
BROMO-
METHANE
TOTAL
(UG/L)
ND
ND
ND
ND
ND
ND
ND
ND | ETHANE TOTAL (UG/L) ND | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). ## 04218054 TONOWANDA CREEK AT PENDLETON, NY - continued | DATE | CHLORO-
FORM
TOTAL
(UG/L) | CIS
1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | DI-
CHLORO-
BROMO-
METHANE
TOTAL
(UG/L) | METHYL-
BROMIDE
TOTAL
(UG/L) | METHYL-
CHLO-
RIDE
TOTAL
(UG/L) | METHYL-
ENE
CHLO-
RIDE
TOTAL
(UG/L) | 1,1,1-
TRI-
CHLORO-
ETHANE
TOTAL
(UG/L) | 1,1-DI-
CHLORO-
ETHANE
TOTAL
(UG/L) | 1,1-DI-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 1,1,2-
TRI-
CHLORO-
ETHANE
TOTAL
(UG/L) | 1,1,2,2
TETRA-
CHLORO-
ETHANE
TOTAL
(UG/L) | |--|---|--|---|---|---|---|--|---|---|---|---| | APR 1987 | | | | | | | | | | | | | 15
28 | ND
ND | MAY
20 | | | | | | | | | | | | | JUN | ND | 22
JUL | ND | 22
SEP | ND | 30 | ND | NOV
19 | ND | DEC
08 | ND | MAR 1988
22 | ND | ND | ND | ND | ND | 0.5 | ND | ND | ND | ND | ND | | APR
06 | ND | 18 | ND | MAY
03 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 17
JUN | ND | 29 | ND | SEP
07 | 0.4 | ND | 0.2 | ND | OCT
03 | ND | DATE | 1,2-DI-
CHLORO-
BENZENE
TOTAL
(UG/L) | 1,2-DI-
CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L) | 1,2-DI-
CHLORO-
PROPANE
TOTAL
(UG/L) | 1,2-
TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L) | 1,3-DI-
CHLORO-
BENZENE
TOTAL
(UG/L) | 1,4-DI-
CHLORO-
BENZENE
TOTAL
(UG/L) | TETRA-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | TRANS-
1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | TRI-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 2-
CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L) | VINYL
CHLO-
RIDE
TOTAL
(UG/L) | | APR 1987 | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L) | CHLORO-
PROPANE
TOTAL
(UG/L) | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L) | CHLO-
RIDE
TOTAL
(UG/L) | | APR 1987
15
28 | CHLORO-
BENZENE
TOTAL | CHLORO-
ETHANE
WATER
WHOLE
TOTAL | CHLORO-
PROPANE
TOTAL | TRANSDI
CHLORO-
ETHENE
TOTAL | CHLORO-
BENZENE
TOTAL | CHLORO-
BENZENE
TOTAL | CHLORO-
ETHYL-
ENE
TOTAL | 1,3-DI-
CHLORO-
PROPENE
TOTAL | CHLORO-
ETHYL-
ENE
TOTAL | CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL | CHLO-
RIDE
TOTAL | | APR 1987
15
28
MAY
20 | CHLORO-
BENZENE
TOTAL
(UG/L)
ND | CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L) | CHLORO-
PROPANE
TOTAL
(UG/L) | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L) | CHLO-
RIDE
TOTAL
(UG/L) | | APR 1987
15
28
MAY
20
JUN
22 | CHLORO-
BENZENE
TOTAL
(UG/L)
ND
ND | CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L)
ND
ND | CHLORO-
PROPANE
TOTAL
(UG/L)
ND
ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND | CHLORO-
BENZENE
TOTAL
(UG/L)
ND
ND | CHLORO-
BENZENE
TOTAL
(UG/L)
ND
ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND | CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L)
ND | CHLO-
RIDE
TOTAL
(UG/L)
ND | | APR 1987
15
28
MAY
20
JUN
22
JUL
22 | CHLORO-
BENZENE
TOTAL
(UG/L)
ND
ND | CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L)
ND
ND | CHLORO-
PROPANE
TOTAL
(UG/L)
ND
ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND | CHLORO-
BENZENE
TOTAL
(UG/L)
ND
ND | CHLORO-
BENZENE
TOTAL
(UG/L)
ND
ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND
ND | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
ND
ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND
ND | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND ND ND | CHLO-
RIDE
TOTAL
(UG/L)
ND
ND | | APR 1987 15 28 MAY 20 JUN 22 JUL 22 SEP 30 | CHLORO-
BENZENE
TOTAL
(UG/L)
ND
ND
ND | CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L)
ND
ND
ND | CHLORO-
PROPANE
TOTAL
(UG/L)
ND
ND
ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND ND ND | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
ND
ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND
ND | CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L)
ND
ND
ND | CHLO-
RIDE
TOTAL
(UG/L)
ND
ND
ND | | APR 1987 15 28 MAY 20 JUN 22 JUL 22 SEP 30 NOV | CHLORO-
BENZEME
TOTAL
(UG/L)
ND
ND
ND
ND | CHLORO-
ETHANE WATER WHOLE TOTAL (UG/L) ND ND ND ND ND | CHLORO- PROPANE TOTAL (UG/L) ND ND ND ND ND ND ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
ND
ND
ND | CHLORO-ETHYL-ENE ENE TOTAL (UG/L) ND N | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND ND ND ND ND | CHLO-
RIDE
TOTAL
(UG/L)
ND
ND
ND
ND | | APR 1987 15 28 MAY 20 JUN 22 JUL 22 SEP 30 NOV 19 DEC | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND | CHLORO-
ETHANE WATER WHOLE TOTAL (UG/L) ND ND ND ND ND ND ND | CHLORO- PROPANE TOTAL (UG/L) ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-ETHYL-ENE ENE TOTAL (UG/L) ND N | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND N | CHLORO-ETHYL-ENE ENE TOTAL (UG/L) ND N | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND ND ND ND ND ND ND | CHLO-RIDE TOTAL (UG/L) ND ND ND ND ND ND ND | | APR 1987 15 28 MAY 20 JUN 22 JUL 22 SEP 30 NOV 19 DEC 08 MAR 1988 | CHLORO-BENZEME TOTAL (UG/L) ND N | CHLORO- ETHANE WATER WHOLE TOTAL (UG/L) ND | CHLORO- PROPANE TOTAL (UG/L) ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND N | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-ETHYL-ENE ENE TOTAL (UG/L) ND N | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND N | CHLORO-ETHYL-ENE ENE TOTAL (UG/L) ND N | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND | CHLO-RIDE TOTAL (UG/L) ND | | APR 1987 15 28 MAY 20 JUN 22 SEP 30 NOV 19 DEC 08 MAR 1988 22 APR | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND | CHLORO-
ETHANE WATER WHOLE TOTAL (UG/L) ND ND ND ND ND ND ND | CHLORO- PROPANE TOTAL (UG/L) ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-ETHYL-ENE ENE TOTAL (UG/L) ND N |
1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND N | CHLORO-ETHYL-ENE ENE TOTAL (UG/L) ND N | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND ND ND ND ND ND ND | CHLO-RIDE TOTAL (UG/L) ND ND ND ND ND ND ND | | APR 1987 15 28 MAY 20 JUN 22 SEP 30 NOV 19 DEC 08 MAR 1988 22 | CHLORO-BENZEME TOTAL (UG/L) ND N | CHLORO- ETHANE WATER WHOLE TOTAL (UG/L) ND | CHLORO- PROPANE TOTAL (UG/L) ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND N | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-ETHYL-ENE ENE TOTAL (UG/L) ND N | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND N | CHLORO-ETHYL-ENE ENE TOTAL (UG/L) ND N | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND | CHLO-RIDE TOTAL (UG/L) ND | | APR 1987 15 28 MAY 20 JUN 22 SEP 30 NOV 19 DEC 08 MAR 1988 22 APR 06 18 MAY | CHLORO-BENZENE TOTAL (UG/L) ND N | CHLORO-ETHANE WATER WATER WHOLE TOTAL (UG/L) ND | CHLORO-PROPANE TOTAL (UG/L) ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-ETHYL-ENE ENE TOTAL (UG/L) ND N | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND N | CHLORO-ETHYL-ENE ENE TOTAL (UG/L) ND N | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND | CHLO-RIDE TOTAL (UG/L) ND N | | APR 1987 15 28 MAY 20 JUN 22 SEP 30 NOV 19 DEC 08 MAR 1988 22 APR 06 18 MAY 03 17 | CHLORO-BENZENE TOTAL (UG/L) ND N | CHLORO- ETHANE WATER WHOLE TOTAL (UG/L) ND | CHLORO-PROPANE TOTAL (UG/L) ND N | TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND | CHLORO-BENZENE TOTAL (UG/L) ND N | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-ETHYL-ENE ENE TOTAL (UG/L) ND N | 1,3-DI-CHLORO-PROPENDE TOTAL (UG/L) ND N | CHLORO-ETHYL-ENE ENE TOTAL (UG/L) ND N | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND | CHLO-RIDE RIDE TOTAL (UG/L) ND | | APR 1987 15 28 MAY 20 JUN 22 SEP 30 NOV 19 DEC 08 MAR 1988 22 APR 06 18 MAY 03 17 JUN 29 | CHLORO-BENZENE TOTAL (UG/L) ND N | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND | CHLORO-PROPANE TOTAL (UG/L) ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND N | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-ETHYL-ENE ENE TOTAL (UG/L) ND N | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND N | CHLORO-ETHYL-ENE ENE TOTAL (UG/L) ND N | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND | CHLO-RIDE TOTAL (UG/L) ND N | | APR 1987 15 28 MAY 20 JUN 22 SEP 30 NOV 19 DEC 08 MAR 1988 22 APR 06 18 MAY 03 17 JUN | CHLORO-BENZENE TOTAL (UG/L) ND N | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND N | CHLORO-PROPANE TOTAL (UG/L) ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND N | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-ETHYL-ENE ENE TYOTAL (UG/L) ND N | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND N | CHLORO-ETHYL- ENE ENE TOTAL (UG/L) ND | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND | CHLO-RIDE RIDE TOTAL (UG/L) ND N | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). ## 04218054 TONOWANDA CREEK AT PENDLETON, NY - continued ## SUSPENDED SEDIMENT DISCHARGE | DATE | TIME | DIS- CHARGE, IN CUBIC FEET PER SECOND | SEDI-
MENT,
SUS-
PENDED
(MG/L) | |----------|------|---------------------------------------|--| | APR 1987 | | | | | 15 | 0900 | E1000 | 38 | | 28 | 0900 | E320 | 10 | | JUL | | | | | 22 | 1030 | E620 | 25 | | MAY 1988 | | | | | 17 | 1215 | E310 | 30 | | SEP | | | | | 07 | 1300 | E47 | 25 | | OCT | | | | | 03 | 1115 | E36 | 25 | ### BED MATERIAL ANALYSES | DATE JUL 1987 22 JUN 1988 29 | TIME | SOLIDS VOLA- TILE II BOTTOM MA- TERIA (MG/KG 3540 | IN REFM TOM | UM, RECOV. FM BOT- TOM MA- TE | | CHRO- MIUM, RECOV. M BOT- OM MA- TERIAL (UG/G) | RE
FM TOM
TE
(U | COV. F
BOT- FF
MA- TO
RIAL T
G/G | RON,
RECOV.
I BOT-
M MA-
PERIAL
LUG/G
AS FE)
6800 | REG
FM:
TOM
TE
(U | COV.
BOT-
MA- F
RIAL T | MANGA-
NESE,
RECOV.
M BOT-
OM MA-
TERIAL
(UG/G)
220 | RE
FM
TOM
TE
(U
AS | CURY
COV.
BOT-
MA-
RIAL
G/G
HG) | FM TOM TEI | COV.
BOT- | ZINC,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS ZN) | |-------------------------------|---|---|---|--|---|--|--|---|--|---|---|--|---|---|----------------------------|---|--| | DATE
JUL 1987 | AROCL
1221
IN
BOTTO
MAT
(UG/K | M
BO | OCLOR
1248
PCB
T.MAT
G/KG) | AROCLOR
1254
PCB
BOT.MAT
(UG/KG) | AROCLO
1260
PCB
BOT.M | OR TO
IN
TO
AT TI | DRIN,
DTAL
BOT-
M MA-
ERIAL
G/KG) | ALPHA
BHC
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG | TOM
TER | E,
AL
OT-
MA-
IAL | BETA
BENZEN
HEXA-
CHLOR
IDE
BOT.MA
(UG/KG | E DA
TO
- IN
TOM
T TE | ILOR-
NE,
TAL
BOT-
I MA-
CRIAL
G/KG) | CHLO:
PYRI
IN B
MAT
(UG/ | FOS
OT. | DELT
BENZE
HEXA
CHLO
IDE
BOT.M
(UG/K | NE
-
R-
AT | | 22 | | | | | | | | | - | - | | | | - | - | | | | JUN 1988
29 | ND | | ND | 3.0 | ND | 1 | ND | ND | NE |) | ND | N | ID | ND | | ND | | | DATE | DI-
AZINO
TOTA
IN BO
TOM M
TERI
(UG/K | N, EL
L T
T- IN
A- TO
AL T | DI-
DRIN,
OTAL
BOT-
M MA-
ERIAL
G/KG) | ENDO-
SULFAN
ALPHA
BOT.MAT
(UG/KG) | ENDO-
SULFAI
BETA
BOT.M. | N SU
SUI
AT BO | NDO-
ULFAN
LFATE
I.MAT
G/KG) | ENDRIN
TOTAL
IN BOT
TOM MA
TERIA
(UG/KG | ENDR
- ALC
- HY
L BOT. | E-
DE
MAT | ETHION
TOTAL
IN BOT
TOM MA
TERIA
(UG/KG | , CH
TO
- IN
- TOM
L TE | EPTA-
ILOR,
OTAL
BOT-
I MA-
ERIAL
G/KG) | HEP
CHL
EPOX
TOT.
BOT
MA
(UG/ | OR IDE IN TOM TL. | MALA
THIO
TOTA
IN BO
TOM M
TERI
(UG/K | N,
L
T-
A-
AL | | JUL 1987
22 | | | | | | | | | _ | | | | | _ | _ | | | | JUN 1988
29 | ND | | ND | ND | ND | 1 | ND | ND | NE | , | ND | | ID. | ND | | ND | | | DATE
JUL 1987
22 | METH
OXY-
CHLO
TOT.
BOTT
MAT
(UG/K | I- OR, T IN IN OM TO | IREX, OTAL BOT- M MA- ERIAL G/KG) | P,P' DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) | P, P
DDE
TOTAL
IN BO
TOM M.
TERI.
(UG/K | L TY T- IN A- TO | P,P' DDT, OTAL BOT- M MA- ERIAL G/KG) | PARA-
THION
TOTAL
IN BOT
TOM MA
TERIA
(UG/KG | TOX
PHE
TOI
IN E
TOM | IA-
INE,
IAL
SOT-
MA-
RIAL | BED
MAT.
FALL
DIAM.
% FINE
THAN | E
SJ
DJ
R % E | BED
MAT.
EEVE
MAM.
FINER
CHAN
52 MM | BEE MASIE DIA % FI TH | D
T.
VE
M.
NER | BED
MAT
SIEV
DIAM
% FIN
THA
2.00 | E
E
ER
N | | JUN 1988
29 | ND | | ND | ND | ND | 1 | ND | ND | NI |) | | | | _ | _ | | | | | | | | | 110 | • | | 140 | 141 | • | | | | | | | | ### 04218090 RANSOM CREEK NEAR CLARANCE CENTER, NY LOCATION.--Lat 43 01'11", long79 39'47", Erie County, Hydrologic Unit 04120104, at bridge on Connor Road, 1.4 mi northwest of Clarence Center. DRAINAGE AREA. -- 15.6 mi2. PERIOD OF RECORD.--Water years 1987 to 1989. CHEMICAL DATA: 1987-88 (c), 1989 (a). MINOR ELEMENT DATA: 1987-88 (c), 1989 (a). PESTICIDE DATA: 1987-88 (c), 1989 (a). ORGANIC DATA: PCB--1988 (a). NUTRIENT DATA: 1987-88 (c), 1989 (a). SEDIMENT DATA: 1987-88 (b), 1989 (a). | DATE | TIME | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | SPE-
CIFIC
CON-
DUCT-
ANCE
LAB
(US/CM) | PH WATER WHOLE FIELD (STAND- ARD UNITS) | TEMPER-
ATURE
WATER
(DEG C) | TUR-
BID-
ITY
(NTU) | BARO-
METRIC
PRES-
SURE
(MM
OF
HG) | OXYGEN,
DIS-
SOLVED
(MG/L) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | |-----------|------|---|--|---|--------------------------------------|------------------------------|--|-------------------------------------|---|--|--|--| | APR 1987 | | | | | | | | | | | | | | 15 | 1030 | | | 8.2 | 12.5 | 2.7 | | 15.4 | 230 | 72 | 13 | | | 28 | 1020 | | | 7.9 | 8.5 | 10 | | 9.2 | 260 | 78 | 16 | | | MAY | | | | | | | | | | | | | | 20 | 1310 | | | 7.8 | 15.5 | 2.6 | | | 420 | 130 | 24 | | | JUN | | | | | | | | | | | | | | 22 | 1220 | | | 7.9 | 18.0 | 23 | | | 480 | 150 | 26 | | | JUL
22 | 1130 | | | 7.7 | 26.0 | | | 5.3 | 310 | 97 | 16 | | | SEP | 1130 | | | /./ | 26.0 | 14 | | 5.3 | 310 | 91 | 16 | | | 30 | 1000 | | 1000 | 7.7 | 22.0 | 7.5 | | | | | | | | NOV | 1000 | | 1000 | ,., | 22.0 | 7.3 | | | | | | | | 19 | 1030 | | | 7.8 | 4.0 | 10 | | 14.7 | 300 | 87 |
20 | | | DEC | | | | | | | | | | | | | | 08 | 1015 | | | 8.2 | 4.0 | 3.6 | | 11.6 | | | | | | MAR 1988 | | | | | | | | | | | | | | 22 | 1115 | | 829 | 8.6 | 1.0 | 2.5 | | 15.0 | 320 | 94 | 20 | 44 | | APR | | | | | | | | | | | | | | 04 | 1130 | | 402 | 7.6 | 10.0 | 64 | | | | | | | | 19
MAY | 1200 | | 775 | 8.3 | 5.5 | 2.0 | | | 330 | 99 | 21 | 33 | | 05 | 1230 | | 923 | 7.8 | 13.0 | 2.6 | | 7.6 | | | | | | 17 | 1145 | | 542 | 7.8 | 14.0 | 17 | | 6.8 | 190 | 56 | 13 | 33 | | JUN | 1143 | | 342 | ,., | 14.0 | + / | | 0.0 | 130 | 30 | 13 | 33 | | 29 | 0930 | 1040 | 1040 | 7.2 | 14.5 | 8.0 | | 4.2 | 420 | 130 | 24 | 57 | | SEP | | | | ,,, | | 0.0 | | | | 230 | | • | | 09 | 1145 | | 1450 | 7.6 | 15.0 | | | | 700 | 220 | 36 | 59 | | OCT | | | | | | | | | | | | | | 05 | 0915 | | 920 | 7.5 | 10.5 | 5.4 | 764 | 3.8 | 390 | 120 | 21 | 40 | | NOV | | | | | | | | | | | | | | 16 | 0850 | | 963 | 7.8 | 7.0 | 2.6 | 759 | 9.4 | 380 | 110 | 25 | 48 | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). ## 04218090 RANSOM CREEK NEAR CLARANCE CENTER, NY - continued | DATE | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K) | ALKA-
LINITY
LAB
(MG/L
AS
CACO3) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | SOLIDS,
RESIDUE
AT 105
DEG. C,
TOTAL
(MG/L) | SOLIDS,
VOLA-
TILE ON
IGNI-
TION,
TOTAL
(MG/L) | RESIDUE
TOTAL
FIXED
(MG/L) | NITRO-
GEN,
NITRATE
TOTAL
(MG/L
AS N) | |---|---|---|---|--|--|--|---|---|---|---|---| | APR 1987 | | | | | | 206 | | 265 | 50 | 21.4 | 1 45 | | 15
28 | | | | | | 296
426 | | 365
447 | 50
74 | 314
384 | 1.45
0.870 | | MAY
20 | | | | | | 764 | | 844 | 216 | 628 | 0.530 | | JUN
22 | | | | | | 776 | | 842 | 222 | 662 | 0.610 | | JUL
22 | | | | | | 632 | | 664 | 168 | 516 | | | SEP
30 | | | | | | 696 | | 760 | 136 | 624 | 0.480 | | NOV
19 | | | | | | 496 | | 538 | 140 | 404 | 1.63 | | DEC 08 | | | | | | 496 | | 568 | 152 | 416 | 3.41 | | MAR 1988
22 | 2.3 | 192 | 110 | 75 | 0.20 | 530 | 461 | 572 | 110 | 462 | | | APR
04 | | 117 | 42 | 34 | 0.20 | 284 | | 368 | 84 | 284 | 1.03 | | 19
MAY | 2.0 | 196 | 120 | 61 | 0.30 | 512 | 454 | 516 | 36 | 480 | 1.21 | | 05
17 | 2.4 | 236
130 |
5 6 |
54 | 0.30 | 676
380 |
293 | 740
400 | 188
144 | 552
256 | 0.750
0.420 | | JUN
29 | 4.1 | 196 | 220 | 98 | 0.30 | 677 | 652 | 789 | 228 | 561 | 0.080 | | SEP
09 | 4.1 | 248 | 480 | 89 | 0.30 | 1090 | 1040 | 1100 | 196 | 904 | 0.270 | | ОСТ
05 | 7.0 | 150 | 230 | 58 | 0.30 | 608 | 568 | 365 | 92 | 544 | 0.120 | | NO V
16 | 3.6 | 186 | 190 | 84 | 0.30 | 5 6 8 | 573 | 648 | 140 | 508 | 3.62 | | | | | | | | | | | | | | | DATE | NITRO-
GEN,
NITRITE
TOTAL
(MG/L
AS N) | NITRO-
GEN,
NO2+NO3
TOTAL
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS NH4) | NITRO-
GEN,
ORGANIC
TOTAL
(MG/L
AS N) | NITRO-
GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | NITRO-
GEN,
TOTAL
(MG/L
AS N) | NITRO-
GEN,
TOTAL
(MG/L
AS NO3) | PHOS-
PHORUS
TOTAL
(MG/L
AS P) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P) | PHOS-
PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4) | | APR 1987 | GEN,
NITRITE
TOTAL
(MG/L
AS N) | GEN,
NO2+NO3
TOTAL
(MG/L
AS N) | GEN,
AMMONIA
TOTAL
(MG/L
AS N) | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4) | GEN,
ORGANIC
TOTAL
(MG/L
AS N) | GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | GEN,
TOTAL
(MG/L
AS N) | GEN,
TOTAL
(MG/L
AS NO3) | PHORUS
TOTAL
(MG/L
AS P) | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P) | PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4) | | APR 1987
15
28 | GEN,
NITRITE
TOTAL
(MG/L | GEN,
NO2+NO3
TOTAL
(MG/L | GEN,
AMMONIA
TOTAL
(MG/L | GEN,
AMMONIA
TOTAL
(MG/L | GEN,
ORGANIC
TOTAL
(MG/L | GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L | GEN,
TOTAL
(MG/L | GEN,
TOTAL
(MG/L | PHORUS
TOTAL
(MG/L | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L | PHATE,
ORTHO,
DIS-
SOLVED
(MG/L | | APR 1987
15
28
MAY
20 | GEN,
NITRITE
TOTAL
(MG/L
AS N) | GEN,
NO2+NO3
TOTAL
(MG/L
AS N) | GEN,
AMMONIA
TOTAL
(MG/L
AS N) | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4) | GEN,
ORGANIC
TOTAL
(MG/L
AS N) | GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | GEN,
TOTAL
(MG/L
AS N) | GEN,
TOTAL
(MG/L
AS NO3) | PHORUS
TOTAL
(MG/L
AS P) | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P) | PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4) | | APR 1987
15
28
MAY
20
JUN
22 | GEN,
NITRITE
TOTAL
(MG/L
AS N)
0.010
0.020 | GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
1.46
0.890 | GEN,
AMMONIA
TOTAL
(MG/L
AS N)
0.020
0.050 | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4)
0.03
0.06 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.29
0.29 | GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
0.31 | GEN,
TOTAL
(MG/L
AS N)
1.8
1.2 | GEN,
TOTAL
(MG/L
AS NO3)
7.8
5.4 | PHORUS
TOTAL
(MG/L
AS P)
0.050
0.080 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P) | PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4)
0.03 | | APR 1987
15
28
MAY
20
JUN
22
JUL
22 | GEN,
NITRITE
TOTAL
(MG/L
AS N)
0.010
0.020 | GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
1.46
0.890
0.650 | GEN,
AMMONIA
TOTAL
(MG/L
AS N)
0.020
0.050 | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4)
0.03
0.06 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.29
0.29 | GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
0.31
0.34 | GEN,
TOTAL
(MG/L
AS N)
1.8
1.2 | GEN,
TOTAL
(MG/L
AS NO3)
7.8
5.4
4.6 | PHORUS
TOTAL
(MG/L
AS P)
0.050
0.080 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
0.010
0.010 | PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4)
0.03
0.03 | | APR 1987 15 28 MAY 20 JUN 22 JUL 22 SEP 30 | GEN,
NITRITE
TOTAL
(MG/L
AS N)
0.010
0.020
0.120
0.010 | GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
1.46
0.890
0.650 | GEN,
AMMONIA
TOTAL
(MG/L
AS N)
0.020
0.050
0.200 | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4)
0.03
0.06
0.26 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.29
0.29
0.18 | GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
0.31
0.34
0.38 | GEN,
TOTAL
(MG/L
AS N)
1.8
1.2
1.0 | GEN,
TOTAL
(MG/L
AS NO3)
7.8
5.4
4.6
5.0 | PHORUS
TOTAL
(MG/L
AS P)
0.050
0.080
0.200 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
0.010
0.010
0.160 | PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4)
0.03
0.03
0.49 | | APR 1987 15 28 MAY 20 JUN 22 JUL 22 SEP 30 NOV 19 | GEN,
NITRITE
TOTAL
(MG/L
AS N)
0.010
0.020
0.120
0.010 | GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
1.46
0.890
0.650
0.620 | GEN, AMMONIA TOTAL (MG/L AS N) 0.020 0.050 0.200 0.040 0.080 | GEN, AMMONIA TOTAL (MG/L AS NH4) 0.03 0.06 0.26 0.05 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.29
0.29
0.18
0.47 | GEN, AM- MONIA + ORGANIC TYOTAL (MG/L AS N) 0.31 0.34 0.38 0.51 | GEN,
TOTAL
(MG/L
AS N)
1.8
1.2
1.0 | GEN,
TOTAL
(MG/L
AS NO3)
7.8
5.4
4.6
5.0 | PHORUS
TOTAL
(MG/L
AS P)
0.050
0.080
0.200
0.500
0.370 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
0.010
0.010
0.160
0.320
0.330 | PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4)
0.03
0.03
0.49
0.98 | | APR 1987 15 28 MAY 20 JUN 22 JUL 22 SEP 30 NOV 19 DEC 08 | GEN,
NITRITE
TOTAL
(MG/L
AS N)
0.010
0.020
0.120
0.010 | GEN,
NO2+NO3
TOTAL
(MG/L
AS
N)
1.46
0.890
0.650
0.620
0.870
0.580 | GEN,
AMMONIA
TOTAL
(MG/L
AS N)
0.020
0.050
0.200
0.040
0.080 | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4)
0.03
0.06
0.26
0.05
0.10 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.29
0.29
0.18
0.47
0.27 | GEN, AM- MONIA + ORGANIC TOTTAL (MG/L AS N) 0.31 0.34 0.38 0.51 0.35 | GEN,
TOTTAL
(MG/L
AS N)
1.8
1.2
1.0
1.1 | GEN,
TOTAL
(MG/L
AS NO3)
7.8
5.4
4.6
5.0
5.4
6.1 | PHORUS
TOTAL
(MG/L
AS P)
0.050
0.080
0.200
0.500
0.370
0.380 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
0.010
0.010
0.160
0.320
0.330 | PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4)
0.03
0.03
0.49
0.98
1.0 | | APR 1987 15 28 MAY 20 JUN 22 JUL 22 SEP 30 NOV 19 DEC 08 MAR 1988 22 | GEN,
NITRITE
TOTAL
(MG/L
AS N)
0.010
0.020
0.120
0.010 | GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
1.46
0.890
0.650
0.620
0.870
0.580
1.65 | GEN, AMMONIA TOTAL (MG/L AS N) 0.020 0.050 0.200 0.040 0.080 0.030 | GEN, AMMONIA TOTAL (MG/L AS NH4) 0.03 0.06 0.26 0.05 0.10 0.04 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.29
0.29
0.18
0.47
0.27
0.77 | GEN, AM- MONIA + ORGANIC TYOTAL (MG/L AS N) 0.31 0.34 0.38 0.51 0.35 0.80 0.43 | GEN,
TOTTAL
(MG/L
AS N)
1.8
1.2
1.0
1.1
1.2 | GEN,
TOTAL
(MG/L
AS NO3)
7.8
5.4
4.6
5.0
5.4
6.1
9.2 | PHORUS TOTAL (MG/L AS P) 0.050 0.080 0.200 0.500 0.370 0.380 0.220 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
0.010
0.010
0.160
0.320
0.330
0.170
0.140 | PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4)
0.03
0.03
0.49
0.98
1.0
0.52 | | APR 1987 15 28 MAY 20 JUN 22 JUL 22 SEP 30 NOV 19 DEC 08 MAR 1988 | GEN,
NITRITE
TOTAL
(MG/L
AS N)
0.010
0.020
0.120
0.010

0.100
0.020
0.010 | GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
1.46
0.890
0.650
0.620
0.870
0.580
1.65
3.42 | GEN,
AMMONIA
TOTAL
(MG/L
AS N)
0.020
0.050
0.200
0.040
0.080
0.030
0.030 | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4)
0.03
0.06
0.26
0.05
0.10
0.04
0.04 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.29
0.29
0.18
0.47
0.27
0.77
0.40 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.31 0.34 0.38 0.51 0.35 0.80 0.43 0.18 | GEN,
TOTTAL
(MG/L
AS N)
1.8
1.2
1.0
1.1
1.2
1.4
2.1 | GEN,
TOTAL
(MG/L
AS NO3)
7.8
5.4
4.6
5.0
5.4
6.1
9.2 | PHORUS
TOTAL
(MG/L
AS P)
0.050
0.080
0.200
0.500
0.370
0.380
0.220
0.060 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
0.010
0.010
0.160
0.320
0.330
0.170
0.140 | PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4)
0.03
0.03
0.49
0.98
1.0
0.52
0.43 | | APR 1987 15 28 MAY 20 JUN 22 SEP 30 NOV 19 DEC 08 MAR 1988 22 APR 04 19 MAY 05 | GEN, NITRITE TOTAL (MG/L AS N) 0.010 0.020 0.120 0.010 0.100 0.020 0.010 0.00 0.010 0.020 | GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
1.46
0.890
0.650
0.620
0.870
0.580
1.65
3.42
1.65
1.03
1.22 | GEN,
AMMONIA
TOTAL
(MG/L
AS N)
0.020
0.050
0.040
0.080
0.030
0.030
0.020
0.010
0.230
0.00 | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4)
0.03
0.06
0.26
0.05
0.10
0.04
0.04
0.03
0.01 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.29
0.29
0.18
0.47
0.27
0.77
0.40
0.16
0.33 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.31 0.34 0.38 0.51 0.35 0.80 0.43 0.18 0.34 | GEN,
TOTTAL
(MG/L
AS N)
1.8
1.2
1.0
1.1
1.2
1.4
2.1
3.6
2.0
2.1 | GEN,
TOTAL
(MG/L
AS NO3)
7.8
5.4
4.6
5.0
5.4
6.1
9.2
16
8.8
9.4 | PHORUS TOTAL (MG/L AS P) 0.050 0.080 0.200 0.500 0.370 0.380 0.220 0.060 0.040 0.280 0.030 0.060 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
0.010
0.010
0.160
0.320
0.330
0.170
0.140
0.020
0.010 | PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4)
0.03
0.49
0.98
1.0
0.52
0.43
0.06 | | APR 1987 15 28 MAY 20 JUN 22 SEP 30 NOV 19 DEC 08 MAR 1988 22 APR 04 19 MAY 05 17 JUN | GEN, NITRITE TOTAL (MG/L AS N) 0.010 0.020 0.120 0.010 0.100 0.020 0.010 0.000 0.010 | GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
1.46
0.890
0.650
0.620
0.870
0.580
1.65
3.42
1.65 | GEN, AMMONIA TOTAL (MG/L AS N) 0.020 0.050 0.200 0.040 0.080 0.030 0.030 0.020 0.010 0.230 0.00 | GEN, AMMONIA TOTAL (MG/L AS NH4) 0.03 0.06 0.26 0.05 0.10 0.04 0.04 0.03 0.01 0.30 0.0 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.29
0.29
0.18
0.47
0.27
0.77
0.40
0.16
0.33
0.87
0.23 | GEN, AM- MONIA + ORGANIC TYOTAL (MG/L AS N) 0.31 0.34 0.38 0.51 0.35 0.80 0.43 0.18 0.34 | GEN,
TOTTAL
(MG/L
AS N)
1.8
1.2
1.0
1.1
1.2
1.4
2.1
3.6
2.0
2.1 | GEN,
TOTAL
(MG/L
AS NO3)
7.8
5.4
4.6
5.0
5.4
6.1
9.2
16
8.8
9.4
6.4 | PHORUS TOTAL (MG/L AS P) 0.050 0.080 0.200 0.500 0.370 0.380 0.220 0.060 0.040 0.280 0.030 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
0.010
0.010
0.320
0.330
0.170
0.140
0.020
0.010 | PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4)
0.03
0.03
0.49
0.98
1.0
0.52
0.43
0.06
0.03 | | APR 1987 15 28 MAY 20 JUN 22 SEP 30 NOV 19 DEC 08 MAR 1988 22 APR 04 19 MAY 05 17 JUN 29 SEP | GEN, NITRITE TOTAL (MG/L AS N) 0.010 0.020 0.120 0.010 0.100 0.020 0.010 0.00 0.010 0.020 0.020 0.020 | GEN, NO2+NO3 TOTAL (MG/L AS N) 1.46 0.890 0.650 0.620 0.870 0.580 1.65 3.42 1.65 1.03 1.22 0.770 0.440 0.100 | GEN, AMMONIA TOTAL (MG/L AS N) 0.020 0.050 0.200 0.040 0.080 0.030 0.030 0.020 0.010 0.230 0.000 0.050 0.070 0.050 | GEN, AMMONIA TOTAL (MG/L AS NH4) 0.03 0.06 0.26 0.05 0.10 0.04 0.04 0.03 0.01 0.30 0.0 0.06 0.09 0.03 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.29
0.18
0.47
0.27
0.77
0.40
0.16
0.33
0.87
0.23
0.63 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.31 0.34 0.38 0.51 0.35 0.80 0.43 0.18 0.34 1.1 0.23 0.37 0.70 0.30 | GEN,
TOTTAL
(MG/L
AS N)
1.8
1.2
1.0
1.1
1.2
1.4
2.1
3.6
2.0
2.1
1.5
1.1
1.1 | GEN,
TOTAL
(MG/L
AS NO3)
7.8
5.4
4.6
5.0
5.4
6.1
9.2
16
8.8
9.4
6.4
5.0
5.0 | PHORUS TOTAL (MG/L AS P) 0.050 0.080 0.200 0.500 0.370 0.380 0.220 0.060 0.040 0.280 0.030 0.060 0.180 0.410 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
0.010
0.010
0.320
0.330
0.170
0.140
0.020
0.010
0.130
0.00
0.020
0.070 | PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4)
0.03
0.03
0.49
0.98
1.0
0.52
0.43
0.06
0.03 | | APR 1987 15 28 MAY 20 JUN 22 SEP 30 NOV 19 DEC 08 MAR 1988 22 APR 04 19 MAY 05 17 JUN 29 SEP 09 OCT | GEN, NITRITE TOTAL (MG/L AS N) 0.010 0.020 0.120 0.010 0.100 0.020 0.010 0.00 0.010 0.020 0.020 | GEN, NO2+NO3 TOTAL (MG/L AS N) 1.46 0.890 0.650 0.620 0.870 0.580 1.65 3.42 1.65 1.03 1.22 0.770 0.440 | GEN, AMMONIA TOTAL (MG/L AS N) 0.020 0.050 0.200 0.040 0.080 0.030 0.030 0.020 0.010 0.230 0.00 0.050 0.050 | GEN, AMMONIA TOTAL (MG/L AS NH4) 0.03 0.06 0.26 0.05 0.10 0.04 0.03 0.01 0.30 0.0 0.06 0.09 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.29
0.29
0.18
0.47
0.27
0.77
0.40
0.16
0.33
0.87
0.23
0.32
0.63 | GEN, AM- MONIA + ORGANIC TOTTAL (MG/L AS N) 0.31 0.34 0.38 0.51 0.35 0.80 0.43 0.18 0.34 1.1 0.23 0.37 | GEN,
TOTTAL
(MG/L
AS N)
1.8
1.2
1.0
1.1
1.2
1.4
2.1
3.6
2.0
2.1
1.5 | GEN,
TOTAL
(MG/L
AS NO3)
7.8
5.4
4.6
5.0
5.4
6.1
9.2
16
8.8
9.4
6.4
5.0
5.0 | PHORUS TOTAL (MG/L AS P) 0.050 0.080 0.200 0.500 0.370 0.380 0.220 0.060 0.040 0.280 0.030 0.060 0.180 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
0.010
0.160
0.320
0.330
0.170
0.140
0.020
0.010
0.130
0.00
0.020
0.070 | PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4)
0.03
0.49
0.98
1.0
0.52
0.43
0.06
0.03 | | APR 1987 15 28 MAY 20 JUN 22 SEP 30 NOV 19 DEC 08 MAR 1988 22 APR 04 19 MAY 05 17 JUN 29 SEP | GEN, NITRITE TOTAL (MG/L AS N) 0.010 0.020 0.120 0.010 0.100 0.020 0.010 0.00 0.010 0.020 0.020 0.020 | GEN, NO2+NO3 TOTAL (MG/L AS N) 1.46 0.890 0.650 0.620 0.870 0.580 1.65 3.42 1.65 1.03 1.22 0.770 0.440 0.100 | GEN, AMMONIA TOTAL (MG/L AS N) 0.020 0.050 0.200 0.040 0.080 0.030 0.030 0.020 0.010 0.230 0.000 0.050 0.070 0.050 | GEN, AMMONIA TOTAL (MG/L AS NH4) 0.03 0.06 0.26 0.05 0.10 0.04 0.04 0.03 0.01 0.30 0.0 0.06 0.09 0.03 | GEN, ORGANIC TOTAL (MG/L AS N) 0.29 0.29 0.18 0.47 0.27 0.77 0.40 0.16 0.33 0.87 0.23 0.32 0.63 0.28 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.31 0.34 0.38 0.51 0.35 0.80 0.43 0.18 0.34 1.1 0.23 0.37 0.70 0.30 | GEN,
TOTTAL
(MG/L
AS N)
1.8
1.2
1.0
1.1
1.2
1.4
2.1
3.6
2.0
2.1
1.5
1.1
1.1 | GEN,
TOTAL
(MG/L
AS NO3)
7.8
5.4
4.6
5.0
5.4
6.1
9.2
16
8.8
9.4
6.4
5.0
5.0 | PHORUS TOTAL (MG/L AS P) 0.050 0.080 0.200 0.500 0.370 0.380 0.220 0.060 0.040 0.280 0.030 0.060 0.180 0.410 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
0.010
0.010
0.320
0.330
0.170
0.140
0.020
0.010
0.130
0.00
0.020
0.070 | PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4)
0.03
0.03
0.49
0.98
1.0
0.52
0.43
0.06
0.03 | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). ## 04218090 RANSOM CREEK NEAR
CLARANCE CENTER, NY - continued | DATE | ALUM-
INUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS AL) | ALUM-
INUM,
DIS-
SOLVED
(UG/L
AS AL) | CADMIUM
TOTAL
RECOV-
ERABLE
(UG/L
AS CD) | CADMIUM
DIS-
SOLVED
(UG/L
AS CD) | COPPER,
TOTAL
RECOV-
ERABLE
(UG/L
AS CU) | COPPER,
DIS-
SOLVED
(UG/L
AS CU) | IRON,
TOTAL
RECOV-
ERABLE
(UG/L
AS FE) | IRON,
DIS-
SOLVED
(UG/L
AS FE) | LEAD,
TOTAL
RECOV-
ERABLE
(UG/L
AS PB) | LEAD,
DIS-
SOLVED
(UG/L
AS PB) | MANGA-
NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | |--|--|--|--|--|---|---|---|---|--|---|---| | APR 1987 | | | | | | | | | | | | | 15
28 | | | <10
<10 | | <10
<10 | | 190
4 50 | | <100
7 | | 30
70 | | MAY
20 | | | <10 | 1.0 | 10 | 1 | 200 | | < 5 | <5 | 100 | | JUN
22
JUL | | | <10 | | <10 | | 950 | | <5 | | 170 | | 22
SEP | | | <10 | | 20 | | 840 | | < 5 | | 90 | | 30 | | | <10 | | 10 | | 510 | | <100 | | 130 | | 19
DEC | | | <1 | | 5 | | 540 | | <5 | | 30 | | 08
MAR 1988 | | | <1 | | 5 | | 250 | | <5 | | 30 | | 22
APR | <10 | 40 | <1 | <1.0 | 3 | 2 | | 120 | <5 | <5 | 20 | | 04
19 | 2900
4 0 | | <1
1 |
<1.0 | 31
3 | 2 | 3100
140 | 17 | <5
<5 |
<5 | 70
30 | | MAY | 60 | 10 | | | 6 | 2 | 150 | | < 5 | ~3 | 100 | | 05
17
JUN | 450 | 20 | <1
<1 | <1.0 | 3 | 4 | 820 | 180 | <5
<5 |
<5 | 80 | | 29
SEP | 430 | | <1 | | 5 | | 560 | | <5 | | 180 | | 09 | 100 | | <1 | | 4 | | 210 | | <5 | | 70 | | 05
NOV | 120 | 10 | <1 | <1.0 | 6 | 1 | 540 | 140 | <5 | <5 | 360 | | 16 | 50 | | 1 | | 4 | | 160 | | <5 | | 20 | | | | | | | | | | | | | | | DATE | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN) | MERCURY
TOTAL
RECOV-
ERABLE
(UG/L
AS HG) | NICKEL,
TOTAL
RECOV-
ERABLE
(UG/L
AS NI) | NICKEL,
DIS-
SOLVED
(UG/L
AS NI) | ZINC,
TOTAL
RECOV-
ERABLE
(UG/L
AS ZN) | ZINC,
DIS-
SOLVED
(UG/L
AS ZN) | BROMO-
FORM
TOTAL
(UG/L) | CARBON-
TETRA-
CHLO-
RIDE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
DI-
BROMO-
METHANE
TOTAL
(UG/L) | CHLORO-
ETHANE
TOTAL
(UG/L) | | APR 1987 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL
RECOV-
ERABLE
(UG/L
AS HG) | TOTAL
RECOV-
ERABLE
(UG/L
AS NI) | DIS-
SOLVED
(UG/L
AS NI) | TOTAL
RECOV-
ERABLE
(UG/L
AS ZN) | DIS-
SOLVED
(UG/L
AS ZN) | FORM
TOTAL
(UG/L) | TETRA-
CHLO-
RIDE
TOTAL
(UG/L) | BENZENE
TOTAL
(UG/L) | DI-
BROMO-
METHANE
TOTAL
(UG/L) | ETHANE
TOTAL
(UG/L) | | | NESE,
DIS-
SOLVED
(UG/L | TOTAL
RECOV-
ERABLE
(UG/L | TOTAL
RECOV-
ERABLE
(UG/L | DIS-
SOLVED
(UG/L | TOTAL
RECOV-
ERABLE
(UG/L | DIS-
SOLVED
(UG/L | FORM
TOTAL | TETRA-
CHLO-
RIDE
TOTAL | BENZENE
TOTAL | DI-
BROMO-
METHANE
TOTAL | ETHANE
TOTAL | | APR 1987
15
28 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL
RECOV-
ERABLE
(UG/L
AS HG) | TOTAL
RECOV-
ERABLE
(UG/L
AS NI) | DIS-
SOLVED
(UG/L
AS NI) | TOTAL
RECOV-
ERABLE
(UG/L
AS ZN) | DIS-
SOLVED
(UG/L
AS ZN) | FORM TOTAL (UG/L) | TETRA-
CHLO-
RIDE
TOTAL
(UG/L) | BENZENE
TOTAL
(UG/L)
ND | DI-
BROMO-
METHANE
TOTAL
(UG/L) | ETHANE
TOTAL
(UG/L)
ND | | APR 1987
15
28
MAY
20
JUN
22 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL
RECOV-
ERABLE
(UG/L
AS HG)
<0.10 | TOTAL
RECOV-
ERABLE
(UG/L
AS NI)
<100
9 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL
RECOV-
ERABLE
(UG/L
AS ZN) | DIS-
SOLVED
(UG/L
AS ZN) | FORM
TOTAL
(UG/L)
ND
ND | TETRA-
CHLO-
RIDE
TOTAL
(UG/L)
ND
ND | BENZENE
TOTAL
(UG/L)
ND
ND | DI-
BROMO-
METHANE
TOTAL
(UG/L)
ND
ND | ETHANE
TOTAL
(UG/L)
ND
ND | | APR 1987
15
28
MAY
20
JUN
22
JUL
22 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV- ERABLE (UG/L AS HG) <0.10 0.10 <0.10 | TOTAL
RECOV-
ERABLE
(UG/L
AS NI)
<100
9 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV- ERABLE (UG/L AS ZN) 10 20 <10 | DIS-
SOLVED
(UG/L
AS ZN) | FORM TOTAL (UG/L) ND ND ND | TETRA-CHLO-RIDE TOTAL (UG/L) ND ND | BENZENE
TOTAL
(UG/L)
ND
ND | DI-
BROMO-
METHANE
TOTAL
(UG/L)
ND
ND | ETHANE
TOTAL
(UG/L)
ND
ND | | APR 1987 15 28 MAY 20 JUN 22 JUL 22 SEP 30 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV- ERABLE (UG/L AS HG) <0.10 0.10 <0.10 <0.10 | TOTAL RECOV- ERABLE (UG/L AS NI) <100 9 <1 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV- ERABLE (UG/L AS ZN) 10 20 <10 | DIS-
SOLVED
(UG/L
AS ZN) | FORM
TOTAL
(UG/L)
ND
ND
ND | TETRA-
CHLO-
RIDE
TOTAL
(UG/L)
ND
ND
ND | BENZENE
TOTAL
(UG/L)
ND
ND
ND | DI-
BROMO-
METHANE
TOTAL
(UG/L)
ND
ND
ND | ETHANE
TOTAL
(UG/L)
ND
ND
ND | | APR 1987 15 28 MAY 20 JUN 22 JUL 22 SEP 30 NOV 19 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV-ERABLE (UG/L AS HG) <0.10 | TOTAL RECOV- ERABLE (UG/L AS NI) <100 9 <1 <1 <1 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV- ERABLE (UG/L AS ZN) 10 20 <10 20 | DIS-
SOLVED
(UG/L
AS ZN) | FORM
TOTAL
(UG/L)
ND
ND
ND
ND | TETRA-CHLO-RIDE TOTAL (UG/L) ND ND ND ND | BENZENE
TOTAL
(UG/L)
ND
ND
ND
ND | DI-
BROMO-
METHANE
TOTAL
(UG/L)
ND
ND
ND
ND | ETHANE TOTAL (UG/L) ND ND ND ND | | APR 1987 15 28 MAY 20 JUN 22 JUL 22 SEP 30 NOV 19 DEC 08 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV-ERABLE (UG/L AS HG) <0.10 | TOTAL RECOV- ERABLE (UG/L AS NI) <100 9 <1 <1 <1 <100 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV- ERABLE (UG/L AS ZN) 10 20 <10 20 20 | DIS-
SOLVED
(UG/L
AS ZN) | FORM TOTAL (UG/L) ND ND ND ND ND ND | TETRA- CHLO- RIDE TOTAL (UG/L) ND ND ND ND ND ND | BENZENE TOTAL (UG/L) ND ND ND ND ND ND | DI-
BROMO-
METHANE
TOTAL
(UG/L)
ND
ND
ND
ND | ETHANE TOTAL (UG/L) ND ND ND ND ND ND | | APR 1987 15 28 MAY 20 JUN 22 JUL 22 SEP 30 NOV 19 DEC 08 MAR 1988 22 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV-ERABLE (UG/L AS HG) <0.10 | TOTAL RECOV- PRABLE (UG/L AS NI) <100 9 <1 <1 <1 <100 <1 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV- ERABLE (UG/L AS ZN) 10 20 <10 20 20 10 | DIS-
SOLVED
(UG/L
AS ZN) | FORM TOTAL (UG/L) ND | TETRA- CHLO- RIDE TOTAL (UG/L) ND | BENZENE TOTAL (UG/L) ND | DI-
BROMO-
METHANE
TOTAL
(UG/L)
ND
ND
ND
ND
ND | ETHANE TOTAL (UG/L) ND | | APR 1987 15 28 MAY 20 JUN 22 SEP 30 NOV 19 DEC 08 MAR 1988 22 APR 04 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV-ERABLE (UG/L AS HG) <0.10 | TOTAL RECOV- ERABLE (UG/L AS NI) <100 9 <1 <1 <100 <1 <1 <100 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV-ERABLE (UG/L AS
ZN) 10 20 <10 20 20 10 10 40 40 | DIS-
SOLVED
(UG/L
AS 2N) 10 7 | FORM TOTAL (UG/L) ND | TETRA-CHLO-RIDE RIDE TOTAL (UG/L) ND | BENZENE TOTAL (UG/L) ND | DI- BROMO- METHANE TOTAL (UG/L) ND | ETHANE TOTAL (UG/L) ND | | APR 1987 15 28 MAY 20 JUN 22 30 NOV 19 DEC 08 MAR 1988 22 APR 04 19 MAY | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV-ERABLE (UG/L AS HG) <0.10 | TOTAL RECOV- ERABLE (UG/L AS NI) <1000 9 <1 <1 <100 <1 <1 <1 <100 <1 <1 <1 <1 <100 <1 <1 <100 <1 <1 <100 <1 <100 <1 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV-ERABLE (UG/L AS ZN) 10 20 <10 20 20 10 10 40 <10 | DIS-
SOLVED
(UG/L
AS ZN) 10 7 | FORM TOTAL (UG/L) ND | TETRA-CHLO-RIDE TOTAL (UG/L) ND N | BENZENE TOTAL (UG/L) ND | DI- BROMO- METHANE TOTAL (UG/L) ND | ETHANE TOTAL (UG/L) ND | | APR 1987 15 28 MAY 20 JUN 22 SEP 30 NOV 19 DEC 08 MAR 1988 22 APR 04 19 MAY 05 17 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV-ERABLE (UG/L AS HG) <0.10 | TOTAL RECOV- ERABLE (UG/L AS NI) <100 9 <1 <1 <100 <1 <1 <100 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV-ERABLE (UG/L AS ZN) 10 20 <10 20 20 10 10 40 40 | DIS-
SOLVED
(UG/L
AS 2N) 10 7 | FORM TOTAL (UG/L) ND | TETRA-CHLO-RIDE RIDE TOTAL (UG/L) ND | BENZENE TOTAL (UG/L) ND | DI- BROMO- METHANE TOTAL (UG/L) ND | ETHANE TOTAL (UG/L) ND | | APR 1987 15 28 MAY 20 JUN 22 SEP 30 NOV 19 DEC 08 MAR 1988 22 APR 04 19 MAY 19 17 JUN 29 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV-ERABLE (UG/L AS HG) <0.10 | TOTAL RECOV-ERABLE (UG/L AS NI) <100 9 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 < | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV-ERABLE (UG/L AS ZN) 10 20 <10 20 20 10 10 <10 40 <10 <10 <10 <10 <10 <10 <10 <10 <10 <1 | DIS-
SOLVED
(UG/L
AS ZN) 10 7 4 | FORM TOTAL (UG/L) ND | TETRA-CHLO-RIDE TOTAL (UG/L) ND N | BENZENE TOTAL (UG/L) ND | DI- BROMO- METHANE TOTAL (UG/L) ND | ETHANE TOTAL (UG/L) ND | | APR 1987 15 28 MAY 20 JUN 22 SEP 30 NOV 19 DEC 08 MAR 1988 22 APR 04 19 MAY 05 JUN 29 SEP 09 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV-ERABLE (UG/L AS HG) <0.10 | TOTAL RECOVERABLE (UG/L AS NI) <1000 9 <1 <1 <100 <1 <1 <100 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 | DIS-
SOLVED
(UG/L
AS NI) 1 1 1 | TOTAL RECOVERABLE (UG/L AS ZN) 10 20 20 20 10 10 40 <10 <10 <10 <10 <10 <10 <10 <10 <10 <1 | DIS-
SOLVED
(UG/L
AS ZN) 10 17 | FORM TOTAL (UG/L) ND | TETRA-CHLO-RIDE TOTAL (UG/L) ND N | BENZENE TOTAL (UG/L) ND | DI- BROMO- METHANE TOTAL (UG/L) ND | ETHANE TOTAL (UG/L) ND | | APR 1987 15 28 MAY 20 JUN 22 SEP 30 NOV 19 DEC 08 MAR 1988 22 APR 04 19 MAY 19 JUN 29 SEP | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOVERABLE (UG/L AS HG) <0.10 | TOTAL RECOV- REABLE (UG/L AS NI) <100 9 <1 <1 <100 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 | DIS-
SOLVED
(UG/L
AS NI) 3 1 1 | TOTAL RECOVERABLE (UG/L AS ZN) 10 20 20 20 10 10 40 <10 <10 <10 <20 <20 <20 <40 <40 <40 <40 <40 <40 <40 <40 <40 <4 | DIS-
SOLVED
(UG/L
AS 2N) 10 17 4 12 | FORM TOTAL (UG/L) ND | TETRA-CHLO-RIDE TOTAL (UG/L) ND N | BENZENE TOTAL (UG/L) ND | DI- BROMO- METHANE TOTAL (UG/L) ND | ETHANE TOTAL (UG/L) ND | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). ## 04218090 RANSOM CREEK NEAR CLARANCE CENTER, NY - continued | | | | | | rer-Quali. | | | • | | | | |---|--|---|---|---|--|--|---|--|--|--|--| | DATE | CHLORO-
FORM
TOTAL
(UG/L) | CIS
1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | DI-
CHLORO-
BROMO-
METHANE
TOTAL
(UG/L) | METHYL-
BROMIDE
TOTAL
(UG/L) | METHYL-
CHLO-
RIDE
TOTAL
(UG/L) | METHYL-
ENE
CHLO-
RIDE
TOTAL
(UG/L) | 1,1,1-
TRI-
CHLORO-
ETHANE
TOTAL
(UG/L) | 1,1-DI-
CHLORO-
ETHANE
TOTAL
(UG/L) | 1,1-DI-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 1,1,2-
TRI-
CHLORO-
ETHANE
TOTAL
(UG/L) | 1,1,2,2
TETRA-
CHLORO-
ETHANE
TOTAL
(UG/L) | | APR 1987 | | | | | | | | | | | | | 15 | ND | 28
May | ND | 20 | ND | JUN
22 | ND | JUL
22 | ND | SEP
30 | ND | NOV
19 | ND | DEC
08
MAR 1988 | ND ИD | ND | ND | ND | | 22
APR | ND | ND | ND | ND | ND | 0.5 | ND | ND | ND | ND | ND | | 04
19 | ND
ND ND
ON | ND
ND | ND
ND | | MAY
05 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 17
JUN | ND ИD | | 29
SEP | ND | 09
∝T | ND | 05
NOV | ND | ND | ND | ИD | ND | 16 | ND | | | | | | | | | | | | | | DATE | 1,2-DI-
CHLORO-
BENZENE
TOTAL
(UG/L) | 1,2-DI-
CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L) | 1,2-DI-
CHLORO-
PROPANE
TOTAL
(UG/L) | 1,2-
TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L) | 1,3-DI-
CHLORO-
BENZENE
TOTAL
(UG/L) | 1,4-DI-
CHLORO-
BENZENE
TOTAL
(UG/L) | TETRA-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | TRANS-
1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | TRI-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 2-
CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L) | VINYL
CHLO-
RIDE
TOTAL
(UG/L) | | APR 1987 | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L) | CHLORO-
PROPANE
TOTAL
(UG/L) | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 1,3-DI~
CHLORO-
PROPENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L) | CHLO-
RIDE
TOTAL
(UG/L) | | APR 1987
15
28 | CHLORO-
BENZENE
TOTAL | CHLORO-
ETHANE
WATER
WHOLE
TOTAL | CHLORO-
PROPANE
TOTAL | TRANSDI
CHLORO-
ETHENE
TOTAL | CHLORO-
BENZENE
TOTAL | CHLORO-
BENZENE
TOTAL | CHLORO-
ETHYL-
ENE
TOTAL | 1,3-DI-
CHLORO-
PROPENE
TOTAL | CHLORO-
ETHYL-
ENE
TOTAL | CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL | CHLO-
RID E
TOTAL | | APR 1987
15
28
MAY
20 | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L) | CHLORO-
PROPANE
TOTAL
(UG/L) | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L) | CHLO-
RIDE
TOTAL
(UG/L) | | APR 1987
15
28
MAY
20
JUN
22 | CHLORO-
BENZENE
TOTAL
(UG/L)
ND
ND | CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L) | CHLORO-
PROPANE
TOTAL
(UG/L)
ND
ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND | CHLORO-
BENZENE
TOTAL
(UG/L)
ND
ND | CHLORO-
BENZENE
TOTAL
(UG/L)
ND
ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND
ND | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
ND |
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND | CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L)
ND | CHLO-
RIDE
TOTAL
(UG/L)
ND | | APR 1987
15
28
MAY
20
JUN
22
JUL
22 | CHLORO-
BENZENE
TOTAL
(UG/L)
ND
ND
ND | CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L)
ND
ND | CHLORO-
PROPANE
TOTAL
(UG/L)
ND
ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND | CHLORO-
BENZENE
TOTAL
(UG/L)
ND
ND
ND | CHLORO-
BENZENE
TOTAL
(UG/L)
ND
ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND
ND | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
ND
ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND
ND | CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L)
ND
ND | CHLO-
RIDE
TOTAL
(UG/L)
ND
ND | | APR 1987 15 28 MAY 20 JUN 22 JUL 22 SEP 30 | CHLORO-
BENZENE
TOTAL
(UG/L)
ND
ND
ND | CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L)
ND
ND
ND | CHLORO-PROPANE TOTAL (UG/L) ND ND ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND | CHLORO-
BENZENE
TOTAL
(UG/L)
ND
ND
ND | CHLORO-
BENZENE
TOTAL
(UG/L)
ND
ND
ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND
ND | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
ND
ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND
ND | CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L)
ND
ND
ND | CHLO-
RIDE
TOTAL
(UG/L)
ND
ND
ND | | APR 1987 15 28 MAY 20 JUN 22 JUL 22 SEP 30 NOV 19 | CHLORO-
BENZENE
TOTAL
(UG/L)
ND
ND
ND | CHLORO-
ETHANE WATER WHOLE TOTAL (UG/L) ND ND ND ND | CHLORO- PROPANE TOTAL (UG/L) ND ND ND ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND ND ND ND ND ND ND | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
ND
ND
ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND
ND
ND | CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L)
ND
ND
ND | CHLO-
RIDE
TOTAL
(UG/L)
ND
ND
ND | | APR 1987 15 28 MAY 20 JUN 22 SEP 30 NOV 19 DEC 08 | CHLORO- BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND | CHLORO- ETHANE WATER WHOLE TOTAL (UG/L) ND ND ND ND ND | CHLORO-
PROPANE
TOTAL
(UG/L)
ND
ND
ND
ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND | CHLORO-BENZENE TOTAL (UG/L) ND N | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND
ND
ND
ND | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
ND
ND
ND
ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND
ND
ND
ND | CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L) ND ND ND ND ND ND | CHLO-
RIDE
TOTAL
(UG/L)
ND
ND
ND
ND | | APR 1987 15 28 MAY 20 JUN 22 JUL 22 SEP 30 NOV 19 DEC | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO- ETHANE WATER WHOLE TOTAL (UG/L) ND | CHLORO- PROPANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND | CHLOROBENZENE TOTAL (UG/L) ND | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO- ETHYL- ENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND N | CHLORO- ETHYL- ENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND | CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L) ND | CHLO-
RIDE
TOTAL
(UG/L)
ND
ND
ND
ND
ND | | APR 1987 15 28 MAY 20 JUN 22 SEP 30 NOV 19 DEC 08 MAR 1988 22 APR 04 19 | CHLORO- BENZENE TOTAL (UG/L) ND | CHLORO- ETHANE WATER WHOLE TOTAL (UG/L) ND | CHLORO- PROPANE TOTAL (UG/L) ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND
ND | CHLOROBENZENE TOTAL (UG/L) ND | CHLORO-BENZENE TOTAL (UG/L) ND N | CHLORO-ETHYL-ENE TOTAL (UG/L) ND N | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND
ND | CHLORO-ETHYL- ENE TOTAL (UG/L) ND | CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L) ND | CHLO-
RIDE
TOTAL
(UG/L)
ND
ND
ND
ND
ND
ND | | APR 1987 15 28 MAY 20 JUN 22 SEP 30 NOV 19 DEC 08 MAR 1988 22 APR 04 19 MAY 055 17 | CHLORO- BENZENE TOTAL (UG/L) ND | CHLORO- ETHANE WATER WHOLE TOTAL (UG/L) ND | CHLORO-PROPANE TOTAL (UG/L) ND N | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND
ND
ND | CHLOROBENZENE TOTAL (UG/L) ND | CHLOROBENZENE TOTAL (UG/L) ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND N | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND N | CHLORO-ETHYL- ENE TOTAL (UG/L) ND | CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L) ND | CHLO- RIDE TOTAL (UG/L) ND | | APR 1987 15 28 MAY 20 JUN 22 SEP 30 NOV 19 DEC 08 MAR 1988 22 APR 04 19 17 JUN 29 | CHLORO- BENZENE TOTAL (UG/L) ND | CHLORO- ETHANE WATER WHOLE TOTAL (UG/L) ND | CHLORO-PROPANE TOTAL (UG/L) ND N | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND
ND
ND
ND | CHLOROBENZENE TOTAL (UG/L) ND | CHLOROBENZENE TOTAL (UG/L) ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND N | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND N | CHLORO-ETHYL- ENE TOTAL (UG/L) ND | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND | CHLO- RIDE TOTAL (UG/L) ND | | APR 1987 15 28 MAY 20 JUN 22 SEP 30 NOV 19 DEC 08 MAR 1988 222 APR 04 19 MAY 05 JUN 29 SEP 09 | CHLORO- BENZENE TOTAL (UG/L) ND | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND | CHLORO-PROPANE TOTAL (UG/L) ND N | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND | CHLOROBENZENE TOTAL (UG/L) ND | CHLOROBENZENE BENZENE TOTAL (UG/L) ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND N | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND N | CHLORO-ETHYL- ENE TOTAL (UG/L) ND | CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L) ND | CHLO- RIDE TOTAL (UG/L) ND | | APR 1987 15 28 MAY 20 JUN 22 SEP 30 NOV 19 DEC 08 MAR 1988 22 APR 04 19 MAY 05 17 JUN 29 SEP | CHLORO- BENZENE TOTAL (UG/L) ND | CHLORO- ETHANE WATER WHOLE TOTAL (UG/L) ND | CHLORO-PROPANE TOTAL (UG/L) ND N | TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND | CHLOROBENZENE TOTAL (UG/L) ND | CHLOROBENZENE TOTAL (UG/L) ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND N | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND N | CHLORO-ETHYL- ENE TOTAL (UG/L) ND | CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L) ND | CHLO- RIDE TOTAL (UG/L) ND | ### 04218090 RANSOM CREEK NEAR CLARANCE CENTER, NY - continued ## SUSPENDED SEDIMENT DISCHARGE | DATE | TIME | SEDI-
MENT,
SUS-
PENDED
(MG/L) | |-----------|------|--| | APR 1987 | | | | 15 | 1030 | 9 | | 28 | 1020 | 11 | | JUN | | | | 22 | 1220 | 49 | | DEC | | | | 08 | 1015 | 10 | | MAY 1988 | 1115 | 2.4 | | 17 | 1145 | 24 | | JUN
29 | 0930 | 17 | | SEP | 0930 | 17 | | 09 | 1145 | 4 | | OCT | 1143 | - | | 05 | 0915 | 7 | | NOV | | | | 16 | 0850 | 1 | | | | | ### BED MATERIAL ANALYSES 40 40 | D ATE | | SOLIDS,
VOLA-
TILE IN
BOTTOM
MA-
TERIAL
(MG/KG) | IN
FM
TON | NUM, RECOV. FM BOT- TOM MA- TE | CCOV. MI
BOT- RI
MA- FM
CRIAL TOI | IUM, R
ECOV. FM
BOT- TO
M MA- T
ERIAL (| | IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE) | LEAD,
RECOV
FM BOTTOM MA
TERIA
(UG/G
AS PB | . NE
- RE
- FM
L TOM
TE | SE, R
COV. FM
BOT- TO
IMA- T
CRIAL (| ECOV. F
BOT- FN
M MA- TO
ERIAL T
UG/G | CKEL,
RECOV.
BOT-
OM MA-
PERIAL
(UG/G
AS NI) | ZINC
RECO
FM BO
TOM M
TERI
(UG/
AS Z | |----------------------------|---|---|---|--|---|---|---|--|---|---|--|---|--|--| | JUL 1987
22
JUN 1988 | 1130 | 32400 | | | <1 | 70 | 5 | 3800 | 1 | | | <0.10 | <10 | | | 29 | 0930 | 29800 |) | 3300 | <10 | | 10 | 6 4 0 0 | <10 | 0 | 160 | <0.10 | <100 | | | DATE | AROCL
1221
IN
BOTTO
MAT
(UG/K | ARC
1
0M F | CLOR
248
CB
MAT
(/KG) | AROCLOR
1254
PCB
BOT.MAT
(UG/KG) | AROCLOR
1260
PCB
BOT.MAT
(UG/KG) | ALDRIN,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | ALPHA
BHC
TOTAL
IN BO
TOM M
TERIA
(UG/K | ZII
TO
T- IN I
A- TOM
L TE | NE, BE
TAL H
BOT- C
MA-
RIAL BO | BETA
NZENE
EXA-
HLOR-
IDE
T.MAT
G/KG) | CHLOR-
DANE,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | IN BOT | IDE
BOT.M | ENE
A-
OR-
E
(AT | | JUL 1987 | | | | | | | | | | | | | | _ | | JUN 1988 | | • | | | | | | | | | | | | | | 29 | ND | 7 | ID | ND | ND | ND | ND | N | D | ND | ND | ND | ND | | | DATE | DI-
AZINO
TOTA
IN BO
TOM M
TERI
(UG/K | ON, ELE
AL TO
YT- IN
IA- TOM
IAL TE | OI-
ORIN,
OTAL
BOT-
I MA-
ERIAL
G/KG) | ENDO-
SULFAN
ALPHA
BOT.MAT
(UG/KG) | ENDO-
SULFAN
BETA
BOT.MAT
(UG/KG) | ENDO-
SULFAN
SULFATE
BOT.MAT
(UG/KG) | | L END
T- AL
A- H
AL BOT | RIN T
DE- IN
YDE TO
.MAT T | HION,
OTAL
BOT-
M MA-
ERIAL
G/KG) | HEPTA-
CHLOR,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | CHLOR
EPOXIDI
TOT. II
BOTTOI | THICE TOTAL IN BO ITOM N TERI |
ON,
AL
OT-
MA-
IAL | | JUL 1987
22 | | | | | | | | | | | | | | - | | JUN 1988
29 | ND | N | 1D | ND | ND | ND | ND | N | D | ND | ND | ND | ND | | | DATE | METH
OXY-
CHLC
TOT.
BOTI
MAI
(UG/K | OR, TO
IN IN
OM TOM | (REX,
DTAL
BOT-
f MA-
ERIAL
G/KG) | P,P' DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) | P, P' DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) | P,P' DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) | PARA
THIC
TOTA
IN BO
TOM M
TERI
(UG/K | N, PH
L TO
T- IN
A- TOM
AL TE | ENE,
TAL
BOT- D
MA- %
RIAL | BED
MAT.
FALL
IAM.
FINER
THAN | BED
MAT.
SIEVE
DIAM.
% FINER
THAN
.062 MM | THAN | THA | r.
Ve
M.
Ner
An | | JUL 1987
22 | | | | | | | | | | 1 | 13 | 3 |) | 98 | | JUN 1988
29 | ND | Ŋ | ND | 3.0 | ND | ND | ND | N | D | | | | | - | | | | | | | | | | | | | | | | | #### 04219640 NIAGARA RIVER (LAKE ONTARIO) AT FORT NIAGARA, NY LOCATION.--Lat 43 16'10", long 79 03'52", Niagara County, Hydrologic Unit 04120104, water samples collected about 2 mi upstream from Coast Guard wharf, at Fort Niagara and 1.5 mi south oif Youngstown DRAINAGE AREA. -- 265,000 mi2. PERIOD OF RECORD.--Water years 1971 to current year. CHEMICAL DATA: 1971 (a), 1973-74 (b), 1975-82 (c), 1983-86 (b), 1987 (c), 1988 (d), 1989 (a). MINOR ELEMENT DATA: 1971 (a), 1972-86 (b), 1987 (c), 1988 (d), 1989 (a). PESTICIDE DATA: 1987 (b), 1988 (c), 1989 (a). ORGANIC DATA: OC--1973 (a), 1974-75 (b), 1978-80 (c), 1981 (b), 1988 (b), 1989 (a). NUTRIENT DATA: 1971 (a), 1973-74 (b), 1975-82 (c), 1983-86 (b), 1987 (c), 1988 (d), 1989 (a). BIOLOGICAL DATA: Bacteria--1973 (b), 1974 (d), 1975-82 (c), 1983-88 (b). Phytoplankton--1973 (b), 1974 (d), 1975-77 (c), 1978-81 (c). Periphyton--1974 (a), 1975-80 (b). SEDIMENT DATA: 1975-77 (c), 1978 (b), 1979-82 (c), 1983-86 (b), 1987-88 (b), 1989 (a). PERIOD OF DAILY RECORD . -- SPECIFIC CONDUCTANCE: September 1973 to June 1980. WATER TEMPERATURE: September 1973 to June 1980. REMARKS.--Published in 1971 as "at Youngstown". Discharge is the daily mean reported by The Corps of Engineers Detroit for the Niagara River at Queenstown. | DATE | TIME | DIS-
CHARGE,
IN
CUBIC
FEET
PER
SECOND | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | SPE-
CIFIC
CON-
DUCT-
ANCE
LAB
(US/CM) | PH WATER WHOLE FIELD (STAND- ARD UNITS) | TEMPER-
ATURE
WATER
(DEG C) | TUR-
BID-
ITY
(NTU) | BARO-
METRIC
PRES-
SURE
(MM
OF
HG) | OXYGEN,
DIS-
SOLVED
(MG/L) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | |-----------|------|---|---|--|---|--------------------------------------|------------------------------|--|-------------------------------------|--|---|--| | APR 1987 | | | | | | | | | | | | | | 14 | 0845 | 246000 | | | 8.0 | 7.5 | 4.0 | | 16.4 | ~- | 120 | 35 | | 27 | 0905 | 248000 | | | 8.2 | 6.5 | 4.1 | | 12.2 | | 130 | 39 | | MAY | | | | | | | | | | | | | | 19 | 0915 | 234000 | | 296 | 7.8 | 12.0 | 2.3 | | | | 120 | 36 | | JUN
25 | 0930 | 236000 | | ~~ | 8.1 | 19.0 | 1.7 | 756 | | | 120 | 35 | | JUL | 0930 | 236000 | | | 0.1 | 19.0 | 1.7 | 736 | | | 120 | 33 | | 28 | 1100 | 240000 | | | 8.4 | 23.0 | 4.0 | | | | 120 | 35 | | SEP | | | | | | | | | | | | | | 28 | 0940 | 227000 | | 289 | 8.1 | 22.0 | | | | | | ~- | | NOV | | | | | _ | _ | | | | | | | | 05
DEC | 0825 | 212000 | | 534 | 8.2 | 11.5 | 6.6 | 765 | 11.0 | | 130 | 39 | | 07 | 0830 | 212000 | | | 8.2 | 5.0 | 15 | | 11.4 | | | | | MAR 1988 | 0030 | 212000 | | | 0.2 | 3.0 | 13 | | 11.4 | | | | | 21 | 0945 | 218000 | | 290 | 8.4 | 0.0 | 7.5 | | | | 120 | 36 | | APR | | | | | | | | | | | | | | 06 | 0935 | 223000 | | 273 | | 2.0 | 4.3 | | | | | | | 18
MAY | 0920 | 217000 | | 259 | | 1.0 | 3.8 | | | | 110 | 33 | | MA1
03 | 0845 | 225000 | | 287 | 8.1 | 7.5 | 2.2 | 760 | 13.3 | ~- | | | | 03 | 0900 | 225000 | 278 | 291 | 8.1 | 7.0 | 0.80 | 760 | 13.4 | 111 | 130 | 36 | | 16 | 0910 | 227000 | | 293 | 8.1 | 12.0 | 1.5 | | 12.9 | | 120 | 36 | | JUN | | | | | | | | | | | | | | 29 | 1230 | 209000 | 291 | 291 | 8.0 | 19.0 | 1.6 | | 9.2 | | 120 | 35 | | SEP | 0000 | 000000 | | 200 | | | | | | | | | | 07
OCT | 0900 | 20800 0 | | 282 | 8.3 | 20.0 | 1.5 | | | | 120 | 35 | | 03 | 0938 | 197000 | | 288 | 8.1 | 18.0 | 2.0 | 763 | 9.0 | | 130 | 36 | | NOV | 0,00 | 17,000 | | 200 | 0.1 | 10.0 | 2.0 | 103 | 3.0 | | 130 | 50 | | 14 | 0930 | 213000 | | 292 | 8.3 | 8.0 | 12 | 763 | 11.4 | | 130 | 36 | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). ### NIAGARA RIVER BASIN ## 04219640 NIAGARA RIVER (LAKE ONTARIO) AT FORT NIAGARA, NY - continued | | | | | | | | IA (COMCI | | | | | | |--|--|--|--|---|--|---|--|---|---|---|--|--| | DATE | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K) | ALKA-
LINITY
LAB
(MG/L
AS
CACO3) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | SOLIDS,
RESIDUE
AT 105
DEG. C,
TOTAL
(MG/L) | SOLIDS,
VOLA-
TILE ON
IGNI-
TION,
TOTAL
(MG/L) | RESIDUE
TOTAL
FIXED
(MG/L) | | APR 1987 | | | | | | | | | | | | | | 14 | 7.8 | | | | | | | 160 | | 184 | 62 | 134 | | 27 | 8.4 | | | | | | | 146 | | 166 | 38 | 142 | | MAY
19 | 7.5 | | | | | | | 184 | | 168 | 60 | 132 | | JUN | | | | | | | | | | 200 | | | | 25
JUL | 8.3 | | | | | | | 184 | | 170 | 40 | 152 | | 28
SEP | 7.9 | | | | | | | 152 | | 172 | 140 | 84 | | 28 | | | | | | | | | | 169 | | | | 05 | 8.6 | | | | | | | 160 | | 165 | 54 | 128 | | 07 | | | | | | | | 168 | | 176 | 232 | 184 | | MAR 1988
21 | 8.4 | 9.0 | 1.3 | 102 | 26 | 15 | 0.20 | 168 | 157 | 198 | 48 | 150 | | APR
06 | | | | 94 | 27 | 1.4 | 0 10 | 172 | | 220 | F 2 | 160 | | 18 | 7.5 | 8.4 | 1.2 | 87 | 24 | 1 4
15 | 0.10
0.20 | 172
172 | 141 | 220
188 | 52
20 | 168
168 | | MAY
03 | | | | 97 | ~- | | | 168 | | 204 | 52 | 152 | | 03 | 8.5 | 9.5 | 1.3 | 95 | 27 | 16 | 0.10 | 159 | 164 | | | | | 16
JUN | 8.5 | 9.9 | 1.3 | 95 | 26 | 15 | 0.30 | 188 | 154 | 200 | 100 | 100 | | 29
SEP | 8.3 | 9.1 | 1.3 | 97 | 26 | 14 | 0.30 | 179 | 152 | 191 | 69 | 122 | | 07
OCT | 8.8 | 9.8 | 1.3 | 95 | 26 | 14 | 0.10 | 180 | 152 | 188 | 64 | 124 | | 03 | 8.7 | 9.0 | 1.4 | 96 | 30 | 14 | 0.10 | 180 | 157 | 204 | 88 | 116 | | 14 | 8.8 | 8.7 | 1.4 | 97 | 27 | 14 | 0.10 | 168 | 154 | 176 | 60 | 116 | | | | | | | | | | | | | | | | DATE | NITRO-
GEN,
NITRATE
TOTAL
(MG/L
AS N) | NITRO-
GEN,
NITRITE
TOTAL
(MG/L
AS N) | NITRO-
GEN,
NO2+NO3
TOTAL
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS NH4) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS NH4) | NITRO-
GEN,
ORGANIC
TOTAL
(MG/L
AS N) | NITRO-
GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | NITRO-
GEN,
TOTAL
(MG/L
AS N) | NITRO-
GEN,
TOTAL
(MG/L
AS NO3) | PHOS-
PHORUS
TOTAL
(MG/L
AS P) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P) | | DATE
APR 1987 | GEN,
NITRATE
TOTAL
(MG/L | GEN,
NITRITE
TOTAL
(MG/L | GEN,
NO2+NO3
TOTAL
(MG/L | GEN,
AMMONIA
TOTAL
(MG/L | GEN,
AMMONIA
TOTAL
(MG/L | GEN,
AMMONIA
DIS-
SOLVED
(MG/L | GEN,
ORGANIC
TOTAL
(MG/L | GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L |
GEN,
TOTAL
(MG/L | GEN,
TOTAL
(MG/L | PHORUS
TOTAL
(MG/L | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L | | APR 1987
14
27 | GEN,
NITRATE
TOTAL
(MG/L | GEN,
NITRITE
TOTAL
(MG/L | GEN,
NO2+NO3
TOTAL
(MG/L | GEN,
AMMONIA
TOTAL
(MG/L | GEN,
AMMONIA
TOTAL
(MG/L | GEN,
AMMONIA
DIS-
SOLVED
(MG/L | GEN,
ORGANIC
TOTAL
(MG/L | GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L | GEN,
TOTAL
(MG/L | GEN,
TOTAL
(MG/L | PHORUS
TOTAL
(MG/L | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L | | APR 1987
14 | GEN,
NITRATE
TOTAL
(MG/L
AS N) | GEN, NITRITE TOTAL (MG/L AS N) | GEN,
NO2+NO3
TOTAL
(MG/L
AS N) | GEN,
AMMONIA
TOTAL
(MG/L
AS N) | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4) | GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS NH4) | GEN,
ORGANIC
TOTAL
(MG/L
AS N) | GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | GEN,
TOTAL
(MG/L
AS N) | GEN,
TOTAL
(MG/L
AS NO3) | PHORUS
TOTAL
(MG/L
AS P) | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P) | | APR 1987
14
27
MAY
19
JUN
25 | GEN,
NITRATE
TOTAL
(MG/L
AS N) | GEN, NITRITE TOTAL (MG/L AS N) ND ND | GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
0.280
0.270 | GEN,
AMMONIA
TOTAL
(MG/L
AS N)
0.010
0.020 | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4)
0.01 | GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS NH4) | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.23
0.21 | GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
0.24
0.23 | GEN,
TOTAL
(MG/L
AS N)
0.52
0.50 | GEN,
TOTAL
(MG/L
AS NO3) | PHORUS
TOTAL
(MG/L
AS P)
0.020
0.050 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
ND | | APR 1987 14 27 MAY 19 JUN 25 JUL 28 | GEN,
NITRATE
TOTAL
(MG/L
AS N) | GEN, NITRITE TOTAL (MG/L AS N) ND ND ND | GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
0.280
0.270 | GEN,
AMMONIA
TOTAL
(MG/L
AS N)
0.010
0.020 | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4)
0.01
0.03 | GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS NH4) | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.23
0.21 | GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
0.24
0.23 | GEN,
TOTAL
(MG/L
AS N)
0.52
0.50 | GEN,
TOTAL
(MG/L
AS NO3)
2.3
2.2 | PHORUS
TOTAL
(MG/L
AS P)
0.020
0.050
0.010 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
ND
ND | | APR 1987 14 27 MAY 19 JUN 25 JUL 28 SEP 28 | GEN,
NITRATE
TOTAL
(MG/L
AS N) | GEN,
NITRITE
TOTAL
(MG/L
AS N)
ND
ND
0.00 | GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
0.280
0.270
0.160 | GEN,
AMMONIA
TOTAL
(MG/L
AS N)
0.010
0.020
0.040 | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4)
0.01
0.03
0.05 | GEN, AMMONIA DIS- SOLVED (MG/L AS NH4) 0.03 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.23
0.21
0.16 | GEN, AM-
MONIA +
ORGANIC
TYOTAL
(MG/L
AS N)
0.24
0.23
0.20 | GEN,
TOTAL
(MG/L
AS N)
0.52
0.50
0.36 | GEN,
TOTAL
(MG/L
AS NO3)
2.3
2.2
1.6 | PHORUS
TOTAL
(MG/L
AS P)
0.020
0.050
0.010 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
ND
ND
0.00 | | APR 1987 14 27 MAY 19 JUN 25 JUL 28 SEP 28 NOV 05 | GEN,
NITRATE
TOTAL
(MG/L
AS N) | GEN, NITRITE TOTAL (MG/L AS N) ND ND 0.00 0.00 | GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
0.280
0.270
0.160
0.150 | GEN,
AMMONIA
TOTAL
(MG/L
AS N)
0.010
0.020
0.040
0.020 | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4)
0.01
0.03
0.05
0.03 | GEN, AMMONIA DIS- SOLVED (MG/L AS NH4) 0.03 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.23
0.21
0.16
0.13 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.24 0.23 0.20 0.15 | GEN,
TOTAL
(MG/L
AS N)
0.52
0.50
0.36
0.30 | GEN,
TOTAL
(MG/L
AS NO3)
2.3
2.2
1.6
1.3 | PHORUS
TOTAL
(MG/L
AS P)
0.020
0.050
0.010
0.010 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
ND
ND
0.00 | | APR 1987 14 27 MAY 19 JUN 25 JUL 28 SEP 28 NOV 05 DEC 07 | GEN,
NITRATE
TOTAL
(MG/L
AS N) | GEN, NITRITE TOTAL (MG/L AS N) ND ND 0.00 0.00 ND | GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
0.280
0.270
0.160
0.150
0.110 | GEN,
AMMONIA
TOTAL
(MG/L
AS N)
0.010
0.020
0.040
0.020
0.020 | GEN, AMMONIA TOTAL (MG/L AS NH4) 0.01 0.03 0.05 0.03 0.03 | GEN, AMMONIA DIS- SOLVED (MG/L AS NH4) 0.03 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.23
0.21
0.16
0.13
0.10 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.24 0.23 0.20 0.15 0.12 | GEN,
TOTAL
(MG/L
AS N)
0.52
0.50
0.36
0.30
0.23 | GEN,
TOTAL
(MG/L
AS NO3)
2.3
2.2
1.6
1.3
1.0 | PHORUS
TOTAL
(MG/L
AS P)
0.020
0.050
0.010
0.010
0.010 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
ND
ND
0.00
ND | | APR 1987 14 27 MAY 19 JUN 25 SEP 28 NOV 05 DEC 07 MAR 1988 21 | GEN,
NITRATE
TOTAL
(MG/L
AS N)

0.160
0.150 | GEN, NITRITE TOTAL (MG/L AS N) ND ND 0.00 0.00 ND ND | GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
0.280
0.270
0.160
0.150
0.110
0.090
0.160 | GEN,
AMMONIA
TOTAL
(MG/L
AS N)
0.010
0.020
0.040
0.020
0.020
0.020 | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4)
0.01
0.03
0.05
0.03
0.03
0.03 | GEN, AMMONIA DIS- SOLVED (MG/L AS NH4) 0.03 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.23
0.21
0.16
0.13
0.10
0.36 | GEN, AM- MONIA + ORGANIC TYOTAL (MG/L AS N) 0.24 0.23 0.20 0.15 0.12 0.38 | GEN,
TOTAL
(MG/L
AS N)
0.52
0.50
0.36
0.30
0.23
0.47 | GEN,
TOTAL
(MG/L
AS NO3)
2.3
2.2
1.6
1.3
1.0
2.1 | PHORUS
TOTAL
(MG/L
AS P)
0.020
0.050
0.010
0.010
0.010 | PHORUS ORTHO, DIS-, SOLVED (MG/L AS P) ND 0.00 ND 0.00 0.00 0.00 | | APR 1987 14 27 MAY 19 JUN 25 JUL 28 SEP 28 NOV 05 DEC 07 MAR 1988 21 APR | GEN,
NITRATE
TOTAL
(MG/L
AS N)

0.160
0.150 | GEN, NITRITE TOTAL (MG/L AS N) ND ND 0.00 0.00 ND ND ND ND | GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
0.280
0.270
0.160
0.150
0.110
0.090
0.160
0.210 | GEN,
AMMONIA
TOTAL
(MG/L
AS N)
0.010
0.020
0.020
0.020
0.020
0.130
0.030
0.060 | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4)
0.01
0.03
0.05
0.03
0.03
0.17
0.04 | GEN, AMMONIA DIS- SOLVED (MG/L AS NH4) 0.03 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.23
0.21
0.16
0.13
0.10
0.36
0.28
0.24 | GEN, AM- MONIA + ORGANIC TYOTAL (MG/L AS N) 0.24 0.23 0.20 0.15 0.12 0.38 0.41 0.27 | GEN,
TOTAL
(MG/L
AS N)
0.52
0.50
0.36
0.30
0.23
0.47
0.57
0.48 | GEN,
TOTAL
(MG/L
AS NO3)
2.3
2.2
1.6
1.3
1.0
2.1
2.5
2.1 | PHORUS
TOTAL
(MG/L
AS P)
0.020
0.050
0.010
0.010
0.020

0.070
0.050 | PHORUS ORTHO, DIS- SOLVED (MG/L AS P) ND 0.00 ND 0.00 0.00 0.00 0.00 0.00 | | APR 1987 14 27 MAY 19 JUN 25 JUL 28 SEP 28 NOV 05 DEC 07 MAR 1988 21 APR 066 18 | GEN,
NITRATE
TOTAL
(MG/L
AS N)

0.160
0.150 | GEN, NITRITE TOTAL (MG/L AS N) ND ND 0.00 0.00 ND ND ND ND | GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
0.280
0.270
0.160
0.150
0.110
0.090
0.160 | GEN,
AMMONIA
TOTAL
(MG/L
AS N)
0.010
0.020
0.040
0.020
0.020
0.020
0.130 | GEN, AMMONIA TOTAL (MG/L AS NH4) 0.01 0.03 0.05 0.03 0.03 0.03 0.03 | GEN, AMMONIA DIS- SOLVED (MG/L AS NH4) 0.03 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.23
0.21
0.16
0.13
0.10
0.36
0.28 | GEN, AM- MONITA + ORGANIC TOTAL (MG/L AS N) 0.24 0.23 0.20 0.15 0.12 0.38 0.41 | GEN,
TOTPAL
(MG/L
AS N)
0.52
0.50
0.36
0.30
0.23
0.47
0.57 | GEN,
TOTAL
(MG/L
AS NO3)
2.3
2.2
1.6
1.3
1.0
2.1
2.5 | PHORUS
TOTAL
(MG/L
AS P)
0.020
0.050
0.010
0.010
0.010

0.070 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
ND
ND
0.00
ND
0.00
0.00 | | APR 1987 14 27 MAY 19 JUN 25 JUL 28 SEP 28 NOV 05 DEC 07 MAR 1988 21 APR 06 18 MAY | GEN,
NITRATE
TOTAL
(MG/L
AS N)

0.160
0.150

 | GEN, NITRITE TOTAL (MG/L AS N) ND ND 0.00 0.00 ND N | GEN, NO2+NO3 TOTAL (MG/L AS N) 0.280 0.270 0.160 0.150 0.110 0.090 0.160 0.210 0.230 0.130 | GEN,
AMMONIA
TOTAL
(MG/L
AS N)
0.010
0.020
0.040
0.020
0.020
0.020
0.130
0.030 | GEN, AMMONIA TOTAL (MG/L AS NH4) 0.01 0.03 0.05 0.03 0.03 0.17 0.04 0.08 0.13 0.01 0.01 | GEN, AMMONIA DIS- SOLVED (MG/L AS NH4) 0.03 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.23
0.21
0.16
0.13
0.10
0.36
0.28
0.24 | GEN, AM- MONITA + ORGANIC TOTAL (MG/L AS N) 0.24 0.23 0.20 0.15 0.12 0.38 0.41 0.27 0.47 | GEN,
TOTAL
(MG/L
AS N)
0.52
0.50
0.36
0.30
0.23
0.47
0.57
0.48
0.70 | GEN,
TOTAL
(MG/L
AS NO3)
2.3
2.2
1.6
1.3
1.0
2.1
2.5
2.1
3.1
2.6 | PHORUS
TOTAL
(MG/L
AS P)
0.020
0.050
0.010
0.010
0.020

0.070
0.050 | PHORUS ORTHO ORTHO DIS- SOLVED (MG/L AS P) ND ND 0.00 ND 0.00 0.00 0.00 0.00 ND 0.00 | | APR 1987 14 27 MAY 19 JUN 25 JUL 28 SEP 28 NOV 05 DEC 07 MAR 1988 21 APR 06 18 MAY 03 | GEN,
NITRATE
TOTAL
(MG/L
AS N)

0.160
0.150

0.130 | GEN, NITRITE TOTAL (MG/L AS N) ND 0.00 0.00 ND | GEN, NO2+NO3 TOTAL (MG/L AS N) 0.280 0.270 0.160 0.150 0.110 0.090 0.160 0.210 0.230 0.130 0.240 1.78 | GEN, AMMONIA TOTAL (MG/L AS N) 0.010 0.020 0.040 0.020 0.020 0.030 0.030
0.060 0.100 0.010 0.010 0.020 | GEN, AMMONIA TOTAL (MG/L AS NH4) 0.01 0.03 0.05 0.03 0.03 0.17 0.04 0.08 0.13 0.01 0.01 0.01 | GEN, AMMONIA DIS- SOLVED (MG/L AS NH4) 0.03 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.23
0.21
0.16
0.13
0.10
0.36
0.28
0.24
0.41
0.36
0.19 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.24 0.23 0.20 0.15 0.12 0.38 0.41 0.27 0.47 0.46 0.20 0.22 <0.20 | GEN,
TOTAL
(MG/L
AS N)
0.52
0.50
0.36
0.30
0.23
0.47
0.57
0.48
0.70
0.59
0.44 | GEN,
TOTAL
(MG/L
AS NO3)
2.3
2.2
1.6
1.3
1.0
2.1
2.5
2.1
3.1
2.6
1.9 | PHORUS
TOTAL
(MG/L
AS P)
0.020
0.050
0.010
0.010
0.020

0.070
0.050
0.010
0.020
0.020 | PHORUS ORTHO, DIS- SOLVED (MG/L AS P) ND ND 0.00 ND 0.00 0.00 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND ND 0.00 ND ND 0.00 ND ND 0.00 ND ND 0.00 | | APR 1987 14 27 MAY 19 JUN 25 JUL 28 SEP 28 NOV 05 DEC 07 MAR 1988 21 APR 06 18 MAY 03 03 16 JUN | GEN,
NITRATE
TOTAL
(MG/L
AS N)
 | GEN, NITRITE TOTAL (MG/L AS N) ND | GEN, NO2+NO3 TOTAL (MG/L AS N) 0.280 0.270 0.160 0.150 0.110 0.090 0.160 0.210 0.230 0.130 0.240 1.78 0.270 | GEN,
AMMONIA
TOTAL
(MG/L
AS N)
0.010
0.020
0.020
0.020
0.130
0.030
0.060
0.100
0.010
0.020 | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4)
0.01
0.03
0.05
0.03
0.03
0.17
0.04
0.08
0.13
0.01
0.01 | GEN, AMMONIA DIS- SOLVED (MG/L AS NH4) 0.03 0.04 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.23
0.21
0.16
0.13
0.10
0.36
0.28
0.24
0.41
0.36
0.19 | GEN, AM- MONITA + ORGANIC TOTAL (MG/L AS N) 0.24 0.23 0.20 0.15 0.12 0.38 0.41 0.27 0.47 0.46 0.20 0.22 <0.20 0.24 | GEN,
TOTTAL
(MG/L
AS N)
0.52
0.50
0.36
0.30
0.23
0.47
0.57
0.48
0.70
0.59
0.44
2.0 | GEN,
TOTAL
(MG/L
AS NO3)
2.3
2.2
1.6
1.3
1.0
2.1
2.5
2.1
3.1
2.6
1.9
8.9 | PHORUS
TOTAL
(MG/L
AS P)
0.020
0.050
0.010
0.010
0.020

0.070
0.050
0.010
0.020
0.020
0.010 | PHORUS ORTHO, DIS- SOLVED (MG/L AS P) ND 0.00 ND 0.00 0.00 0.00 ND 0.00 0.00 ND 0.00 ND ND 0.00 ND ND 0.00 ND ND ND 0.00 | | APR 1987 14 27 MAY 19 JUN 25 JUL 28 SEP 28 NOV 05 DEC 07 AAR 1988 21 APR 06 APR 06 18 MAY 03 16 JUN 29 SEP | GEN,
NITRATE
TOTAL
(MG/L
AS N)

0.160
0.150

0.130

0.230 | GEN, NITRITE TOTAL (MG/L AS N) ND 0.00 0.00 ND | GEN, NO2+NO3 TOTAL (MG/L AS N) 0.280 0.270 0.160 0.150 0.110 0.090 0.160 0.210 0.230 0.230 0.240 1.78 0.270 0.240 | GEN, AMMONIA TOTAL (MG/L AS N) 0.010 0.020 0.040 0.020 0.020 0.030 0.030 0.060 0.010 0.010 0.020 0.030 0.010 0.010 0.020 0.030 0.010 0.020 0.030 0.010 | GEN, AMMONIA TOTAL (MG/L AS NH4) 0.01 0.03 0.05 0.03 0.03 0.17 0.04 0.08 0.13 0.01 0.01 0.01 0.01 | GEN, AMMONIA DIS- SOLVED (MG/L AS NH4) 0.03 0.04 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.23
0.21
0.16
0.13
0.10
0.36
0.28
0.24
0.41
0.36
0.19 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.24 0.23 0.20 0.15 0.12 0.38 0.41 0.27 0.47 0.46 0.20 0.22 <0.20 0.24 0.14 | GEN,
TOTAL
(MG/L
AS N)
0.52
0.50
0.36
0.30
0.23
0.47
0.57
0.48
0.70
0.59
0.44
2.0 | GEN,
TOTAL
(MG/L
AS NO3)
2.3
2.2
1.6
1.3
1.0
2.1
2.5
2.1
3.1
2.6
1.9
8.9

2.3
1.7 | PHORUS TOTAL (MG/L AS P) 0.020 0.050 0.010 0.010 0.010 0.020 0.070 0.050 0.010 0.020 0.010 0.020 0.010 0.020 | PHORUS ORTHO, DIS- SOLVED (MG/L AS P) ND 0.00 ND 0.00 0.00 0.010 0.00 ND | | APR 1987 14 27 MAY 19 JUN 25 JUL 28 NOV 05 DEC 07 MAR 1988 21 APR 06 18 MAY 03 03 16 JUN 29 SEP 07 OCT | GEN, NITRATE TOTAL (MG/L AS N) | GEN, NITRITE TOTAL (MG/L AS N) ND 0.00 0.00 ND | GEN, NO2+NO3 TOTAL (MG/L AS N) 0.280 0.270 0.160 0.150 0.110 0.090 0.160 0.210 0.230 0.130 0.240 1.78 0.270 0.240 0.130 | GEN, AMMONIA TOTAL (MG/L AS N) 0.010 0.020 0.040 0.020 0.030 0.030 0.010 0.020 0.030 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 | GEN, AMMONIA TOTAL (MG/L AS NH4) 0.01 0.03 0.05 0.03 0.03 0.17 0.04 0.08 0.13 0.01 0.01 0.01 0.01 0.03 0.04 | GEN, AMMONIA DIS- SOLVED (MG/L AS NH4) 0.03 0.04 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.21
0.16
0.13
0.10
0.36
0.28
0.24
0.41
0.36
0.19
0.21 | GEN, AM- MONITA + ORGANIC TOTAL (MG/L AS N) 0.24 0.23 0.20 0.15 0.12 0.38 0.41 0.27 0.47 0.46 0.20 0.22 <0.20 0.24 0.14 0.26 | GEN,
TOTTAL
(MG/L
AS N)
0.52
0.50
0.36
0.30
0.23
0.47
0.57
0.48
0.70
0.59
0.44
2.0

0.51
0.38 | GEN,
TOTAL
(MG/L
AS NO3)
2.3
2.2
1.6
1.3
1.0
2.1
2.5
2.1
3.1
2.6
1.9
8.9

2.3
1.7 | PHORUS TOTAL (MG/L AS P) 0.020 0.050 0.010 0.010 0.020 0.070 0.050 0.010 0.020 0.010 0.020 0.020 0.010 0.020 0.010 0.020 | PHORUS ORTHO, DIS- SOLVED (MG/L AS P) ND ND 0.00 ND 0.00 0.00 0.00 0.00 ND ND 0.00 ND ND ND 0.00 ND ND ND 0.00 0.010 ND ND 0.010 | | APR 1987 14 27 MAY 19 JUN 25 JUL 28 SEP 28 NOV 05 DEC 07 MAR 1988 21 APR 06 18 MAY 03 03 03 16 JUN 29 SEP 07 | GEN,
NITRATE
TOTAL
(MG/L
AS N)

0.160
0.150

0.130

0.230 | GEN, NITRITE TOTAL (MG/L AS N) ND 0.00 0.00 ND | GEN, NO2+NO3 TOTAL (MG/L AS N) 0.280 0.270 0.160 0.150 0.110 0.090 0.160 0.210 0.230 0.230 0.240 1.78 0.270 0.240 | GEN, AMMONIA TOTAL (MG/L AS N) 0.010 0.020 0.040 0.020 0.020 0.030 0.030 0.060 0.010 0.010 0.020 0.030 0.010 0.010 0.020 0.030 0.010 0.020 0.030 0.010 | GEN, AMMONIA TOTAL (MG/L AS NH4) 0.01 0.03 0.05 0.03 0.03 0.17 0.04 0.08 0.13 0.01 0.01 0.01 0.01 | GEN, AMMONIA DIS- SOLVED (MG/L AS NH4) 0.03 0.04 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.23
0.21
0.16
0.13
0.10
0.36
0.28
0.24
0.41
0.36
0.19 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.24 0.23 0.20 0.15 0.12 0.38 0.41 0.27 0.47 0.46 0.20 0.22 <0.20 0.24 0.14 | GEN,
TOTAL
(MG/L
AS N)
0.52
0.50
0.36
0.30
0.23
0.47
0.57
0.48
0.70
0.59
0.44
2.0 | GEN,
TOTAL
(MG/L
AS NO3)
2.3
2.2
1.6
1.3
1.0
2.1
2.5
2.1
3.1
2.6
1.9
8.9

2.3
1.7 | PHORUS TOTAL (MG/L AS P) 0.020 0.050 0.010 0.010 0.010 0.020 0.070 0.050 0.010 0.020 0.010 0.020 0.010 0.020 | PHORUS ORTHO, DIS- SOLVED (MG/L AS P) ND 0.00 ND 0.00 0.00 0.010 0.00 ND | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). ## 04219640 NIAGARA RIVER (LAKE ONTARIO) AT FORT NIAGARA, NY - continued | DATE | PHOS-
PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4) | ALUM-
INUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS AL) | ALUM-
INUM,
DIS-
SOLVED
(UG/L
AS AL) | CADMIUM
TOTAL
RECOV-
ERABLE
(UG/L
AS CD) | CADMIUM
DIS-
SOLVED
(UG/L
AS CD) | CHRO-
MIUM,
DIS-
SOLVED
(UG/L
AS CR) | COPPER,
TOTAL
RECOV-
ERABLE
(UG/L
AS CU) | COPPER,
DIS-
SOLVED
(UG/L
AS CU) | IRON,
TOTAL
RECOV-
ERABLE
(UG/L
AS FE) | IRON,
DIS-
SOLVED
(UG/L
AS FE) | LEAD,
TOTAL
RECOV-
ERABLE
(UG/L
AS PB) | LEAD,
DIS-
SOLVED
(UG/L
AS PB) | |--|---|--|--|--|---|---|---
--|---|---|--|--| | APR 1987 | | | | | | | | | | | | | | 1 4
27 | | | | <10
<10 | | | <10
<10 | | 3100
11000 | | <100
<5 |
<5 | | MAY
19
JUN | 0.0 | | | 10 | | | <10 | | 750 | | <100 | | | 25
JUL | | | | <10 | | | <10 | | 110 | | <100 | | | 28
SEP | 0.0 | | | <10 | 1.0 | | <10 | 6 | 130 | | 5 | <5 | | 28
NOV | 0.0 | | | <10 | | | 10 | | 2100 | | <100 | | | 05
DEC | 0.03 | | | <1 | | | 5 | | 490 | | < 5 | | | 07
MAR 1988 | 0.0 | | | <1 | 1.0 | | 7 | 4 | 2200 | | <5 | <5 | | 21
APR | 0.0 | 540 | <10 | <1 | <1.0 | | 11 | 1 | 20000 | 25 | <5 | < 5 | | 06
18 | | 260
150 | <10 | <1
1 | <1.0 | | 8
5 | 1 | 720
880 | 8 | <5
<5 |
<5 | | MAY
03
03 | 0.0 | 60 | | <1 | | | 8 | | 540 | | <5 | | | 16
JUN | 0.03 | 40 | <10
<10 | 5 | <1.0
<1.0 | | 14 | 4 2 | 160 | <3
<3 | <5 | < 5
< 5 | | 29
SEP | | 50 | | <1 | | | 11 | | 100 | | 8 | | | 07
OCT | 0.03 | 50 | | <1 | | | 6 | | 140 | | <5 | | | 03 | | 230 | <10 | <1 | <1.0 | | 4 | 1 | 420 | 9 | <5 | < 5 | | 14 | 0.03 | 460 | | <1 | | | 8 | | 950 | | <5 | | | | | | | | | | | | | | | | | DATE | MANGA-
NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN) | MERCURY
TOTAL
RECOV-
ERABLE
(UG/L
AS HG) | NICKEL,
TOTAL
RECOV-
ERABLE
(UG/L
AS NI) | NICKEL,
DIS-
SOLVED
(UG/L
AS NI) | SILVER,
DIS-
SOLVED
(UG/L
AS AG) | ZINC,
TOTAL
RECOV-
ERABLE
(UG/L
AS ZN) | ZINC,
DIS-
SOLVED
(UG/L
AS ZN) | PHENOL
(C6H-
5OH)
TOTAL
(UG/L) | BROMO-
FORM
TOTAL
(UG/L) | CARBON-
TETRA-
CHLO-
RIDE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | | DATE
APR 1987 | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | NESE,
DIS-
SOLVED
(UG/L | TOTAL
RECOV-
ERABLE
(UG/L | TOTAL
RECOV-
ERABLE
(UG/L | DIS-
SOLVED
(UG/L | DIS-
SOLVED
(UG/L | TOTAL
RECOV-
ERABLE
(UG/L | DIS-
SOLVED
(UG/L | (C6H-
5OH)
TOTAL | FORM
TOTAL | TETRA-
CHLO-
RIDE
TOTAL | BENZENE
TOTAL | | APR 1987
14
27 | NESE,
TOTAL
RECOV-
ERABLE
(UG/L | NESE,
DIS-
SOLVED
(UG/L | TOTAL
RECOV-
ERABLE
(UG/L | TOTAL
RECOV-
ERABLE
(UG/L | DIS-
SOLVED
(UG/L | DIS-
SOLVED
(UG/L | TOTAL
RECOV-
ERABLE
(UG/L | DIS-
SOLVED
(UG/L | (C6H-
5OH)
TOTAL | FORM
TOTAL | TETRA-
CHLO-
RIDE
TOTAL | BENZENE
TOTAL | | APR 1987
14
27
MAY
19 | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL
RECOV-
ERABLE
(UG/L
AS HG) | TOTAL
RECOV-
ERABLE
(UG/L
AS NI) | DIS-
SOLVED
(UG/L
AS NI) | DIS-
SOLVED
(UG/L
AS AG) | TOTAL
RECOV-
ERABLE
(UG/L
AS ZN) | DIS-
SOLVED
(UG/L
AS ZN) | (C6H-
5OH)
TOTAL
(UG/L) | FORM TOTAL (UG/L) | TETRA-
CHLO-
RIDE
TOTAL
(UG/L) | BENZENE
TOTAL
(UG/L)
ND | | APR 1987
14
27
MAY
19
JUN
25 | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV- ERABLE (UG/L AS HG) <0.10 0.10 | TOTAL RECOV- ERABLE (UG/L AS NI) <100 1 | DIS-
SOLVED
(UG/L
AS NI) | DIS-
SOLVED
(UG/L
AS AG) | TOTAL
RECOV-
ERABLE
(UG/L
AS ZN) | DIS-
SOLVED
(UG/L
AS ZN) | (C6H-
5OH)
TOTAL
(UG/L) | FORM
TOTAL
(UG/L)
ND
ND | TETRA-
CHLO-
RIDE
TOTAL
(UG/L)
ND
ND | BENZENE
TOTAL
(UG/L)
ND
ND | | APR 1987
14
27
MAY
19
JUN | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV- ERABLE (UG/L AS HG) <0.10 0.10 <0.10 | TOTAL RECOV- ERABLE (UG/L AS NI) <100 1 <100 | DIS-
SOLVED
(UG/L
AS NI) | DIS-
SOLVED
(UG/L
AS AG) | TOTAL RECOV- ERABLE (UG/L AS ZN) <10 <10 10 | DIS-
SOLVED
(UG/L
AS ZN) | (C6H-
5OH)
TOTAL
(UG/L) | FORM TOTAL (UG/L) ND ND ND | TETRA-CHLO-RIDE TOTAL (UG/L) ND ND ND | BENZENE
TOTAL
(UG/L)
ND
ND | | APR 1987 14 27 MAY 19 JUN 25 JUL 28 SEP 28 NOV | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN)
20
40
10
<10
20 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV- ERABLE (UG/L AS HG) <0.10 0.10 <0.10 <0.10 <0.10 <0.10 | TOTAL RECOV- ERABLE (UG/L AS NI) <100 1 <100 <100 | DIS-
SOLVED
(UG/L
AS NI) | DIS-
SOLVED
(UG/L
AS AG) | TOTAL
RECOV-
ERABLE
(UG/L
AS ZN)
<10
<10
10
60
<10 | DIS-
SOLVED
(UG/L
AS ZN) | (C6H-
5OH)
TOTAL
(UG/L) | FORM
TOTAL
(UG/L)
ND
ND
ND | TETRA-CHLO-RIDE TOTAL (UG/L) ND ND ND | BENZENE
TOTAL
(UG/L)
ND
ND
ND | | APR 1987 14 27 MAY 19 JUN 25 JUL 28 SEP 28 NOV 05 DEC | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) 20 40 10 <10 20 20 20 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV- ERABLE (UG/L AS HG) <0.10 | TOTAL RECOV- ERABLE (UG/L AS NI) <100 1 <100 <100 2 <100 <1 | DIS-
SOLVED
(UG/L
AS NI) | DIS-
SOLVED
(UG/L
AS AG) | TOTAL
RECOV-
ERABLE
(UG/L
AS ZN)
<10
<10
10
60
<10
10 | DIS-
SOLVED
(UG/L
AS ZN) | (C6H-
50H)
TOTAL
(UG/L) | FORM TOTAL (UG/L) ND | TETRA-CHLO-RIDE TOTAL (UG/L) ND N | BENZENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND | | APR 1987 14 27 MAY 19 JUN 25 JUL 28 SEP 28 NOV 05 DEC 07 MAR 1988 | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) 20 40 10 <10 20 20 20 50 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV-ERABLE (UG/L AS HG) <0.10 | TOTAL RECOV-ERABLE (UG/L AS NI) <100 1 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 | DIS-
SOLVED
(UG/L
AS NI) | DIS-
SOLVED
(UG/L
AS AG) | TOTAL RECOV- ERABLE (UG/L AS ZN) <10 <10 10 60 <10 10 30 | DIS-
SOLVED
(UG/L
AS ZN) | (C6H-
50H)
TOTAL
(UG/L) | FORM TOTAL (UG/L) ND | TETRA-CHLO-RIDE TOTAL (UG/L) ND N | BENZENE TOTAL (UG/L) ND | | APR 1987 14 27 MAY 19 JUN 25 JUL 28 SEP 28 NOV 05 DEC 07 MAR 1988 21 APR | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) 20 40 10 <10 20 20 20 50 100 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV-ERABLE (UG/L AS HG) <0.10 | TOTAL RECOV-
ERABLE (UG/L AS NI) <100 1 <100 <100 <100 <100 <1 | DIS-
SOLVED
(UG/L
AS NI) | DIS-
SOLVED
(UG/L
AS AG) | TOTAL RECOV-ERABLE (UG/L AS ZN) <10 <10 <10 10 60 <10 10 10 10 10 10 10 10 10 10 | DIS-
SOLVED
(UG/L
AS ZN) | (C6H-
50H)
TOTAL
(UG/L) | FORM TOTAL (UG/L) ND | TETRA-CHLO-RIDE TOTAL (UG/L) ND | BENZENE TOTAL (UG/L) ND | | APR 1987 14 27 MAY 19 JUN 25 JUL 28 SEP 28 NOV 05 DEC 07 MAR 1988 21 | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) 20 40 10 <10 20 20 20 50 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV-ERABLE (UG/L AS HG) <0.10 | TOTAL RECOV-ERABLE (UG/L AS NI) <100 1 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 | DIS-
SOLVED
(UG/L
AS NI) | DIS-
SOLVED
(UG/L
AS AG) | TOTAL RECOV- ERABLE (UG/L AS ZN) <10 <10 10 60 <10 10 30 | DIS-
SOLVED
(UG/L
AS ZN) | (C6H-
50H)
TOTAL
(UG/L) | FORM TOTAL (UG/L) ND | TETRA-CHLO-RIDE TOTAL (UG/L) ND N | BENZENE TOTAL (UG/L) ND | | APR 1987 14 27 MAY 19 JUN 25 JUL 28 SEP 28 NOV 05 DEC 07 MAR 1988 21 APR 06 18 MAY | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) 20 40 10 210 20 20 100 100 100 100 100 100 1 | NESE,
DIS-
SOLVED
(UG/L
AS
MN) | TOTAL RECOV-ERABLE (UG/L AS HG) <0.10 | TOTAL RECOV-ERABLE (UG/L AS NI) <100 1 <100 <100 2 <100 <1 2 <100 <1 5 5 | DIS-
SOLVED
(UG/L
AS NI) | DIS-
SOLVED
(UG/L
AS AG) | TOTAL RECOV-ERABLE (UG/L AS ZN) <10 <10 <10 10 60 <10 10 <10 10 <10 <10 <10 <10 | DIS-
SOLVED
(UG/L
AS ZN) | (C6H-
50H)
TOTAL
(UG/L) | FORM TOTAL (UG/L) ND | TETRA-CHLO-RIDE TOTAL (UG/L) ND N | BENZENE TOTAL (UG/L) ND | | APR 1987 14 27 MAY 19 JUN 25 JUL 28 SEP 28 NOV 05 DEC 07 MAR 1988 21 APR 06 18 MAY 03 03 03 | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) 20 40 10 20 20 20 100 100 20 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV-ERABLE (UG/L AS HG) <0.10 | TOTAL RECOVERABLE (UG/L AS NI) <100 100 <100 <100 <100 <100 3 5 3 | DIS-
SOLVED
(UG/L
AS NI) | DIS-
SOLVED
(UG/L
AS AG) | TOTAL RECOV-ERABLE (UG/L AS ZN) <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 | DIS-
SOLVED
(UG/L
AS ZN) | (C6H-
50H)
TOTAL
(UG/L) | FORM TOTAL (UG/L) ND | TETRA-CHLO-RIDE TOTAL (UG/L) ND N | BENZENE TOTAL (UG/L) ND | | APR 1987 14 27 MAY 19 JUN 25 JUL 28 SEP 28 NOV 05 DEC 07 MAR 1988 21 APR 06 18 MAY 03 03 16 JUN 29 | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) 20 40 10 20 20 20 50 100 10 20 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV-ERABLE (UG/L AS HG) <0.10 | TOTAL RECOVERABLE (UG/L AS NI) <100 100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 | DIS-
SOLVED
(UG/L
AS NI) | DIS-
SOLVED
(UG/L
AS AG) | TOTAL RECOV-ERABLE (UG/L AS ZN) <10 | DIS-
SOLVED
(UG/L
AS ZN) | (C6H-
50H)
TOTAL
(UG/L) | FORM TOTAL (UG/L) ND | TETRA-CHLO-RIDE TOTAL (UG/L) ND N | BENZENE TOTAL (UG/L) ND | | APR 1987 14 27 MAY 19 JUN 25 JUL 28 SEP 06 MAR 1988 21 APR 06 18 MAY 03 03 16 JUN 29 SEP 07 | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) 20 40 10 20 20 20 100 10 20 10 <10 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV-ERABLE (UG/L AS HG) <0.10 | TOTAL RECOVERABLE (UG/L AS NI) <100 | DIS-
SOLVED
(UG/L
AS NI) 2 <1 3 1 1 3 | DIS-
SOLVED
(UG/L
AS AG) | TOTAL RECOV-ERABLE (UG/L AS ZN) <10 <10 <10 10 60 <10 10 <10 <10 <10 <10 | DIS-
SOLVED
(UG/L
AS ZN) | (C6H-
50H)
TOTAL
(UG/L) | FORM TOTAL (UG/L) ND | TETRA-CHLO-RIDE TOTAL (UG/L) ND N | BENZENE TOTAL (UG/L) ND | | APR 1987 14 27 MAY 19 JUN 25 JUL 28 SEP 06 APR 06 APR 06 18 MAY 03 03 16 JUN 29 SEP | NESE, TOTAL RECOV- ERABLE (UG/L AS MN) 20 40 10 <10 20 20 50 100 10 <10 50 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV-ERABLE (UG/L AS HG) <0.10 | TOTAL RECOVERABLE (UG/L AS NI) <100 | DIS- SOLVED (UG/L AS NI) 2 <1 3 <1 3 | DIS-
SOLVED
(UG/L
AS AG) | TOTAL RECOV-ERABLE (UG/L AS ZN) <10 | DIS-
SOLVED
(UG/L
AS ZN) | (C6H-
50H)
TOTAL
(UG/L) | FORM TOTAL (UG/L) ND | TETRA-CHLO-RIDE TOTAL (UG/L) ND N | BENZENE TOTAL (UG/L) ND | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). # 04219640 NIAGARA RIVER (LAKE ONTARIO) AT FORT NIAGARA, NY - continued | | | | | | | | IN (CONCI | • | | | | | |---|--|--|---|---|---|--|---|---|--|---|---|---| | DATE | CHLORO-
DI-
BROMO-
METHANE
TOTAL
(UG/L) | CHLORO-
ETHANE
TOTAL
(UG/L) | CHLORO-
FORM
TOTAL
(UG/L) | CIS
1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | DI-
CHLORO-
BROMO-
METHANE
TOTAL
(UG/L) | METHYL-
BROMIDE
TOTAL
(UG/L) | METHYL-
CHLO-
RIDE
TOTAL
(UG/L) | METHYL-
ENE
CHLO-
RIDE
TOTAL
(UG/L) | 1,1,1-
TRI-
CHLORO-
ETHANE
TOTAL
(UG/L) | 1,1-DI-
CHLORO-
ETHANE
TOTAL
(UG/L) | 1,1-DI-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 1,1,2-
TRI-
CHLORO-
ETHANE
TOTAL
(UG/L) | | | | | | | | | | | | | | | | APR 1987
14 | ND | 27
MAY | ND | 19
JUN | ND | N D | N D | ND | 25
JUL | ~- | | | | | | | | | | | ~- | | 28
SEP | ND , ND | ND | ND | ND | ND | | 28
NOV_ | ND | 05
DEC | ND | N D | N D | ND | 07
MAR 1988 | ND | 21
APR | ND ИD | | 06
18 | ND
ND | MAY
03 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 03
16 | ND | JUN
29 | ND | SEP
07 | ND | ОСТ
03 | ND | NOV
14 | ND | DATE | 1,1,2,2
TETRA-
CHLORO-
ETHANE
TOTAL
(UG/L) | 1,2-DI-
CHLORO-
BENZENE
TOTAL
(UG/L) | 1,2-DI-
CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L) | 1,2-DI-
CHLORO-
PROPANE
TOTAL
(UG/L) | 1,2-
TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L) | 1,3-DI-
CHLORO-
BENZENE
TOTAL
(UG/L) | 1,4-DI-
CHLORO-
BENZENE
TOTAL
(UG/L) | TETRA-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | TRANS-
1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | TRI-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 2-
CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L) | VINYL
CHLO-
RIDE
TOTAL
(UG/L) | | APR 1987 | TETRA-
CHLORO-
ETHANE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L) | CHLORO-
PROPANE
TOTAL
(UG/L) | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L) | CHLO-
RIDE
TOTAL
(UG/L) | | APR 1987
14
27 | TETRA-
CHLORO-
ETHANE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL | CHLORO-
ETHANE
WATER
WHOLE
TOTAL | CHLORO-
PROPANE
TOTAL | TRANSDI
CHLORO-
ETHENE
TOTAL | CHLORO-
BENZENE
TOTAL | CHLORO-
BENZENE
TOTAL | CHLORO-
ETHYL-
ENE
TOTAL | 1,3-DI-
CHLORO-
PROPENE
TOTAL | CHLORO-
ETHYL-
ENE
TOTAL | CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL | CHLO-
RIDE
TOTAL | | APR 1987
14
27
MAY
19 | TETRA-
CHLORO-
ETHANE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L) | CHLORO-
PROPANE
TOTAL
(UG/L)
ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L) | CHLO-
RIDE
TOTAL
(UG/L) | | APR 1987
14
27
MAY
19
JUN
25 | TETRA-
CHLORO-
ETHANE
TOTAL
(UG/L)
ND | CHLORO-
BENZENE
TOTAL
(UG/L)
ND
ND | CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L)
ND
ND | CHLORO-
PROPANE
TOTAL
(UG/L)
ND
ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND | CHLORO-
BENZENE
TOTAL
(UG/L)
ND
ND | CHLORO-
BENZENE
TOTAL
(UG/L)
ND
ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND | CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L)
ND | CHLO-
RIDE
TOTAL
(UG/L)
ND
ND | | APR 1987 14 27 MAY 19 JUN 25 JUL 28 | TETRA-
CHLORO-
ETHANE
TOTAL
(UG/L)
ND
ND | CHLORO-
BENZENE
TOTAL
(UG/L)
ND
ND | CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L)
ND
ND | CHLORO-
PROPANE
TOTAL
(UG/L)
ND
ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND | CHLORO-
BENZENE
TOTAL
(UG/L)
ND
ND | CHLORO-
BENZENE
TOTAL
(UG/L)
ND
ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND
ND | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
ND
ND |
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND
ND | CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L)
ND
ND | CHLO-
RIDE
TOTAL
(UG/L)
ND
ND | | APR 1987 14 27 MAY 19 JUN 25 JUL 28 SEP 28 | TETRA-
CHLORO-
ETHANE
TOTAL
(UG/L)
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND | CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L)
ND
ND | CHLORO-
PROPANE
TOTAL
(UG/L)
ND
ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND | CHLORO-
BENZENE
TOTAL
(UG/L)
ND
ND | CHLORO-
BENZENE
TOTAL
(UG/L)
ND
ND
ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND
ND | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
ND
ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND
ND | CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L)
ND
ND | CHLO-
RIDE
TOTAL
(UG/L)
ND
ND | | APR 1987 14 27 MAY 19 JUN 25 SEP 28 NOV 05 | TETRA-
CHLORO-
ETHANE
TOTAL
(UG/L)
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND | CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L)
ND
ND
ND | CHLORO-
PROPANE
TOTAL
(UG/L)
ND
ND
ND | TRANSDI
CHLORO-
ETHENE TOTAL
(UG/L) | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND ND ND ND ND | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
ND
ND
ND | CHLORO-ETHYL-ENETOTAL (UG/L) ND ND ND ND ND | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND ND ND ND | CHLO-
RIDE
TOTAL
(UG/L)
ND
ND
ND | | APR 1987 14 27 MAY 19 JUN 25 JUL 28 SEP 28 NOV 05 DEC 07 | TETRA-CHLORO-ETHANE TOTAL (UG/L) ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND ND ND ND ND | CHLORO-PROPANE TOTAL (UG/L) ND ND ND ND ND ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND N | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND ND ND ND ND ND ND | CHLORO-ETHYL-ENE ENE TOTAL (UG/L) ND N | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND ND ND ND ND | CHLO-
RIDE
TOTAL
(UG/L)
ND
ND
ND | | APR 1987 14 27 MAY 19 JUN 25 SEP 28 NOV 05 DEC 07 MAR 1988 21 | TETRA-CHLORO-ETHANE TOTAL (UG/L) ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND | CHLORO- ETHANE WATER WHOLE TOTAL (UG/L) ND ND ND ND ND ND ND | CHLORO-PROPANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND N | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND N | CHLORO-ETHYL-ENE ENE TOTAL (UG/L) ND N | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND | CHLO-RIDE TOTAL (UG/L) ND ND ND ND ND ND ND ND | | APR 1987 14 27 MAY 19 JUN 25 JUL 28 SEP 28 NOV 05 DEC 07 MAR 1988 21 APR | TETRA-CHLORO-ETHANE TOTAL (UG/L) ND | CHLOROBENZENE TOTAL (UG/L) ND | CHLORO- ETHANE WATER WHOLE TOTAL (UG/L) ND | CHLORO-PROPANE TOTAL (UG/L) ND N | TRANSDI CHLORO-ETHENE TOTAL (UG/L) ND N | CHLOROBENZENE TOTAL (UG/L) ND | CHLORO-BENZENE TOTAL (UG/L) ND N | CHLORO-ETHYL-ENE TOTAL (UG/L) ND N | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND N | CHLORO-ETHYL-ENE ENE TOTAL (UG/L) ND N | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND | CHLO-RIDE TOTAL (UG/L) ND | | APR 1987 14 27 MAY 19 JUN 25 JUL 28 SEP 28 NOV 05 DEC 07 MAR 1988 21 APR 06 18 | TETRA-CHLORO-ETHANE TOTAL (UG/L) ND | CHLOROBENZENE TOTAL (UG/L) ND | CHLORO- ETHANE WATER WHOLE TOTAL (UG/L) ND | CHLORO-PROPANE TOTAL (UG/L) ND N | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-BENZENE TOTAL (UG/L) ND N | CHLORO-ETHYL-ENE TOTAL (UG/L) ND N | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND N | CHLORO-ETHYL-ENE ENE TOTAL (UG/L) ND N | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND | CHLO-RIDE TOTAL (UG/L) ND N | | APR 1987 14 27 MAY 19 JUN 25 JUL 28 SEP 28 NOV 05 DEC 07 MAR 1988 21 APR 06 18 MAY 03 | TETRA-CHLORO-ETHANE TOTAL (UG/L) ND N | CHLOROBENZENE TOTAL (UG/L) ND | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND | CHLORO-PROPANE TOTAL (UG/L) ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND
ND
ND
ND
ND | CHLOROBENZENE TOTAL (UG/L) ND | CHLORO-BENZENE TOTAL (UG/L) ND N | CHLORO-ETHYL-ENE ENE TOTAL (UG/L) ND N | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND N | CHLORO-ETHYL- ENE TOTAL (UG/L) ND | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND | CHLO-RIDE RIDE TOTAL (UG/L) ND | | APR 1987 14 27 MAY 19 JUN 25 SEP 28 NOV 05 DEC 07 MAR 1988 21 APR 06 18 MAY 03 03 16 JUN | TETRA-CHLORO-ETHANE TOTAL (UG/L) ND | CHLOROBENZENE TOTAL (UG/L) ND | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND | CHLORO-PROPANE TOTAL (UG/L) ND N | TRANSDI CHLORO-ETHENE TOTAL (UG/L) ND N | CHLORO-BENZENE TOTAL (UG/L) ND N | CHLORO-BENZENE TOTAL (UG/L) ND N | CHLORO-ETHYL-ENE TOTAL (UG/L) ND N | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND N | CHLORO-ETHYL-ENE ENE TOTAL (UG/L) ND N | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND | CHLO-RIDE TOTAL (UG/L) ND | | APR 1987 14 27 MAY 19 JUN 25 JUL 28 SEP 28 NOV 05 DEC 07 MAR 1988 21 APR 06 18 MAY 03 03 03 16 JUN 29 SEP | TETRA-CHLORO-ETHANE TOTAL (UG/L) ND | CHLOROBENZENE TOTAL (UG/L) ND | CHLORO- ETHANE WATER WHOLE TOTAL (UG/L) ND | CHLORO-PROPANE TOTAL (UG/L) ND N | TRANSDI CHLORO-ETHENE TOTAL (UG/L) ND N | CHLOROBENZENE BENZENE TOTAL (UG/L) ND | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-ETHYL-ENE ENE TOTAL (UG/L) ND N | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND N | CHLORO-ETHYL- ENE ENE TOTAL (UG/L) ND | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND | CHLO- RIDE TOTAL (UG/L) ND | | APR 1987 14 27 MAY 19 JUN 25 JUL 28 SEP 28 NOV 05 DEC 07 MAR 1988 21 APR 06 18 MAY 03 03 16 JUN 29 SEP 07 CCT | TETRA-CHLORO-ETHANE TOTAL (UG/L) ND N | CHLOROBENZENE TOTAL (UG/L) ND | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND | CHLORO-PROPANE TOTAL (UG/L) ND N | TRANSDI CHLORO-ETHENE TOTAL (UG/L) ND N | CHLOROBENZENE TOTAL (UG/L) ND | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-ETHYL-ENE ENE ENE TOTAL (UG/L) ND N | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND N | CHLORO-ETHYL- ENE TOTAL (UG/L) ND | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND | CHLO-RIDE RIDE TOTAL (UG/L) ND | | APR 1987 14 27 MAY 19 JUN 25 SEP 28 NOV 05 DEC 07 MAR 1988 21 APR 06 18 MAY 03 03 16 JUN 29 SEP | TETRA-CHLORO-ETHANE TOTAL (UG/L) ND | CHLOROBENZENE TOTAL (UG/L) ND | CHLORO- ETHANE WATER WHOLE TOTAL (UG/L) ND | CHLORO-PROPANE TOTAL (UG/L) ND N | TRANSDI CHLORO-ETHENE TOTAL (UG/L) ND N | CHLOROBENZENE BENZENE TOTAL (UG/L) ND | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-ETHYL-ENE ENE TOTAL (UG/L) ND N | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND N | CHLORO-ETHYL- ENE ENE TOTAL (UG/L) ND | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND | CHLO- RIDE TOTAL (UG/L) ND | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). ## 04219640 NIAGARA RIVER (LAKE ONTARIO) AT FORT NIAGARA, NY - continued ## SUSPENDED SEDIMENT DISCHARGE | | | DIS-
CHARGE, | | SEDI-
MENT, | |-----------|------|-----------------|--------|----------------| | | | IN | SEDI- | DIS- | | | | CUBIC | MENT, | CHARGE, | | | | FEET | SUS- | SUS- | | DATE | TIME | PER | | PENDED | | | | SECOND | (MG/L) | (T/DAY) | | APR 1987 | | | | | | 14 | 0845 | 246000 | 8 | 5310 | | 27 | 0905 | 248000 | 95 | 63600 | | MAY | | | | | | 19 | 0915 | 234000 | 14 | 8850 | | JUN | | | | | | 25 | 0930 | 236000 | 5 | 3190 | | JUL | | | | | | 28 | 1100 | 240000 | 4 | 2590 | | NOV | | | | | | 05 | 0825 | 212000 | 29 | 16600 | | DEC | | | | | | 07 | 0830 | 212000 | 63 | 36100 | | MAY 1988 | | | | | | 03 | | 225000 | | 2430 | | 16 | 0910 | 227000 | 4 | 2450 | | JUN | | | | | | 29 | 1230 | 209000 | 6 | 3390 | | SEP | | | _ | | | 07 | 0900 | 208000 | 8 | 4490 | | OCT . | 0020 | 107000 | - | 2662 | | 03 | 0938 | 197000 | 5 | 2660 | | NOV
14 | 0020 | 212000 | 20 | 17300 | | 14 | 0930 | 213000 | 30 | 17300 | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). #### 04227510 GENESEE RIVER AT GENESEO, NY LOCATION.--Lat 42 46'37", long 77 50'31", Livingston County, Hydrologic Unit 04130003, at bridge on U.S. Highway 20A, and State Highway 39, 1.0 mi west of intersection with State Highway 63 and 1.5 mi Southwest of Geneseo. DRAINAGE AREA. -- 1,425 mi2. PERIOD OF RECORD.--Water years 1972-74, 1988 to current year. CHEMICAL DATA: 1988 (b), 1989 (a). MINOR ELEMENT DATA: 1972-74 (a), 1988 (b), 1989 (a). PESTICIDE DATA: 1988 (b), 1989 (a). NUTRIENT DATA: 1988 (b), 1989 (a). SEDIMENT DATA: 1988-89 (a). REMARKS.--Water-discharge data are based on records from station 04227500 Genesee River near Mount Morris. | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND | SPE-
CIFIC
CON-
DUCT-
ANCE
LAB
(US/CM | WHOLE
FIELD
(STAND-
ARD | WATER | DIS- | (MG/L
D AS | CALCIU
DIS-
SOLVE
(MG/L | DIS-
D SOLVED
(MG/L | SODIUM
DIS-
SOLVED
(MG/L | DIS-
SOLVE
(MG/L | , | |-----------------------|--|--|---|---|--|---|--|--|---|--|---|---| | APR 1988
06
MAY | 1100 | 5420 | 19 | 6 8.: | 2 13. | 0 9. | 3 7 |
7 23 | 4.8 | 7.1 | 1.6 | | | 02
JUN | 1530 | 3110 | 20 | 4 8.0 | 11. | 5 9. | 8 8 | 0 23· | 5.4 | 7.8 | 1.4 | | | 06
AUG | 0945 | 682 | 32 | 8 8.4 | 18. | 0 8. | 2 13 | 0 39 | 9.1 | 12 | 1.6 | | | 02
⊙CT | 0945 | 230 | 38 | 1 8.4 | 4 26. | 5 7. | 2 15 | 0 43 | 11 | 16 | 2.1 | | | 03 | 0930 | 316 | 32 | 1 8. | 5 15. | 0 8. | 1 14 | 0 40 | 9.0 | 12 | 2.0 | | | DATE | ALKA-
LINITY
LAB
(MG/L
AS
CACO3) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | SOLIDS,
RESIDUE
AT 105
DEG. C,
TOTAL
(MG/L) | SOLIDS,
VOLA-
TILE ON
IGNI-
TION,
TOTAL
(MG/L) | RESIDUE
TOTAL
FIXED
(MG/L) | NITRO-
GEN,
NITRATE
TOTAL
(MG/L
AS N) | NITRO-
GEN,
NITRITE
TOTAL
(MG/L
AS N) | NITRO-
GEN,
NO2+NO3
TOTAL
(MG/L
AS N) | | APR 1988
06 | 57 | 23 | 11 | 0.10 | | 105 | | | | | ND | 0.740 | | MAY
02 | 60 | 23 | 12 | 0.10 | | 109 | | | | 0.600 | 0.00 | 0.600 | | JUN
06 | 107 | 31 | 17 | 0.10 | 207 | 174 | 224 | 90 | 134 | 0.730 | 0.010 | 0.740 | | AUG | | | | | | | 224 | 90 | | | | | | 02
OCT | 118 | 35 | 25 | 0.10 | | 203 | | | | 0.390 | 0.010 | 0.400 | | 03 | 105 | 27 | 18 | 0.10 | | 171 | | | | 0.380 | 0.00 | 0.380 | | DATE | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS NH4) | NITRO-
GEN,
ORGANIC
TOTAL
(MG/L
AS N) | NITRO-
GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | NITRO-
GEN,
TOTAL
(MG/L
AS N) | NITRO-
GEN,
TOTAL
(MG/L
AS NO3) | PHOS-
PHORUS
TOTAL
(MG/L
AS P) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P) | PHOS-
PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4) | ALUM-
INUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS AL) | CADMIUM
TOTAL
RECOV-
ERABLE
(UG/L
AS CD) | COPPER,
TOTAL
RECOV-
ERABLE
(UG/L
AS CU) | | APR 1988 | 0 570 | 0.72 | 0 77 | | 2.0 | 0.0 | 0.650 | 0.00 | 0.0 | 11000 | .1 | 24 | | 06
May | 0.570 | 0.73 | 0.73 | 1.3 | 2.0 | 9.0 | 0.650 | | 0.0 | 11000 | <1 | 24 | | 02
JUN | 0.050 | 0.06 | 0.12 | 0.17 | 0.77 | 3.4 | 0.170 | 0.00 | 0.0 | 2200 | 2 | 19 | | 06
AUG | 0.030 | 0.04 | 0.10 | 0.13 | 0.87 | 3.9 | 0.040 | 0.00 | 0.0 | 570 | 1 | 9 | | 02
OCT | 0.060 | 0.08 | 0.25 | 0.31 | 0.71 | 3.1 | 0.040 | 0.00 | 0.0 | 530 | 1 | 12 | | 03 | 0.020 | 0.03 | 0.12 | 0.14 | 0.52 | 2.3 | 0.030 | 0.010 | 0.03 | 900 | <1 | 6 | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). ## 04227510 GENESEE RIVER AT GENESEO, NY - continued ## WATER-QUALITY DATA (continued) | | | | | | 201.01 | | | | | | | |-----------|---|---|---|---|---|---|--|--|--|---|---| | DATE | IRON,
TOTAL
RECOV-
ERABLE
(UG/L
AS FE) | LEAD,
TOTAL
RECOV-
ERABLE
(UG/L
AS PB) | MANGA-
NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | MERCURY
TOTAL
RECOV-
ERABLE
(UG/L
AS HG) | NICKEL,
TOTAL
RECOV-
ERABLE
(UG/L
AS NI) | ZINC,
TOTAL
RECOV-
ERABLE
(UG/L
AS ZN) | BROMO-
FORM
TOTAL
(UG/L) | CARBON-
TETRA-
CHLO-
RIDE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
DI-
BROMO-
METHANE
TOTAL
(UG/L) | CHLORO-
ETHANE
TOTAL
(UG/L) | | APR 1988 | | | | | | | | | | | | | 06 | 18000 | 60 | 350 | <0.10 | 21 | 70 | ND | ND | ND | ND | ND | | MAY | | | | | | | | | | | _ | | 02
JUN | 5100 | 8 | 140 | <0.10 | 9 | 20 | 0 | 0 | 0.0 | 0 | 0 | | 06 | 1100 | < 5 | 70 | <0.10 | 3 | 20 | | | | | | | AUG | | | | | • | | | | | | | | 02 | 1000 | <5 | 70 | <0.10 | 3 | 20 | ND | ND | ND | ND | ND | | OCT | 1000 | | 00 | | | | | MD | MD | MD | ND | | 03 | 1000 | < 5 | 80 | | <1 | 50 | ND | ND | ND | ND | ND | | DATE | CHLORO-
FORM
TOTAL
(UG/L) | CIS
1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | DI -
CHLORO-
BROMO-
METHANE
TOTAL
(UG/L) | METHYL-
BROMIDE
TOTAL
(UG/L) | METHYL-
CHLO-
RIDE
TOTAL
(UG/L) | METHYL-
ENE
CHLO-
RIDE
TOTAL
(UG/L) | 1,1,1-
TRI-
CHLORO-
ETHANE
TOTAL
(UG/L) | 1,1-DI-
CHLORO-
ETHANE
TOTAL
(UG/L) | 1,1-DI-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 1,1,2-
TRI-
CHLORO-
ETHANE
TOTAL
(UG/L) | 1,1,2,2
TETRA-
CHLORO-
ETHANE
TOTAL
(UG/L) | | APR 1988 | | | | | | | | | | | | | 06 | ND | MAY | | | | | | | | | | | | | 02 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | JUN
06 | | | | | | | | | | | | | AUG | | | | | | | | | | | | | 02 | ND . | | OCT | | | | | | | | | | | | | 03 | ND . | | | | | | | | | | | | | • | | DATE | 1,2-DI-
CHLORO-
BENZENE
TOTAL
(UG/L) | 1,2-DI-
CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L) | 1,2-DI-
CHLORO-
PROPANE
TOTAL
(UG/L) | 1,2-
TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L) | 1,3-DI-
CHLORO-
BENZENE
TOTAL
(UG/L) | 1,4-DI-
CHLORO-
BENZENE
TOTAL
(UG/L) | TETRA-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | TRANS-
1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | TRI -
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 2-
CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L) | VINYL
CHLO-
RIDE
TOTAL
(UG/L) | | APR 1988 | | | | | | | | | | | | | 06 | ND N D | ND | ND | ND . | | MAY | | | | | | | | | | | | | 02 | 0 | 0.00 | 0 | 0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0 | | JUN
06 | | | | | | | | | | | | | AUG | | | | | | | | | | | | | 02 | ND | OCT
03 | ND | 03 | ND | NO | MD | ND | ND | NU | 140 | ND | ND | ND | ND | ## SUSPENDED SEDIMENT DISCHARGE | | | DIS-
CHARGE,
INST. | SEDI- | SEDI-
MENT,
DIS- | |-----------|------|--------------------------|---------------|------------------------| | | | CUBIC
FEET | MENT,
SUS- | CHARGE,
SUS- | | DATE | TIME | PER
SECOND | PENDED (MG/L) | PENDED
(T/DAY) | | AUG 1988 | | | | | | 02
⊙CT | 0945 | 230 | 29 | 18 | | 03 | 0930 | 316 | 21 | 18 | #### 04232006 GENESEE RIVER AT CHARLOTTE DOCKS AT ROCHESTER NY LOCATION.--Lat 43 13'26", long 77 36'59", Monroe County, Hydrologic Unit 04130003, at Charlotte Docks, at Rochester Cement Corp., in Rochester. 0.4 mi upstream from Rattlesnake Point, 1.6 mi upstream from Stutson Street Bridge, and 3.6 mi downstream from gaging station (04232000) at Rochester. DRAINAGE AREA. -- 2,467 mi2 at station 04232000 PERIOD OF RECORD.--Water years 1971 to current year. CHEMICAL DATA: 1971-72 (a), 1974 (b), 1975-82 (c), 1983-87 (b), 1988 (c), 1989 (a). MINOR ELEMENTS DATA: 1971-73 (a), 1974-87 (b), 1988 (c), 1989 (a). PESTICIDE DATA: 1988-89 (a), ORGANIC DATA: OC--1974 (a), 1975 (b), 1977 (b), 1978-80 (c), 1981 (b). NUTRIENT DATA: 1971 (a), 1974 (b), 1975-82 (c), 1983-87 (b), 1988 (c), 1989 (a). BIOLOGICAL DATA: Pacteria--1974 (b), 1975-82 (c), 1983-88 (b), 1989 (a). Phytoplankton--1974 (b), 1975-77 (c), 1978-81 (b). Periphyton--1975-80 (b). SEDIMENT DATA: 1974 (b), 1975-82 (c), 1983-88 (b), 1989 (a). REMARKS.--Water discharge data are based on records from station 04232000 Genesee River at Rochester. | DATE | TIME | DIS-
CHARGE,
IN
CUBIC
FEET
PER
SECOND | SPE-
CIFIC
CON-
DUCT-
ANCE
LAB
(US/CM) | PH WATER WHOLE FIELD (STAND- ARD UNITS) | TEMPER-
ATURE
WATER
(DEG C) | OXYGEN,
DIS-
SOLVED
(MG/L) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K) | |-----------------------|---|---|--|--|---|---|--|---|---|--|---| | APR 1988
06
MAY | 1430 | 8460 | 403 | 8.1 | 15.0 | 9.9 | 150 | 44 | 10 | 22 | 2.5 | | 02
JUN | 1215 | 3680 | 440 | 8.2 | 11.0 | 10.6 | 150 | 45 | 10 | 26 | 2.0 | | 06 | 1225 | 1490 | 643 | 8.4 | 21.0 | 8.5 | 220 | 67 | 14 | 40 | 2.4 | | AUG
02 | 1200 | 511 | 775 | 8.0 | 29.5 | 7.2 | 220 | 67 | 13 | 64 | 3.7 | | ост
03 | 1200 | 879 | 855 | 7.9 | 16.5 | 7.0 | 240 | 71 | 15 | 73 | 3.4 | | DATE | ALKA-
LINITY
LAB
(MG/L
AS
CACO3) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | NITRO-
GEN,
NITRATE
TOTAL
(MG/L
AS N) | NITRO-
GEN,
NITRITE
TOTAL
(MG/L
AS N) |
NITRO-
GEN,
NO2+NO3
TOTAL
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS NH4) | NITRO-
GEN,
ORGANIC
TOTAL
(MG/L
AS N) | | APR 1988 | 101 | 40 | | | | | | | | | | | 06
May | 104 | 47 | 33 | 0.20 | 221 | | ND | 1.07 | 0.360 | 0.46 | 0.41 | | 02
JUN | 101 | 50 | 42 | 0.20 | 236 | 0.560 | 0.010 | 0.570 | 0.180 | 0.23 | 0.41 | | 06
AUG | 137 | 87 | 6 8 | 0.20 | 361 | 0.490 | 0.040 | 0.530 | 0.070 | 0.09 | 0.21 | | 02
OCT | 112 | 110 | 110 | 0.30 | 435 | 0.670 | 0.050 | 0.720 | 0.220 | 0.28 | 0.44 | | 03 | 125 | 100 | 130 | 0.20 | 468 | 0.500 | 0.060 | 0.560 | 0.250 | 0.32 | 0.15 | | DATE | NITRO-
GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | NITRO-
GEN,
TOTAL
(MG/L
AS N) | NITRO-
GEN,
TOTAL
(MG/L
AS NO3) | PHOS-
PHORUS
TOTAL
(MG/L
AS P) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P) | PHOS-
PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4) | ALUM-
INUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS AL) | CADMIUM
TOTAL
RECOV-
ERABLE
(UG/L
AS CD) | COPPER,
TOTAL
RECOV-
ERABLE
(UG/L
AS CU) | IRON,
TOTAL
RECOV-
ERABLE
(UG/L
AS FE) | LEAD,
TOTAL
RECOV-
ERABLE
(UG/L
AS PB) | | APR 1988 | | | | | | | 0.00 | _ | | | _ | | 06
May | 0.77 | 1.8 | 8.1 | 0.510 | 0.00 | 0.0 | 9100 | 1 | 16 | 16000 | 6 | | 02
JUN | 0.59 | 1.2 | 5.1 | 0.140 | 0.00 | 0.0 | 2200 | 3 | 12 | 3800 | <5 | | 06
AUG | 0.28 | 0.81 | 3.6 | 0.060 | 0.00 | 0.0 | 580 | 2 | 8 | 1500 | <5 | | 02 | 0.66 | 1.4 | 6.1 | 0.070 | 0.010 | 0.03 | 200 | 2 | 9 | 370 | 7 | | 03 | 0.40 | 0.96 | 4.2 | 0.070 | 0.00 | 0.0 | 880 | 1 | 30 | 1000 | <5 | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). ## 04232006 GENESEE RIVER AT CHARLOTTE DOCKS AT ROCHESTER NY - continued | DATE | MANGA-
NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | MERCURY
TOTAL
RECOV-
ERABLE
(UG/L
AS HG) | NICKEL,
TOTAL
RECOV-
ERABLE
(UG/L
AS NI) | TOTA
RECO
ERAE
(UG) | AL
OV-BRO
BLE FO
'L TO | MO-
PRM
TAL
G/L) | CARBO
TETI
CHLO
RIDI
TOTA
(UG. | RA-
O- C
E E
AL 1 | CHLOR
BENZE
POTAL
UG/L | NE METH | -
MO- CHL
ANE ETH
AL TC | ANE FO | ORO-
DRM
TAL
S/L) | CIS
1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | |-----------------------|---|---|---|---|--|---------------------------|---|---|---------------------------------|--|--|---|----------------------------|---| | APR 1988 | | | | | | | | | | | | | | | | 06 | 370 | <0.10 | 20 | | 60 N | D | ND | | ND | ND | N | D N | ID | ND | | MAY
02 | 90 | <0.10 | 6 | | 20 | | | - | | _ | _ | | | | | JUN
06 | 00 | -0.10 | , | | 20 | | _ | | | | | | | | | AUG | 80 | <0.10 | 6 | | 20 | | - | - | | - | - | | | | | 02 | 120 | <0.10 | 6 | | 30 N | D | ND | | ND | ND | N | D | 0.5 | ND | | OCT
03 | 130 | | 7 | | 50 N | D | ND | | ND | ND | N | D | 0.2 | ND | | DAT
APR 198 | CHL
BR
MET
E TO | HANE BRO | TAL C | THYL-
HLO-
IDE
OTAL
G/L) | METHYL-
ENE
CHLO-
RIDE
TOTAL
(UG/L) | TR | I -
ORO-
ANE
AL | 1,1-I
CHLOF
ETHAN
TOT)
(UG/I | VT
16
10-
11- | 1,1-DI-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 1,1,2-
TRI-
CHLORO-
ETHANE
TOTAL
(UG/L) | 1,1,2,2
TETRA-
CHLORO-
ETHANE
TOTAL
(UG/L) | 1,2
CHL
BEN | -DI-
ORO-
ZENE
FAL
/L) | | 06 | | D N | 1D | ND | ND | N | D | ND | | ND | ND | ИD | N | D | | MAY
02 | | | | | | | _ _ | | | | | | | | | JUN | | | | | | | | | | | | | | | | 06
AUG | | | | | | | | | • | | | | | | | 02 | | 0.2 h | 1D | ND | 2.8 | : | 0.2 | ND | | ND | 0.1 | ND | N | D | | ОСТ
03 | N | D N | 1D | ND | 200 | | 0.2 | (| 0.4 | ND | ND | ND | N | D | | DAT | CHL
ETH
WA
WH
E TO
(UG | TER CHI
OLE PRO
TAL TO | ORO- CH
OPANE ET
OTAL T | 1,2-
ANSDI
LORO-
HENE
OTAL
IG/L) | 1,3-DI-
CHLORO-
BENZENE
TOTAL
(UG/L) | CHL
BEN | -DI-
ORO-
ZENE
TAL
/L) | TETRA
CHLOS
ETHYS
ENE
TOTA
(UG/S | 7T
50- | TRANS-
1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | TRI-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 2-
CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L) | VII
CHI
RII
TO | NYL
LO-
DE
FAL
G/L) | | APR 198
06 | | D 1 | ₹D | ND | ND | N | D | ND | | ND | ND | ND | N | D | | MAY | • | | | | | | | | | | | | | | | 02
JUN | | | | | | | | | - | | | | | | | 06 | | | | | | | | | - | ' | | | | | | AUG
02
OCT | N | D | 1.2 | ND | ND | N | D | ND | | ND | 0.1 | ND | N | D | | 03 | N | D | 0.7 | ND | ND | N | D | ND | | ND | ND | ND | N | D | ### 04237410 SENECA RIVER AT JACK'S REEF NEAR MEMPHIS, NY LOCATION.--Lat 43 05'55", long 76 25'24", Onondaga County, Hydrologic Unit 04140201, at bridge on Plainville Road, 200 ft from intersection with State Highway 31, 2.3 mi upstream from Cross Lake and 2.6 mi northwest of Memphis. DRAINAGE AREA. -- 3,091 mi2. PERIOD OF RECORD.--Water years 1988 to current year. CHEMICAL DATA: 1988 (b), 1989 (a). MINOR ELEMENT DATA: 1988 (b), 1989 (a). PESTICIDE DATA: 1988-89 (a). NUTRIENT DATA: 1988 (b), 1989 (a). BIOLOGICAL DATA: 1988 (b), 1989 (a). SEDIMENT DATA: 1988 (a). REMARKS.--Water-discharge data based on records for station 04237500 Seneca River at Baldwinsville. | DATE | TIME | DIS-
CHARGE,
IN
CUBIC
FEET
PER
SECOND | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | SPE-
CIFIC
CON-
DUCT-
ANCE
LAB
(US/CM) | PH WATER WHOLE FIELD (STAND- ARD UNITS) | TEMPER-
ATURE
WATER
(DEG C) | TUR-
BID-
ITY
(NTU) | BARO-
METRIC
PRES-
SURE
(MM
OF
HG) | OXYGEN,
DIS-
SOLVED
(MG/L) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION) | COLI-
FORM,
TOTAL,
IMMED.
(COLS.
PER
100 ML) | |-----------------------|---|--|--|--|--|--|--|--|--|--|---| | APR 1988
04 | 1300 | 2440 | ~- | 697 | 7.9 | 9.0 | 7.7 | | 12.6 | | 460 | | MAY | | | | 780 | | | | | | | 170 | | 02
Jun | 0930 | 1170 | | | 8.0 | 10.0 | 4.7 | | 11.5 | | | | 06
AUG | 1230 | 1130 | | 717 | 8.2 | 13.0 | 14 | 758 | 6.9 | | 290 | | 02
OCT | 1130 | 1090 | | 758 | 8.1 | 28.0 | 8.5 | 753 | 8.2 | | 4400 | | 05 | 1000 | 886 | 310 | 826 | | 17.5 | 4.7 | 764 | 7.1 | 74 | 65 | | DATE | FECAL
COLI-
FORM
24-HR
MEM.FIL
(COLS./
100 ML) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS·MG) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K) | ALKA-
LINITY
LAB
(MG/L
AS
CACO3) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | | APR 1988
04 | 44.0 | 250 | 74 | 17 | 43 | 2.1 | 159 | 00 | 70 | 0.00 | 460 | | MAY | 44.0 | | | | | 2.1 | | 88 | 72 | 0.20 | | | 02
Jun | 4.00 | 280 | 83 | 18 | 49 | 2.3 | 168 | 99 | 89 | 0.20 | 464 | | 06
AUG | 12.0 | 240 | 68 | 16 | 50 | 2.3 | 151 | 82 | 86 | 0.20 | 420 | | 02
⊙CT | 20.0 | 180 | 47 | 14 | 78 | 2.3 | 104 | 77 | 120 | 0.10 | 464 | | 05 | 10.0 | 220 | 60 | 16 | 78 | 2.6 | 118 | 99 | 130 | 0.10 | 520 | | DATE | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | SOLIDS,
RESIDUE
AT 105
DEG. C,
TOTAL
(MG/L) | SOLIDS,
VOLA-
TILE ON
IGNI-
TION,
TOTAL
(MG/L) | RESIDUE
TOTAL
FIXED
(MG/L) | NITRO-
GEN,
NITRATE
TOTAL
(MG/L
AS N) | NITRO-
GEN,
NITRITE
TOTAL
(MG/L
AS N) | NITRO-
GEN,
NO2+NO3
TOTAL
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS NH4) | NITRO-
GEN,
ORGANIC
TOTAL
(MG/L
AS N) | NITRO-
GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | | APR 1988
04
MAY | 392 | 488 | 88 | 400 | 1.22 | 0.020 | 1.24 | 0.050 | 0.06 | 0.32 | 0.37 | | 02 | 441 | 520 | 132 | 388 | 0.740 | 0.010 | 0.750 | 0.040 | 0.05 | 0.37 | 0.41 | | JUN
06 | 395 | 468 | 136 | 332 | 0.480 | 0.020 | 0.500 | 0.050 | 0.06 | 0.53 | 0.58 | | AUG
02 | 401 | 520 | 180 | 340 | 0.060 | 0.00 | 0.060 | 0.030 | 0.04 | 0.54 | 0.57 | | ОСТ
05 | 456 | 528 | 112 | 416 | 0.100 | 0.010 | 0.110 | 0.060 | 0.08 | 0.57 | 0.63 | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). ## 04237410 SENECA RIVER
AT JACK'S REEF NEAR MEMPHIS, NY - continued | | WATER-QUALITY DATA (continued) | | | | | | | | | | | | |------------------|---|--|---|---|--|--|--|--|--|---|---|--| | DATE
APR 1988 | NITRO-
GEN,
TOTAL
(MG/L
AS N) | NIT
GE
TOT
(MG
AS N | N, PHOR
AL TOT
/L (MG
O3) AS | RUS DIS
PAL SOLV
G/L (MG/
P) AS P | US PHA
HO, ORT
- DI
ED SOL
L (MG | TE, INC
THO, TOT
S- REC
VED ERA
I/L (UC
VO4) AS | JM, CADM
PAL TOT
COV- REC
ABLE ERA
G/L (UG | PAL TOT
COV- REC
ABLE ERA
S/L (UG
CD) AS | CAL TO:
COV- REC
ABLE ERA | TAL TO
COV- REA
ABLE ER
G/L (U | AD, NI TAL TO COV- RI ABLE EI G/L (I | ANGA-
ESE,
OTAL
ECOV-
RABLE
UG/L
S MN) | | 04
MAY | 1.6 | , | .1 0. | 060 0. | 00 0 | 0.0 | 260 | <1 | 14 | 400 | 24 | 50 | | 02
JUN | 1.2 | 5 | .1 0. | 040 0. | 00 0 | 0.0 | 130 | 1 | 10 | 250 | <5 | 40 | | 06
AUG | 1.1 | 4 | .8 0. | 070 0. | 00 0 | 0.0 | 290 | <1 | 6 | 10 | <5 | 50 | | 02 | 0.63 | 2 | .8 0. | 080 0. | 00 0 | 0.0 | 170 | <1 | 6 | 360 | <5 | 50 | | 05 | 0.74 | 3 | .3 0. | 070 0. | 00 0 | .0 | 80 | <1 | 8 | 170 | <5 | 40 | | DA
APR 19 | T
R
E
ATE (
A | RCURY
OTAL
ECOV-
RABLE
UG/L
S HG) | NICKEL,
TOTAL
RECOV-
ERABLE
(UG/L
AS NI) | ZINC,
TOTAL
RECOV-
ERABLE
(UG/L
AS ZN) | BROMO-
FORM
TOTAL
(UG/L) | CARBON-
TETRA-
CHLO-
RIDE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
DI-
BROMO-
METHANE
TOTAL
(UG/L) | CHLORO-
ETHANE
TOTAL
(UG/L) | CHLORO-
FORM
TOTAL
(UG/L) | CIS
1,3-DI-
CHLORO-
PROPENI
TOTAL
(UG/L) | - | | 04 | | <0.10 | 2 | <10 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0 | | | MAY
02 | | <0.10 | 2 | 10 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0 | | | JUN
06 | • • | <0.10 | 2 | 20 | | | | | | | | | | AUG
02 | | <0.10 | 1 | 10 | | | | | | | | | | OCT
05 | • • | <0.10 | <1 | 20 | ND | | | CH
B
ME
ATE T | DI-
LORO-
ROMO-
THANE
OTAL
UG/L) | METHYL-
BROMIDE
TOTAL
(UG/L) | METHYL-
CHLO-
RIDE
TOTAL
(UG/L) | METHYL-
ENE
CHLO-
RIDE
TOTAL
(UG/L) | 1,1,1-
TRI-
CHLORO-
ETHANE
TOTAL
(UG/L) | 1,1-DI-
CHLORO-
ETHANE
TOTAL
(UG/L) | 1,1-DI-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 1,1,2-
TRI-
CHLORO-
ETHANE
TOTAL
(UG/L) | 1,1,2,2
TETRA-
CHLORO-
ETHANE
TOTAL
(UG/L) | 1,2-DI | - | | APR 19 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | MAY
02 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | o | | | JUN
06 | | | | | | | | | | | | | | AUG
02 | | | | | | | | | | | | | | OCT
05 | | ND | | 03 | 1,
CH
ET
W | 2-DI-
LORO-
HANE
ATER
HOLE | 1,2-DI-
CHLORO-
PROPANE | 1,2-
TRANSDI
CHLORO-
ETHENE | 1,3-DI-
CHLORO-
BENZENE | 1,4-DI-
CHLORO-
BENZENE | TETRA-
CHLORO-
ETHYL-
ENE | TRANS-
1,3-DI-
CHLORO-
PROPENE | TRI -
CHLORO-
ETHYL-
ENE | 2-
CHLORO-
ETHYL-
VINYL-
ETHER | VINYL
CHLO-
RIDE | | | DA | | OTAL
G/L) | TOTAL
(UG/L) | TOTAL (UG/L) | TOTAL
(UG/L) | TOTAL
(UG/L) | TOTAL
(UG/L) |) | | APR 19
04 | 988 | 0.00 | 0 | 0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0 | | | MAY 02 | | 0.00 | 0 | 0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0 | | | JUN
06 | | | | | | | | | | | | | | AUG
02 | | | | | | | | | | | | | | OCT | | | | | | | | | | | | | | 05 | •• | ND | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). # 04237410 SENECA RIVER AT JACK'S REEF NEAR MEMPHIS, NY - continued ### SUSPENDED SEDIMENT DISCHARGE | | | DIS- | | SEDI- | |----------|------|---------|--------|---------| | | | CHARGE, | | MENT, | | | | IN | SEDI- | DIS- | | | | CUBIC | MENT, | CHARGE, | | | | FEET | sus- | sus- | | DATE | TIME | PER | PENDED | PENDED | | | | SECOND | (MG/L) | (T/DAY) | | AUG 1988 | | | | | | 02 | 1130 | 1090 | 21 | 62 | | | | | | | ### 04248250 OSWEGO RIVER AT LOCK 5 AT MINETTO, NY LOCATION.--Lat 43 24'01", long 76 28'25", Oswego County, Hydrologic Unit 04140203, at bridge on Oswego River in Minetto, .01 mi upstream of lock 5. DRAINAGE AREA. -- 5,097 mi2. PERIOD OF RECORD.--Water years 1988 to current year. CHEMICAL DATA: 1988 (b), 1989 (a). MINOR ELEMENT DATA: 1988 (b), 1989 (a). PESTICIDE DATA: 1988-89 (a) NUTRIENT DATA: 1988 (b), 1989 (a). BIOLOGICAL DATA: Bacteria--1988-89 (a). SEDIMENT DATA: 1988 (a). REMARKS.--Water-discharge data are based on records from station 04249000 Oswego River at Lock 7 Oswego. | DATE | TIME | DIS-
CHARGE,
IN
CUBIC
FEET
PER
SECOND | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | SPE-
CIFIC
CON-
DUCT-
ANCE
LAB
(US/CM) | PH WATER WHOLE FIELD (STAND- ARD UNITS) | TEMPER-
ATURE
WATER
(DEG C) | TUR -
BID-
ITY
(NTU) | BARO-
METRIC
PRES-
SURE
(MM
OF
HG) | OXYGEN,
DIS-
SOLVED
(MG/L) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION) | COLI-
FORM,
TOTAL,
IMMED.
(COLS.
PER
100 ML) | |----------------|---|--|--|--|--|--|--|--|--|--|---| | APR 1988
04 | 1600 | 8200 | | 591 | 8.1 | 7.0 | 6.0 | | 13.2 | | | | MAY
02 | 1200 | 1520 | | 973 | 8.0 | 9.0 | 6.5 | | 11.7 | | 17000 | | JUN
06 | 1030 | 2250 | | 850 | 8.0 | 17.0 | 5.8 | 758 | 9.6 | | 29000 | | AUG
02 | 1330 | 2970 | | 790 | 8.0 | 28.0 | 7.3 | 756 | 10.0 | | 8500 | | OCT
05 | 1215 | 1300 | 330 | 876 | | 15.0 | 20 | 764 | 8.6 | 85 | 62000 | | DATE | FECAL
COLI-
FORM
24-HR
MEM.FIL
(COLS./ | HARD-
NESS
TOTAL
(MG/L
AS
CACO3) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K) | ALKA-
LINITY
LAB
(MG/L
AS
CACO3) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | | APR 1988
04 | | 200 | 59 | 12 | 39 | 2.0 | 113 | 62 | 75 | 0.10 | 368 | | MAY
02 | 580 | 290 | 88 | 16 | 78 | 3.0 | 148 | 87 | 170 | 0.20 | 552 | | JU N | | | | | | | | | | | | | 06
AUG | 240 | 250 | 74 | 15 | 68 | 1.5 | 137 | 81 | 130 | 0.20 | 496 | | 02
⊙CT | 1200 | 190 | 53 | 14 | 71 | 2.5 | 106 | 82 | 130 | 0.10 | 484 | | 05 | 2600 | 230 | 68 | 15 | 79 | 2.9 | 112 | 88 | 150 | 0.10 | 504 | | DATE | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | SOLIDS,
RESIDUE
AT 105
DEG. C,
TOTAL
(MG/L) | SOLIDS,
VOLA-
TILE ON
IGNI-
TION,
TOTAL
(MG/L) | RESIDUE
TOTAL
FIXED
(MG/L) | NITRO-
GEN,
NITRATE
TOTAL
(MG/L
AS N) | NITRO-
GEN,
NITRITE
TOTAL
(MG/L
AS N) | NITRO-
GEN,
NO2+NO3
TOTAL
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS NH4) | NITRO-
GEN,
ORGANIC
TOTAL
(MG/L
AS N) | NITRO-
GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | | APR 1988 | 247 | *** | 0.5 | 204 | 0.560 | 0.050 | 0.610 | | | 0.47 | 2 62 | | 04
MAY | 317 | 420 | 96 | 324 | 0.560 | 0.050 | 0.610 | 0.160 | 0.21 | 0.47. | 0.63 | | 02
JUN | 531 | 640 | 156 | 484 | 0.730 | 0.020 | 0.750 | 0.270 | 0.35 | 0.49 | 0.76 | | 06
AUG | 452 | 584 | 136 | 448 | 0.430 | 0.030 | 0.460 | 0.150 | 0.19 | 0.43 | 0.58 | | 02
⊙CT | 416 | 568 | 212 | 356 | 0.240 | 0.030 | 0.270 | 0.050 | 0.06 | 0.50 | 0.55 | | 05 | 470 | 604 | 128 | 476 | 0.410 | 0.040 | 0.450 | 0.120 | 0.15 | 0.50 | 0.62 | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). ## 04248250 OSWEGO RIVER AT LOCK 5 AT MINETTO, NY - continued | | miles golden (contented) | | | | | | | | | | | |----------------|---|---------------------------------|--------------------------------------|--|--|---|--|--|---|--|---| | DAME | GEN,
TOTAL T | GEN, PHO
OTAL TO | PHO
IOS- OR
PRUS DI
TAL SOL | RUS PH
THO, OR
S- D
VED SO | ATE, IN
THO, TO
IS- RE
LVED ER | TAL TO
COV- RI
ABLE EI | OTAL
TO
ECOV- RE
RABLE ER | TAL TO
COV- RE
ABLE ER | TAL TO
COV- RE
ABLE EF | AD, NI
TAL TO
COV- RI
ABLE E | ANGA-
ESE,
OTAL
ECOV-
RABLE | | DATE | | | IG/L (MIG
P) AS | | | | | | | | UG/L
S MN) | | APR 1988
04 | | | | | | | | | 400 | 76 | E 0 | | MAY | 1.2 | 5.5 0 | 0.070 N | ID | | 240 | <1 | 13 | 400 | 76 | 50 | | 02
JUN | 1.5 | 6.7 | .080 0 | .00 | 0.0 | 290 | 1 | 10 | 460 | <5 | 80 | | 06
AUG | 1.0 | 4.6 | .080 0 | .00 | 0.0 | 170 | <1 | 7 | 280 | 6 | 70 | | 02
OCT | 0.82 | 3.6 | .090 к | ID | | 190 | <1 | 6 | 710 | 33 | 90 | | 05 | 1.1 | 4.7 | .120 0 | .00 | 0.0 | 400 | <1 | 8 | 670 | <5 | 80 | | DAT | MERCUR
TOTAL
RECOV
ERABL
E (UG/L
AS HG | TOTAL - RECOV- E ERABLE (UG/L | | FORM
TOTAL | CARBON-
TETRA-
CHLO-
RIDE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | | CHLORO-
ETHANE
TOTAL
(UG/L) | CHLORO-
FORM
TOTAL
(UG/L) | CIS
1,3-DI
CHLORO-
PROPENI
TOTAL
(UG/L) | - | | APR 198 | 8
<0.1 | 0 3 | 20 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0 | | | MAY
02 | <0.1 | 0 2 | 20 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0 | | | JUN
06 | <0.1 | 0 9 | 10 | | | | | | | | | | AUG
02 | <0.1 | 0 1 | 10 | | | | | | | | | | OCT
05 | <0.1 | 0 1 | 20 | ND | | DATI | DI-
CHLORO
BROMO
METHAN
E TOTAL
(UG/L | - METHYL-
E BROMIDE
TOTAL | | METHYL-
ENE
CHLO-
RIDE
TOTAL
(UG/L) | 1,1,1-
TRI-
CHLORO-
ETHANE
TOTAL
(UG/L) | 1,1-DI-
CHLORO-
ETHANE
TOTAL
(UG/L) | | 1,1,2-
TRI-
CHLORO-
ETHANE
TOTAL
(UG/L) | 1,1,2,2
TETRA-
CHLORO-
ETHANE
TOTAL
(UG/L) | 1,2-DI | - | | APR 198 | 3 | | • | - | | | | | | | | | 04
May | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 02
JUN | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 06
AUG | | | | | | | | | | | | | 02
OCT | | | | ~- | | | | | | | | | 05 | ND | | DATI | 1,2-DI
CHLORO
ETHANE
WATER
WHOLE
TOTAL
(UG/L) | | CHLORO- | | 1,4-DI-
CHLORO-
BENZENE
TOTAL
(UG/L) | TETRA-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | TRANS-
1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | TRI-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 2-
CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L) | VINYL
CHLO-
RIDE
TOTAL
(UG/L) | ı | | APR 1988 | | | _ | | _ | | | | | | | | 04
May | 0.00 | 0 | 0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0 | | | 02
JUN | 0.00 | 0 | 0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0 | | | 06 | | | | | | | | | | | | | AUG
02 | | | | | | | | | | | | | ост
05 | ND | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). ## STREAMS TRIBUTARY TO LAKE ONTARIO # 04248250 OSWEGO RIVER AT LOCK 5 AT MINETTO, NY - continued # SUSPENDED SEDIMENT DISCHARGE | | | DIS-
CHARGE,
IN
CUBIC | SEDI-
MENT, | SEDI-
MENT,
DIS-
CHARGE, | |----------|--------------|--------------------------------|----------------|-----------------------------------| | DATE | TIME | FEET
PER | SUS-
PENDED | SUS-
PENDED | | DAIL | IIMC | SECOND | (MG/L) | (T/DAY) | | APR 1988 | | | | | | 04 | 1600 | 8200 | 14 | 310 | | JUN | | | | | | 06 | 103 0 | 2250 | 11 | 67 | ### STREAMS TRIBUTARY TO LAKE ONTARIO ### 04260500 BLACK RIVER AT WATERTOWN, NY LOCATION.--Lat 43 59'08", long 75 55'30", Jefferson County, Hydrologic Unit 04150101, on downstream side of right abutment of Vanduzee Street Bridge at Watertown, and 3.5 mi upstream from Philomel Creek. Water-quality sampling site at discharge station. DRAINAGE AREA. -- 1.864 mi 2 . PERIOD OF RECORD. --Water years 1956-60, 1962 to current year. CHEMICAL DATA: 1955 (e), 1959 (a), 1960 (b), 1965 (a), 1966-81 (d), 1982-87 (c), 1988 (d), 1989 (a). MINOR ELEMENTS DATA: 1970-71 (a), 1974-79 (b), 1980 (c), 1981-87 (b), 1988 (c), 1989 (a). PESTICIDE DATA: 1975-79 (b), 1980-82 (a), 1988 (b), 1989 (a). ORGANIC DATA: OC--1973 (c), 1974 (a), 1975 (c), 1976-77 (b), 1978-81 (d), 1988-89 (a). PCB--1978-79 (b), 1980-82 (a). NUTRIENT DATA: 1968 (b), 1969-81 (d), 1982-87 (c), 1988 (d), 1989 (a). BLOCKICAL DATA: BIOLOGICAL DATA: Pacteria--1973-81 (d), 1982-86 (c), 1987-88 (b), 1989 (a). Phytoplankton--1975-77 (d), 1978-79 (c), 1980 (b), 1981 (c). Periphyton--1975-80 (b). SEDIMENT DATA: 1975-76 (d), 1977 (c), 1978-81 (d), 1982-88 (c), 1989 (a). PERIOD OF DAILY RECORD .-- WATER TEMPERATURES: October 1955 to September 1959, July 1962 to March 1969. REMARKS. -- Water-discharge data obtained from stream-flow gage at this site. #### WATER-OUALITY DATA | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND | SPE-
CIFIC
CON-
DUCT-
ANCE
LAB
(US/CM) | PH WATER WHOLE FIELD (STAND- ARD UNITS) | TEMPER-
ATURE
WATER
(DEG C) | TUR-
BID-
ITY
(NTU) | OXYGEN,
DIS-
SOLVED
(MG/L) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K) | |-----------------------|--|--|--|---|--|---|--|--|---|---|---|---| | APR 1988
12
MAY | 1630 | 7 720 | 73 | 6.8 | 8.0 | 1.9 | 13.1 | 28 | 9.4 | 1.0 | 2.5 | 0.70 | | 11 | 1030 | 2810 | 93 | 7.1 | 14.5 | 2.0 | 13.1 | 35 | 12 | 1.2 | 4.0 | 0.60 | | JUN
21
AUG | 1300 | 1140 | 113 | 7.3 | 24.5 | 1.3 | 12.4 | 38 | 13 | 1.3 | 6.7 | 0.80 | | 02 | 1334 | 1340 | 103 | 7.5 | 28.5 | 1.0 | | 35 | 12 | 1.3 | 5.6 | 0.80 | | 05 | 1515 | 1560 | 93 | 6.8 | 13.0 | 2.3 | 14.3 | 30 | 10 | 1.3 | 5.8 | 0.90 | | DATE | ALKA-
LINITY
LAB
(MG/L
AS
CACO3) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | SOLIDS,
RESIDUE
AT 105
DEG. C,
TOTAL
(MG/L) | SOLIDS,
VOLA-
TILE ON
IGNI-
TION,
TOTAL
(MG/L) | RESIDUE
TOTAL
FIXED
(MG/L) | NITRO-
GEN,
NITRATE
TOTAL
(MG/L
AS N) | NITRO-
GEN,
NITRITE
TOTAL
(MG/L
AS N) | NITRO-
GEN,
NO2+NO3
TOTAL
(MG/L
AS N) | | APR 1988
12 | 20 | 13 | 2.3 | 0.20 | 63 | 41 | 69 | 31 | 38 | | ND | 0.680 | | MAY
11 | 28 | 14 | 3.2 | 0.30 | 87 | 52 | 92 | 44 | 48 | 0.500 | 0.00 | 0.500 | | JUN
21 | 31 | 18 | 3.1 | 0.30 | 64 | 62 | 70 | 32 | 38 | 0.260 | 0.00 | 0.260 | | AUG
02 | 29 | 18 | 2.6 | 0.10 | | 58 | 83 | 27 | 56 | 0.330 | 0.00 | 0.330 | | ост
05 | 22 | 15 | 2.9 | 0.10 | 58 | 49 | 66 | 15 | 51 | | ND | 0.210 | | | | | | NITRO- | | | | PHOS- | PHOS- | ALUM- | | | | DATE
APR 1988 | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS NH4) | NITRO-
GEN,
ORGANIC
TOTAL
(MG/L
AS N) | GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | NITRO-
GEN,
TOTAL
(MG/L
AS N) | NITRO-
GEN,
TOTAL
(MG/L
AS NO3) | PHOS-
PHORUS
TOTAL
(MG/L
AS P) | PHORUS ORTHO, DIS- SOLVED (MG/L AS P) | PHOS-
PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4) | INUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS AL) | CADMIUM
TOTAL
RECOV-
ERABLE
(UG/L
AS CD) | COPPER,
TOTAL
RECOV-
ERABLE
(UG/L
AS CU) | | 12 | 0.030 | 0.04 | 0.26 | 0.29 | 0.97 | 4.3 | 0.020 | 0.00 | 0.0 | 320 | 3 | 18 | | 11 | 0.040 | 0.05 | 0.25 | 0.29 | 0.79 | 3.5 | 0.020 | 0.00 | 0.0 | 200 | 3 | 26 | | JUN
21 | 0.010 | 0.01 | 0.35 | 0.36 | 0.62 | 2.7 | 0.730 | 0.00 | 0.0 | 120 | 1 | 44 | | AUG
02 | 0.030 | 0.04 | 0.21 | 0.24 | 0.57 | 2.5 | 0.040 | 0.00 | 0.0 | 120 | 4 | 4 | | OCT
05 | 0.020 | 0.03 | 0.42 | 0.44 | 0.65 | 2.9 | 0.030 | 0.00 | 0.0 | 170 | 2 | 17 | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). ## STREAMS TRIBUTARY TO LAKE ONTARIO # 04260500 BLACK RIVER AT WATERTOWN, NY - continued ## WATER-QUALITY DATA (continued) | DATE | TOTAL T
RECOV- R
ERABLE E
(UG/L (| SEAD, NE OTAL TO ECOV- RE ERABLE EF UG/L (U | DTAL TO
ECOV- RE
RABLE EF
JG/L (U | TAL TO
COV- RE
ABLE EF | DTAL
BCOV-
RABLE
JG/L | ZINC,
TOTAL
RECOV-
ERABLE
(UG/L
AS ZN) | PHENOL
(C6H-
5OH)
TOTAL
(UG/L) | BROMO-
FORM
TOTAL
(UG/L) | CARBON-
TETRA-
CHLO-
RIDE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
DI-
BROMO-
METHANE
TOTAL
(UG/L) | CHLORO-
ETHANE
TOTAL
(UG/L) | |---|--|--|--|--|--|---|--|---|---|---------------------------------------|--|--------------------------------------| | APR
1988 | | | | | | | | | | | | | | 12
MAY | 360 | 6 | 30 < | 0.10 | 6 | 20 | | ND | ND | ND | ND | ND | | 11
JUN | 430 | 20 | 40 < | 0.10 | 12 | 20 | | ND | ND | ND | ND | ND | | 21 | 3 4 0 | 38 | 60 < | 0.10 | 5 | 10 | 0.0 | ND | ND | ND | ND | ND | | AUG
02 | 460 | <5 | 50 < | 0.10 | 5 | 10 | | ИD | ND | ND | ND | ND | | ОСТ
05 | 450 | < 5 | 40 < | 0.10 | <1 | 20 | ND | ND | ND | ND | ND | ND | | DATE APR 1988 12 MAY 11 JUN 21 AUG 02 OCT 05 | CHLORC-FORM TOTAL (UG/L) ND ND 0.1 0.1 | PROPENE
TOTAL
(UG/L)
ND
ND
ND | DI - CHLCRO- BROMO- METHANE TOTAL (UG/L) ND ND ND ND | METHYL-
BROMI DE
TOTAL
(UG/L)
ND
ND
ND
ND | METHYL
CHLO-
RIDE
TOTAL
(UG/L)
ND
ND
ND | LI DE | TRI | - 1,1- RO- CHLO NE ETHA L TOT L) (UG/ ND ND | NO ETHY NE EN AL TOT L) (UG/ ND ND | RO- TRI L- CHLC E ETHA AL TOT L) (UG/ | - TETF RO- CHLC NE ETHA AL TOT L) (UG/ | A-RO-
RO-
NNE
'AL
L) | | DATE | 1,2-DI-
CHLORO-
BENZENE
TOTAL
(UG/L) | WATER | 1,2-DI-
CHLORO-
PROPANE
TOTAL
(UG/L) | . 1,2-
TRANSDI
CHLORO-
ETHENE
TOTAI
(UG/L | 1,3-DI
:HLORO
BENZEN
TOTAL
(UG/L) | CHLORGE BENZEN | ETHY E ENE | RO- 1,3-
L- CHLO
PROP | DI- CHLO
RO- ETHY
ENE EN
AL TOT | RO- ETHY
L- VINY
E ETH | RO-
L- VIN
L- CHL
ER RID
AL TOI | O~
E | | APR 1988
12 | ND | ND | ND | ND | ИD | N D | N D | , ND | ND. | , NE |) NE | , | | MAY | | | | | | | | | | | | | | 11
JUN | ND | | | | | | 21
AUG | ND 1 | | 02
∝T | ND | ND | ND | ND | ND | N D | ND | ND | ND | ND | ND. | 1 | | 05 | ND | ## SUSPENDED SEDIMENT DISCHARGE | | | DIS- | | SEDI- | |----------|------|--------------|--------|---------| | | | CHARGE, | | MENT, | | | | INST. | SEDI- | DIS- | | | | CUBIC | MENT, | CHARGE, | | | | FE ET | SUS- | SUS- | | DATE | TIME | PER | PENDED | PENDED | | | | SECOND | (MG/L) | (T/DAY) | | JUN 1988 | | | | | | 21 | 1300 | 1140 | 7 | 22 | ### ST. LAWRENCE RIVER MAIN STEM ### 04260712 ST. LAWRENCE RIVER AT CAPE VINCENT, NY LOCATION.--Lat 44 07'48", long 76 20'10", Jefferson County, Hydrologic Unit 04150301, at end of U.S. Coast Guard Station dock in Cape Vincent, and approximately 1,500 ft downstream from village water intake. DRAINAGE AREA. -- 295,800 mi2. PERIOD OF RECORD.--Water years 1957, 1969-75, 1988 (discontinued). CHEMICAL DATA: 1957 (a), 1969-74 (c), 1975, 1988 (b). MINOR ELEMENTS DATA: 1957 (a), 1969-74 (c), 1975, 1988 (b). PESTICIDE DATA: 1988 (b). ORGANIC DATA: OC--1988 (c). NUTRIENT DATA: 1957 (a), 1969-74 (c), 1975, 1988 (b). #### WATER-OHALITY DATA | | | | | | WATER-(| QUALITY DA | ATA | | | | | | |------------------|--|--|--|--|---|--|--|---|--|---|---|--| | DATE
APR 1988 | TIME | SPE-
CIFIC
CON-
DUCT-
ANCE
LAB
(US/CM) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS) | TEMPER-
ATURE
WATER
(DEG C) | TUR-
BID-
ITY
(NTU) | OXYGEN,
DIS-
SOLVED
(MG/L) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K) | ALKA-
LINITY
LAB
(MG/L
AS
CACO3) | | 12 | 1030 | 321 | 8.2 | 7.5 | 1.6 | 13.9 | 130 | 38 | 8.2 | 12 | 1.5 | 98 | | MAY
10
JUN | 0748 | 323 | 7.6 | 11.0 | 0.70 | | 130 | 38 | 8.3 | 12 | 1.6 | 100 | | 21 | 0830 | 311 | 8.2 | 17.5 | 0.60 | 12.8 | 130 | 37 | 8.1 | 12 | 2.4 | 96 | | AUG
02 | 1128 | 297 | 7.8 | 24.0 | 1.7 | | 120 | 33 | 8.3 | 12 | 1.3 | 87 | | DATE | SULFATE
DIS-
SOLVED
(MG/L
AS SO4) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | SOLIDS,
RESIDUE
AT 105
DEG. C,
TOTAL
(MG/L) | SOLIDS,
VOLA-
TILE ON
IGNI-
TION,
TOTAL
(MG/L) | RESIDUE
TOTAL
FIXED
(MG/L) | NITRO-
GEN,
NITRATE
TOTAL
(MG/L
AS N) | NITRO-
GEN,
NITRITE
TOTAL
(MG/L
AS N) | NITRO-
GEN,
NO2+NO3
TOTAL
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS N) | | APR 1988
12 | 27 | 22 | 0.20 | 183 | 168 | 273 | 86 | 187 | | ND | 0.310 | 0.010 | | MAY
10 | 27 | 22 | 0.30 | 205 | 169 | 229 | 89 | 140 | | ND | 0.320 | 0.020 | | JUN 21 | 27 | 21 | 0.30 | 181 | 165 | 204 | 72 | 132 | | | 0.220 | 0.020 | | AUG | | | | | | | | | | ND | | | | 02 | 27 | 21 | 0.10 | 157 | 155 | 172 | 52 | 120 | 0.100 | 0.00 | 0.100 | 0.030 | | DATE | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS NH4) | NITRO-
GEN,
ORGANIC
TOTAL
(MG/L
AS N) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | NITRO-
GEN,
TOTAL
(MG/L
AS N) | NITRO-
GEN,
TOTAL
(MG/L
AS NO3) | PHOS-
PHORUS
TOTAL
(MG/L
AS P) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P) | PHOS-
PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4) | ALUM-
INUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS AL) | CADMIUM
TOTAL
RECOV-
ERABLE
(UG/L
AS CD) | COPPER,
TOTAL
RECOV-
ERABLE
(UG/L
AS CU) | IRON, TOTAL RECOV- ERABLE (UG/L AS FE) | | APR 1988 | | | | | | | | | | | | | | 12
May | 0.01 | 0.21 | 0.22 | 0.53 | 2.3 | 0.010 | 0.00 | 0.0 | 40 | 3 | 4 | 60 | | 10
Jun | 0.03 | 0.53 | 0.55 | 0.87 | 3.9 | 0.010 | 0.00 | 0.0 | 30 | 2 | 27 | 60 | | 21
AUG | 0.03 | 0.25 | 0.27 | 0.49 | 2.2 | 0.330 | ND | | 20 | 1 | 36 | 40 | | 02 | 0.04 | 0.17 | 0.20 | 0.30 | 1.3 | 0.010 | ND | | 10 | 1 | 32 | 50 | | DATE | ERA
(UG
AS | D, NES AL TOT OV- REC BLE ERA //L (UC | TAL TO
COV- REABLE ER
G/L (U | ABLE ERA
G/L (UC | TAL TO:
COV- REC
ABLE ERI
S/L (UC | FAL PHI
COV- (CO
ABLE 50 | ENOL
5H- BROM
5H) FOF
FAL TOI
/L) (UG | RM RID | RA-
O- CHLO
E BENZ
AL TOTA | ENE METH
L TOT | -
MO- CHLO
ANE ETHA | NE
'AL | | APR 1988 | • | <5 | <10 < | 0.10 | 13 | <10 NI | O NE | O ND | ND | ND | NE. |) | | MAY
10
JUN | | 69 | <10 < | 0.10 | 9 | 40 | NE | O ND | ND | ND. | NE |) | | 21
AUG | | 40 | <10 < | 0.10 | 28 | 20 NI | о и | סא כ | ND | ND. | NE |) | | 02 | | 24 | <10 < | 0.10 | 3 | 20 | 0.0 NE | D ND | ND | ND | NE |) | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). # ST. LAWRENCE RIVER MAIN STEM # 04260712 ST. LAWRENCE RIVER AT CAPE VINCENT, NY - continued | DATE | CHLORO-
FORM
TOTAL
(UG/L) | CIS
1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | DI-
CHLORO-
BROMO-
METHANE
TOTAL
(UG/L) | METHYL-
BROMIDE
TOTAL
(UG/L) | METHYL-
CHLO-
RIDE
TOTAL
(UG/L) | METHYL-
ENE
CHLO-
RIDE
TOTAL
(UG/L) | 1,1,1-
TRI-
CHLORO-
ETHANE
TOTAL
(UG/L) | 1,1-DI-
CHLORO-
ETHANE
TOTAL
(UG/L) | 1,1-DI-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 1,1,2-
TRI-
CHLORO-
ETHANE
TOTAL
(UG/L) | 1,1,2,2
TETRA-
CHLORO-
ETHANE
TOTAL
(UG/L) | |------------------------------------|--|---|--|---|--|--|--|--|--|---|---| | APR 1988
12
MAY | ND NĎ | ND | ND | | 10 | ND | 21 | ND | AUG
02 | ND | | | | | | | | | | | | | | DATE | 1,2-DI-
CHLORO-
BENZENE
TOTAL
(UG/L) | 1,2-DI-
CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L) | 1,2-DI-
CHLORO-
PROPANE
TOTAL
(UG/L) | 1,2-
TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L) | 1,3-DI-
CHLORO-
BENZENE
TOTAL
(UG/L) | 1,4-DI-
CHLORO-
BENZENE
TOTAL
(UG/L) | TETRA-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | TRANS-
1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | TRI-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 2-
CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L) | VINYL
CHLO-
RIDE
TOTAL
(UG/L) | | APR 1988 | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L) | CHLORO-
PROPANE
TOTAL
(UG/L) | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L) | CHLO-
RIDE
TOTAL
(UG/L) | | APR 1988
12 | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L) |
CHLORO-
PROPANE
TOTAL
(UG/L) | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L) | CHLO-
RIDE
TOTAL
(UG/L) | | APR 1988
12
MAY
10
JUN | CHLORO-
BENZENE
TOTAL
(UG/L)
ND | CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L)
ND | CHLORO-
PROPANE
TOTAL
(UG/L)
ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND | CHLORO-
BENZENE
TOTAL
(UG/L)
ND | CHLORO-
BENZENE
TOTAL
(UG/L)
ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND | CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L)
ND | CHLO-
RIDE
TOTAL
(UG/L)
ND | | APR 1988
12
MAY
10 | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L) | CHLORO-
PROPANE
TOTAL
(UG/L) | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L) | CHLO-
RIDE
TOTAL
(UG/L) | #### 04263000 OSWEGATCHIE RIVER NEAR HEUVELTON, NY LOCATION.--Lat 44 35'58", long 75 22'45", St. Lawrence County, Hydrologic Unit 04150302, on right bank 1.5 mi downstream from Beaver Creek, and 2.5 mi upstream from Heuvelton. Water-quality sampling site at discharge station. DRAINAGE AREA. -- 965 mi 2 . PERIOD OF RECORD.--Water years 1960, 1966-69, 1971-72, 1978-86, 1988 to current year. CHEMICAL DATA: 1960 (a), 1966 (b), 1968-69 (d), 1971-72 (a), 1978 (c), 1979-80 (d), 1981-82 (c), 1983-86, CHEMICAL DATA: 1960 (a), 1966 (b), 1968-09 (d), 1971-72 (a), 1976 (c), 1978 (d), 1989 (a). 1988 (b), 1989 (a). MINOR ELEMENTS DATA: 1978-79 (b), 1980 (c), 1981-86, 1988 (b), 1989 (a). PESTICIDE DATA: 1988 (b), 1989 (a). ORGANIC DATA: OC--1978 (c), 1979-80 (d), 1981 (c), 1988 (a). NUTRIENT DATA: 1978 (c), 1979-80 (d), 1981-82 (c), 1983-86 (b), 1988 (b), 1989 (a). BIOLOGICAL DATA: Bacteria ~ 1978 (c), 1979-80 (d), 1981-82 (c), 1983-86 (b). Phytoplankton--1978-80 (c), 1981 (b). Periphyton--1978-80 (b). Peniphyton--1978-80 (b). SEDIMENT DATA: 1978 (c), 1979-80 (d), 1981-85 (c), 1986 (b), 1988 (a). PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: January 1978 to September 1981. WATER TEMPERATURES: January 1978 to September 1981. REMARKS .-- Water-discharge data obtained from stream-flow gage at this site. EXTREMES FOR PERIOD OF DAILY RECORD .-- SPECIFIC CONDUCTANCE (water years 1978-81): Maximum daily, 155 microsiemens Jan. 31, 1981; minimum daily, 22 microsiemens sometime in February 1980. WATER TEMPERATURES (water years 1978-81): Maximum daily, 28.0 C July 28, 1978 and July 23-28, 1979; minimum daily, 0.0 C on many days during winter periods. # WATER-QUALITY DATA | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND | SPE-
CIFIC
CON-
DUCT-
ANCE
LAB
(US/CM) | PH WATER WHOLE FIELD (STAND- ARD UNITS) | TEMPER-
ATURE
WATER
(DEG C) | TUR-
BID-
ITY
(NTU) | OXYGEN,
DIS-
SOLVED
(MG/L) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K) | |--|---|--|--|--|--|---|--|--|--|--|--|--| | APR 1988 | | 24.22 | • | | | | | | | | | | | 13
MAY | 1430 | 2180 | 92 | 6.8 | 8.5 | 1.5 | 11.6 | 37 | 10 | 2.8 | 2.5 | 0.80 | | 11
JUN | 1415 | 1640 | 89 | 6.7 | 15.5 | 0.80 | 12.3 | 36 | 10 | 2.6 | 2.4 | 0.80 | | 22
AUG | 1410 | 249 | 108 | 7.3 | 24.0 | 1.0 | 11.6 | 44 | 12 | 3.4 | 3.3 | 0.70 | | 03 | 1410 | 316 | 112 | 8.2 | 30.5 | 1.3 | | 43 | 12 | 3.1 | 3.5 | 0.60 | | OCT
04 | 1300 | 532 | 92 | 7.1 | 16.5 | 0.60 | 13.0 | 38 | 11 | 2.6 | 2.8 | 1.1 | | | | | | | | | | | | | | | | DATE | ALKA-
LINITY
LAB
(MG/L
AS
CACO3) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | SOLIDS,
RESIDUE
AT 105
DEG. C,
TOTAL
(MG/L) | SOLIDS,
VOLA-
TILE ON
IGNI-
TION,
TOTAL
(MG/L) | RESIDUE
TOTAL
FIXED
(MG/L) | NITRO-
GEN,
NITRATE
TOTAL
(MG/L
AS N) | NITRO-
GEN,
NITRITE
TOTAL
(MG/L
AS N) | NITRO-
GEN,
NO2+NO3
TOTAL
(MG/L
AS N) | | APR 1988 | LINITY LAB (MG/L AS CACO3) | DIS-
SOLVED
(MG/L
AS SO4) | RIDE,
DIS-
SOLVED
(MG/L
AS CL) | RIDE,
DIS-
SOLVED
(MG/L
AS F) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | RESIDUE
AT 105
DEG. C,
TOTAL
(MG/L) | VOLA-
TILE ON
IGNI-
TION,
TOTAL
(MG/L) | TOTAL
FIXED
(MG/L) | GEN,
NITRATE
TOTAL
(MG/L | GEN,
NITRITE
TOTAL
(MG/L
AS N) | GEN,
NO2+NO3
TOTAL
(MG/L
AS N) | | APR 1988
13 | LINITY LAB (MG/L AS CACO3) | DIS-
SOLVED
(MG/L
AS SO4) | RIDE,
DIS-
SOLVED
(MG/L
AS CL) | RIDE,
DIS-
SOLVED
(MG/L
AS F) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | RESIDUE
AT 105
DEG. C,
TOTAL
(MG/L) | VOLA-
TILE ON
IGNI-
TION,
TOTAL
(MG/L) | TOTAL
FIXED
(MG/L) | GEN,
NITRATE
TOTAL
(MG/L
AS N) | GEN, NITRITE TOTAL (MG/L AS N) | GEN,
NO2+NO3
TOTAL
(MG/L
AS N) | | APR 1988
13 | LINITY LAB (MG/L AS CACO3) | DIS-
SOLVED
(MG/L
AS SO4) | RIDE,
DIS-
SOLVED
(MG/L
AS CL) | RIDE,
DIS-
SOLVED
(MG/L
AS F) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | RESIDUE
AT 105
DEG. C,
TOTAL
(MG/L) | VOLA-
TILE ON
IGNI-
TION,
TOTAL
(MG/L) | TOTAL
FIXED
(MG/L) | GEN,
NITRATE
TOTAL
(MG/L
AS N) | GEN,
NITRITE
TOTAL
(MG/L
AS N) | GEN,
NO2+NO3
TOTAL
(MG/L
AS N) | | APR 1988
13
MAY
11
JUN
22 | LINITY LAB (MG/L AS CACO3) | DIS-
SOLVED
(MG/L
AS SO4) | RIDE,
DIS-
SOLVED
(MG/L
AS CL) | RIDE,
DIS-
SOLVED
(MG/L
AS F) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | RESIDUE
AT 105
DEG. C,
TOTAL
(MG/L) | VOLA-
TILE ON
IGNI-
TION,
TOTAL
(MG/L) | TOTAL
FIXED
(MG/L) | GEN,
NITRATE
TOTAL
(MG/L
AS N) | GEN, NITRITE TOTAL (MG/L AS N) | GEN,
NO2+NO3
TOTAL
(MG/L
AS N) | | APR 1988
13
MAY
11
JUN | LINITY
LAB
(MG/L
AS
CACO3) | DIS-
SOLVED
(MG/L
AS SO4) | RIDE,
DIS-
SOLVED
(MG/L
AS CL) | RIDE,
DIS-
SOLVED
(MG/L
AS F)
0.20 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | RESIDUE
AT 105
DEG. C,
TOTAL
(MG/L)
74 | VOLA-
TILE ON
IGNI-
TION,
TOTAL
(MG/L) | TOTAL
FIXED
(MG/L)
37
59 | GEN,
NITRATE
TOTAL
(MG/L
AS N) | GEN, NITRITE TOTAL (MG/L AS N) ND | GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
0.350 | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). # 04263000 OSWEGATCHIE RIVER NEAR HEUVELTON, NY - continued # WATER-QUALITY DATA (continued) | DATE | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS NH4) | NITRO-
GEN,
ORGANIC
TOTAL
(MG/L
AS N) | AINOM | -
+ NITRO | - NITRO
GEN,
TOTAL
(MG/L
AS NO3 | PHORU
TOTA
(MG/ | PHO
OR'
S DI
L SOL'
L (MG | RUS PH
THO, OR
S- D
VED SO
/L (M | ATE, IN
THO, TO
IS- RE
LVED ER
G/L (U | UM-
UM,
TAL
COV-
ABLE
G/L
AL) | CADMIUM
TOTAL
RECOV-
ERABLE
(UG/L
AS CD) | COPPER,
TOTAL
RECOV-
ERABLE
(UG/L
AS CU) | |----------------|--|--|--|--|-------------------------------|---|--|---|--|--|--|---|---| | APR
1988 | | | | | | | | | | | | | _ | | 13
MAY | 0.010 | 0.01 | 0.27 | 0.2 | 8 0.6 | 3 2.8 | 0.0 | 20 0 | .00 | 0.0 | 170 | 3 | 6 | | 11
JUN | 0.020 | 0.03 | 0.18 | 0.2 | 0 0.4 | 3 1.9 | 0.0 | 20 0 | .00 | 0.0 | 80 | 9 | 20 | | 22 | 0.030 | 0.04 | 0.25 | 0.2 | 8 0.4 | 4 1.9 | 0.0 | 30 0 | .00 | 0.0 | 80 | <1 | 3 | | AUG
03 | 0.010 | 0.01 | 0.32 | 0.3 | 3 0.5 | 5 2.4 | 0.0 | 10 N | D | | 110 | 1 | 7 | | ∞τ
04 | 0.010 | 0.01 | 0.26 | 0.2 | 7 0.4 | 1 1.8 | 0.0 | 10 0 | .00 | 0.0 | 60 | <1 | 1 | | | IRON,
TOTAL
RECOV- | LEAD,
TOTAL
RECOV- | MANGA-
NESE,
TOTAL
RECOV- | MERCUR
TOTAL | TOTAL | TOTAL | PHEN | | TE | BON-
TRA-
ILO- CHL | oro- | CHLORO-
DI-
BROMO- | CHLORO- | | -1-5 | ERABLE | ERABLE | ERABLE | ERABL | E ERABL | E ERABL | Е 50н |) FO | RM RI | DE BEN | ZENE | METHANE | ETHANE
TOTAL | | DATE | (UG/L
AS FE) | (UG/L
AS PB) | (UG/L
AS MN) | (UG/L
AS HG | | | | | | TAL TOI
G/L) (UG | AL
S/L) | TOTAL
(UG/L) | (UG/L) | | APR 1988
13 | 280 | 5 | 50 | <0.1 | 0 1 | 1 2 | 0 | N | D N | ID N | ID | ND | ND | | MAY
11 | 230 | 85 | 30 | <0.1 | 0 | 7 2 | 0 | N | D N | ID N | ID | ND | ND | | JUN 22 | 340 | <5 | 60 | <0.1 | 0 < | 1 <1 | 0 0. | 0 N | D 18 | ID N | ID | ND | ND | | AUG
03 | 1400 | 39 | | | | | | | | | ID | ND | ND | | OCT | | | | | | | | | | | | | | | 04 | 310 | < 5 | 20 | <0.1 | 0 < | 1 <1 | .0 | N | D N | ID N | 1D | ND | ND | | DAT | CHLC
FOI
E TO
(UG, | 1,3
DRO- CHI
RM PRO
TAL TO | -DI- CHI
ORO- BF
OPENE MET
OTAL TO | THANE BR | THYL- C
OMIDE R
OTAL T | THYL-
HLO- C
IDE R
OTAL TO | ENE
CHLO- C
CIDE E
YTAL I | TRI-
TRI-
THLORO-
THANE
TOTAL
UG/L) | 1,1-DI-
CHLORO-
ETHANE
TOTAL
(UG/L) | 1,1-DI-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 1,1,2
TRI-
CHLOR
ETHAN
TOTA
(UG/L | TETF
O- CHLO
IE ETHA
L TOI | A-
PRO-
NE
'AL | | APR 198 | | | ID N | 1D | ND NE | | | 13
MAY | | | | | | | | | | | | | | | 11
JUN | NI | | | | | | ND | ND | ND | ND | ND | NI | | | 22
AUG | N | D 1 | ID 1 | 1D | ND NI |) | | 03
OCT | N | D 1 | ID N | D | ND NI |) | | 04 | N | D 1 | ID t | I D | ND NI |) | | DAT | CHLC
BEN | CHI
-DI- ETH
DRO- WA
ZENE WA
TAL TO | ATER CHI
HOLE PRO
YTAL TO | 2-di- tr
Loro- ch
Opane et
Otal t | LORO- CH
HENE BE
OTAL T | LORO- CH
NZENE BE
OTAL I | 4-DI- C
HLORO- E
ENZENE
POTAL | TETRA-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | TRANS-
1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | TRI-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 2-
CHLOR
ETHYL
VINYL
ETHE
TOTA
(UG/L | - VII
- CHI
IR RII
AL TOI | .O-
)E | | APR 198 | | _ | _ | | | | | | | | | | | | 13
MAY | | | | | | | ND | ND | ND | ND | ND | NI | | | 11
JUN | N | D t | ID I | 1D | ND | ND | ND | ND | ND | ND | ИД | NI | | | 22
AUG | N | D t | ID I | 4D | ND | ND | ND | ND | ND | 0.1 | ND | N | | | 03 | N | D 1 | i di | ND N | | | OCT
04 | N | D t | ID I | ND | ND | ND | ND | ND | ND | ИD | ND | NI | | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). # 04263000 OSWEGATCHIE RIVER NEAR HEUVELTON, NY - continued # SUSPENDED SEDIMENT DISCHARGE | | | DIS- | | SEDI- | |------|------|---------|--------|---------| | | | CHARGE, | | MENT, | | | | INST. | SEDI~ | DIS- | | | | CUBIC | MENT, | CHARGE, | | | | FEET | SUS- | SUS- | | DATE | TIME | PER | PENDED | PENDED | | | | SECOND | (MG/L) | (T/DAY) | | AUG | | | | | | 03 | 1410 | 316 | 2 | 1.7 | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). #### ST. LAWRENCE RIVER MAIN STEM #### 04264331 ST. LAWRENCE RIVER AT CORNWALL, ONTARIO--NEAR MASSENA, NY LOCATION.--Lat 45 00'22", long 74 47'43", Stormont County, Ontario--St. Lawrence County, NY, Hydrologic Unit Cornwall, Ontario, 2.9 mi upstream from Grass River, 6.2 mi upstream from Raquette River, and 5.9 mi northeast of Massena, NY. Water-quality samples collected at power dam from taps at generators 17 and 30. DRAINAGE AREA. -- 298,800 mi 2 . PERIOD OF RECORD.--Water years 1955, 1966 to current year. Prior to October 1970, published as "near Massena, NY". CHEMICAL DATA: 1955 (a), 1974 (c), 1975-81 (d), 1982-86 (c), 1987 (b), 1988 (b), 1989 (a). MINOR ELEMENTS DATA: 1974-77 (b), 1978 (a), 1979 (b), 1980 (c), 1981-87 (b), 1988 (c), 1989 (a). RADIOCHEMICAL DATA: 1974-88 (a). ORGANIC DATA: OC--1974 (a), 1975 (b), 1977 (b), 1978-81 (d), 1988-89 (a). NUTRIENT DATA: 1974-75 (c), 1976-81 (d), 1982-86 (c), 1987 (b), 1988 (c), 1989 (a). BIOLOGICAL DATA: Bacteria--1974 (c), 1975-81 (d), 1982-86 (c), 1987-88 (b), 1989 (a). Phytoplankton--1974 (a), 1975-77 (d), 1978-81 (c). Periphyton--1974 (a), 1975 (c), 1976-80 (b). SEDIMENT DATA: 1975 (d), 1976-77 (c), 1978-81 (d), 1982-86 (c), 1987 (b), 1988 (c), 1989 (a). PERIOD OF DAILY RECORD. -- SPECIFIC CONDUCTANCE: October 1975 to September 1986. WATER TEMPERATURES: October 1955 to October 1958, unpublished; January 1966 to September 1986. REMARKS.--Discharge is determined from summation of discharge through the Robert Moses-Robert H. Saunders powrer dam, the Long Sault Dam, the Massena Diversion, the Rasin River Diversion, the Cornwall and Massena municipal water supply, and the Cornwall and the Wiley-Dondero navigation canals. U.S.-Canada coordinated discharge figures supplied by Corps of Engineers. Temperature observations from October 1955 to October 1958 made at Aluminum Company of America Massena Canal power station and those from January 1966 to September 1986 made approximately 68 ft below normal forebay level. EXTREMES FOR PERIOD OF DAILY RECORD .-- SPECIFIC CONDUCTANCE: Maximum daily, 400 microsiemens Aug. 7, 1978, Mar. 29, 1979; minimum daily, 250 microsiemens Dec. 21, 1978. WATER TEMPERATURES: Maximum daily, 24.5 C on several days in August and September 1973 and August 1975; minimum daily 0.0 C on many days during winter periods except 1972-74, 1979, 1982-85. #### WATER-OUALITY DATA | DATE | TIME | DIS-
CHARGE,
IN
CUBIC
FEET
PER
SECOND | SPE-
CIFIC
CON-
DUCT-
ANCE
LAB
(US/CM) | PH WATER WHOLE FIELD (STAND- ARD UNITS) | TEMPER-
ATURE
WATER
(DEG C) | TUR-
BID-
ITY
(NTU) | OXYGEN,
DIS-
SOLVED
(MG/L) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K) | |--|---|---|--|--|---|---|---|--|--|--|--|--| | APR 1988 | | 25222 | 200 | | | 2.6 | | | 26 | 7.0 | 4.0 | 1.0 | | 13
MAY | 1100 | 258000 | 320 | 8.2 | 7.5 | 2.6 | | 120 | 36 | 7.9 | 12 | 1.8 | | 10 | 1406 | 228000 | 312 | 7.6 | 11.0 | 0.80 | | 130 | 37 | 8.0 | 11 | 1.3 | | 22
AUG | 1100 | 248000 | 312 | 8.1 | 19.0 | 0.90 | 13.4 | 130 | 38 | 8.1 | 12 | 1.3 | | 03
OCT | 1100 | 246000 | 304 | 8.0 | 26.0 | 0.90 | | 120 | 34 | 8.4 | 12 | 1.3 | | 04 | 1009 | 238000 | 310 | 7.4 | 13.0 | 0.80 | | 130 | 36 | 8.8 | 12 | 1.7 | | | | | | | | | | | | | | | | DATE | ALKA-
LINITY
LAB
(MG/L
AS
CACO3) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | SOLIDS,
RESIDUE
AT 105
DEG. C,
TOTAL
(MG/L) | SOLIDS,
VOLA-
TILE ON
IGNI-
TION,
TOTAL
(MG/L) | RESIDUE
TOTAL
FIXED
(MG/L) | NITRO-
GEN,
NITRITE
TOTAL
(MG/L
AS N) | NITRO-
GEN,
NO2+NO3
TOTAL
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS N) | | APR 1988 | LINITY LAB (MG/L AS CACO3) | DIS-
SOLVED
(MG/L
AS SO4) | RIDE,
DIS-
SOLVED
(MG/L
AS CL) | RIDE,
DIS-
SOLVED
(MG/L
AS F) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | RESIDUE
AT 105
DEG. C,
TOTAL
(MG/L) | VOLA-
TILE ON
IGNI-
TION,
TOTAL | TOTAL
FIXED
(MG/L) | GEN,
NITRITE
TOTAL
(MG/L | GEN,
NO2+NO3
TOTAL
(MG/L | GEN,
AMMONIA
TOTAL
(MG/L | | APR 1988
13
MAY
10 | LINITY LAB (MG/L AS CACO3) | DIS-
SOLVED
(MG/L | RIDE,
DIS-
SOLVED
(MG/L | RIDE,
DIS-
SOLVED
(MG/L | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED | RESIDUE
AT 105
DEG. C,
TOTAL | VOLA-
TILE ON
IGNI-
TION,
TOTAL
(MG/L) | TOTAL
FIXED | GEN,
NITRITE
TOTAL
(MG/L
AS N) | GEN,
NO2+NO3
TOTAL
(MG/L
AS N) | GEN,
AMMONIA
TOTAL
(MG/L
AS N) | | APR 1988
13
MAY
10
JUN
22 | LINITY LAB (MG/L AS CACO3) | DIS-
SOLVED
(MG/L
AS SO4) | RIDE,
DIS-
SOLVED
(MG/L
AS CL) | RIDE,
DIS-
SOLVED
(MG/L
AS F) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | RESIDUE
AT 105
DEG. C,
TOTAL
(MG/L) | VOLA-
TILE
ON
IGNI-
TION,
TOTAL
(MG/L) | TOTAL
FIXED
(MG/L) | GEN, NITRITE TOTAL (MG/L AS N) | GEN,
NO2+NO3
TOTAL
(MG/L
AS N) | GEN,
AMMONIA
TOTAL
(MG/L
AS N) | | APR 1988
13
MAY
10
JUN | LINITY
LAB
(MG/L
AS
CACO3)
97 | DIS-
SOLVED
(MG/L
AS SO4)
25 | RIDE,
DIS-
SOLVED
(MG/L
AS CL) | RIDE,
DIS-
SOLVED
(MG/L
AS F)
0.20 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
182
213 | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
163 | RESIDUE
AT 105
DEG. C,
TOTAL
(MG/L)
193
232 | VOLA-
TILE ON
IGNI-
TION,
TOTAL
(MG/L) | TOTAL
FIXED
(MG/L)
127
139 | GEN, NITRITE TOTAL (MG/L AS N) ND | GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
0.310 | GEN,
AMMONIA
TOTAL
(MG/L
AS N)
0.020 | # ST. LAWRENCE RIVER MAIN STEM 04264331 ST. LAWRENCE RIVER AT CORNWALL, ONTARIO--NEAR MASSENA, NY - continued WATER-QUALITY DATA (continued) | DATE | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS NH4) | NITRO-
GEN,
ORGANIC
TOTAL
(MG/L
AS N) | GEN
MON
ORG
TO | GANIC G
OTAL TO
IG/L (N | SEN, C
TTAL TO
IG/L (N | SEN, PHO
TAL TO
IG/L (N | PHO
NOS- OI
ORUS DI
OTAL SOI
NG/L (MO | ORUS F
RTHO, C
IS-
LVED S
G/L (| HATE, IN
RTHO, TO
DIS- RI
OLVED EN
MG/L (N | DTAL TO
ECOV- RI
RABLE E
UG/L (| DMIUM (DTAL ECOV- RABLE UG/L S CD) | TOTAL TRECOV- FERABLE EQUIPMENT (UG/L) | RON,
OTAL
ECOV-
ERABLE
UG/L
AS FE) | |---|--|--|--|---|--|---|---|--|--|---|---|--|---| | APR 1988
13 | 0.03 | 0.60 |) | 0.62 | 0.93 | 4.1 | 0.010 | 0.00 | 0.0 | 70 | 4 | 70 | 730 | | MAY
10 | 0.0 | 0.24 | ı | 0.24 | 0.55 | 2.4 0 |).010 I | ND | | 50 | 3 | 310 | 380 | | JUN
22 | 0.01 | 0.26 | | 0.27 | 0.51 | 2.3 |).010 ı | ND | | 30 | 1 | 14 | 5400 | | AUG | | | | _ | | | | | | 90 | | | | | 03
OCT | 0.04 | 0.36 | | 0.39 | 0.57 | | | ND | | | 4 | 18 | 1300 | | 04 | 0.04 | 0.34 | • | 0.37 | 0.71 | 3.1 | 0.030 (| 0.00 | 0.0 | 30 | 2 | 32 | 270 | | DATE | LEA
TOT
REC
ERA
E (UG
AS | D, NE AL TO OV- RE BLE EF /L (U | ANGA-
ESE,
DTAL
ECOV-
RABLE
JG/L
S MN) | MERCURY
TOTAL
RECOV-
ERABLE
(UG/L
AS HG) | NICKEL,
TOTAL
RECOV-
ERABLE
(UG/L
AS NI) | ZINC,
TOTAL
RECOV-
ERABLE
(UG/L
AS ZN) | PHENOL
(C6H-
5OH)
TOTAL
(UG/L) | BROMO-
FORM
TOTAL
(UG/L) | CARBON-
TETRA-
CHLO-
RIDE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORG
DI-
BROMG
METHAI
TOTAI
(UG/) | O- CHLORO-
NE ETHANE
L TOTAL | | | APR 1988 | 3 | < 5 | <10 | <0.10 | 12 | 10 | | ND | ND | ND | ND | ND | | | MAY
10 | | 20 | <10 | <0.10 | 12 | 50 | | ND | ND | ND | ND | ND | | | JUN
22 | | 14 | 30 | <0.10 | 5 | 1000 | ND | ND | ND | ND | ND | ND | | | AUG
03 | | 34 | 20 | <0.10 | 3 | 160 | 0.0 | ND | ND | ND | ND | ND | | | OCT
04 | | <5 | 10 | <0.10 | <1 | 60 | ND | ND | ND | ND | ND | ND | | | | | | | | | | | | | | | | | | DATE | CHLO
FOR
TOT
(UG/ | RO- CHI
M PRO
AL TO | CIS
3-DI-
LORO-
DPENE
DTAL
G/L) | DI-
CHLORO-
BROMO-
METHANE
TOTAL
(UG/L) | METHYL-
BROMIDE
TOTAL
(UG/L) | METHYL-
CHLO-
RIDE
TOTAL
(UG/L) | METHYL-
ENE
CHLO-
RIDE
TOTAL
(UG/L) | 1,1,1-
TRI-
CHLORO-
ETHANE
TOTAL
(UG/L) | 1,1-DI-
CHLORO-
ETHANE
TOTAL
(UG/L) | 1,1-DI-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 1,1,2
TRI-
CHLORG
ETHANI
TOTAL
(UG/L | TETRA-
O- CHLORO-
E ETHANE
L TOTAL | | | APR 1988 | FOR
E TOT
(UG/ | 1,3
RO- CHI
M PRO
AL TO
L) (UC | 3-DI-
LORO-
DPENE
DTAL
G/L) | CHLORO-
BROMO-
METHANE
TOTAL
(UG/L) | BROMIDE
TOTAL
(UG/L) | CHLO-
RIDE
TOTAL
(UG/L) | ENE
CHLO-
RIDE
TOTAL
(UG/L) | TRI-
CHLORO-
ETHANE
TOTAL
(UG/L) | CHLORO-
ETHANE
TOTAL
(UG/L) | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | TRI-
CHLORG
ETHANI
TOTAI
(UG/L) | TETRA- D- CHLORO- E ETHANE L TOTAL) (UG/L) | | | | FOR
E TOT
(UG/ | 1,3
RO- CHI
M PRO
AL TO
L) (UC | S-DI-
LORO-
OPENE
OTAL | CHLORO-
BROMO-
METHANE
TOTAL | BROMIDE
TOTAL | CHLO-
RIDE
TOTAL | ENE
CHLO-
RIDE
TOTAL | TRI-
CHLORO-
ETHANE
TOTAL | CHLORO-
ETHANE
TOTAL | CHLORO-
ETHYL-
ENE
TOTAL | TRI-
CHLORG
ETHANI
TOTAL | TETRA-
O- CHLORO-
E ETHANE
L TOTAL | | | APR 1988 | FOR
E TOT
(UG/ | 1,3 RO- CHI M PRO AL TO L) (UO | 3-DI-
LORO-
DPENE
DTAL
G/L) | CHLORO-
BROMO-
METHANE
TOTAL
(UG/L) | BROMIDE
TOTAL
(UG/L) | CHLO-
RIDE
TOTAL
(UG/L) | ENE
CHLO-
RIDE
TOTAL
(UG/L) | TRI-
CHLORO-
ETHANE
TOTAL
(UG/L) | CHLORO-
ETHANE
TOTAL
(UG/L) | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | TRI-
CHLORG
ETHANI
TOTAI
(UG/L) | TETRA- D- CHLORO- E ETHANE L TOTAL) (UG/L) | | | APR 1988
13
MAY
10 | FOR
E TOT
(UG/ | 1,3 RO- CHI M PRO AL TO L) (UC | B-DI-
LORO-
OPENE
OTAL
G/L) | CHLORO-
BROMO-
METHANE
TOTAL
(UG/L) | BROMIDE
TOTAL
(UG/L) | CHLO-
RIDE
TOTAL
(UG/L) | ENE CHLO- RIDE TOTAL (UG/L) | TRI-
CHLORO-
ETHANE
TOTAL
(UG/L) | CHLORO-
ETHANE
TOTAL
(UG/L) | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) |
TRI-
CHLORG
ETHANI
TOTAI
(UG/L | TETRA- O- CHLORO- E ETHANE L TOTAL) (UG/L) ND | | | APR 1988
13
MAY
10
JUN
22
AUG
03 | FOR
E TOT
(UG/
8
ND | 1,3 RO- CHI M PRO AL TO L) (UC | 3-DI-
LORO-
DPENE
DTAL
G/L) | CHLORO-
BROMO-
METHANE
TOTAL
(UG/L)
ND | BROMIDE
TOTAL
(UG/L)
ND | CHLO-
RIDE
TOTAL
(UG/L)
ND | ENE CHLO- RIDE TOTAL (UG/L) ND | TRI- CHLORO- ETHANE TOTAL (UG/L) ND | CHLORO-
ETHANE
TOTAL
(UG/L)
ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND | TRI-
CHLORG
ETHANI
TOTAI
(UG/L
ND | TETRA- O- CHLORO- E ETHANE L TOTAL (UG/L) ND | | | APR 1988
13
MAY
10
JUN
22
AUG | FOR
TOT
(UG/
8
ND
ND | 1,3 RO- CHI M PRC AL TC L) (UC | 3-DI-
LORO-
DPENE
DTAL
S/L)
ND | CHLORO-
BROMO-
METHANE
TOTAL
(UG/L)
ND
ND | BROMIDE
TOTAL
(UG/L)
ND
ND | CHLO-
RIDE
TOTAL
(UG/L)
ND
ND | ENE CHLO- RIDE TOTAL (UG/L) ND ND | TRI- CHLORO- ETHANE TOTAL (UG/L) ND ND | CHLORO-
ETHANE
TOTAL
(UG/L)
ND
ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND
ND | TRI-
CHLORG
ETHANI
TOTAL
(UG/L
ND
ND | TETRA- CHLORO- CHLORO- CHURON- L TOTAL (UG/L) ND ND ND | | | APR 1988 13 MAY 10 JUN 22 AUG 03 OCT | FOR TOT (UG/ | 1,3 CHIMAN PRO ALL TY P | S-DI-
LORO-
DPENE
DTAL
S/L)
ND
ND | CHLORO-
BROMO-
METHANE
TOTAL
(UG/L)
ND
ND
ND | BROMIDE
TOTAL
(UG/L)
ND
ND
ND | CHLO-
RIDE
TOTAL
(UG/L)
ND
ND | ENE CHLO- RIDE TOTAL (UG/L) ND ND ND | TRI- CHLORO- ETHANE TOTAL (UG/L) ND ND ND | CHLORO-
ETHANE
TOTAL
(UG/L)
ND
ND
ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND
ND
ND | TRI-CHLORGETHANI TOTAL (UG/L ND ND ND ND | TETRA- CHLORO- E ETHANE E TOTAL) (UG/L) ND ND ND ND ND ND ND ND ND N | | | APR 1988 13 MAY 10 JUN 22 AUG 03 OCT 04 | FOR TOT (UG/8 ND | I, 2 CHI | S-DI-JORO-JORO-JORO-JORO-JORO-JORO-JORO-JOR | CHLORO-BROMO-METHANE TOTAL (UG/L) ND ND ND ND ND T,2-DI-CHLORO-PROPANE TOTAL (UG/L) | BROMIDE TOTAL (UG/L) ND ND ND ND ND T,2-TRANSDI CHLORO-ETHENE TOTAL (UG/L) | CHLO-RIDE TOTAL (UG/L) ND ND ND ND ND ND CHLORO-BENZENE TOTAL (UG/L) | ENE CHLO- RIDE TOTAL (UG/L) ND ND ND ND ND ND T,4-DI- CHLORO- BENZENE TOTAL (UG/L) | TRI- CHLORO- ETHANE TOTAL (UG/L) ND ND ND ND ND TETRA- CHLORO- ETHYL- ENE TOTAL (UG/L) | CHLORO-ETHANE TOTAL (UG/L) ND ND ND ND ND TRANS- 1,3-DI- CHLORO- PROPENE TOTAL (UG/L) | CHLORO-ETHYL-ENE TOTAL (UG/L) ND N | TRI-CHLORGETHANI TOTAI (UG/L) ND ND ND ND ND VI ND VI | TETRA- CHLORO- E ETHANE TOTAL) (UG/L) ND ND ND ND ND ND ND ND ND N | | | APR 1988 13 MAY 10 JUN 22 AUG 03 OCT 04 DATE APR 1988 13 MAY | FOR TOT (UG/ | 1,2 CHL | 3-DI JORO JO | CHLORO-BROMO-METHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | BROMIDE TOTAL (UG/L) ND ND ND ND ND T,2- TRANSDI CHLORO- ETHENE TOTAL (UG/L) | CHLO-RIDE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | ENE CHLO- RIDE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TRI-CHLORO-ETHANE TOTAL (UG/L) ND ND ND ND ND TETRA-CHLORO-ETHYL-ENE TOTAL (UG/L) | CHLORO-ETHANE TOTAL (UG/L) ND ND ND ND ND TRANS- 1,3-DI- CHLORO-PROPENE TOTAL (UG/L) | CHLORO-ETHYL- ENE TOTAL (UG/L) ND ND ND ND ND CHLORO-ETHYL- ENE TOTAL (UG/L) ND | TRI-CHLORGETHANI TOTAI (UG/L ND ND ND ND ND VID CHLORGETHYL ETHEI TOTAI (UG/L) ND | TETRA- CHLORO- E ETHANE E TOTAL) (UG/L) ND | | | APR 1988 13 MAY 10 JUN 22 AUG 03 OCT 04 DATE APR 1988 13 MAY 10 JUN | FOR TOT (UG/8 ND | I, 2 CHIM M PRO AL TX L) (UC 1 1, 2 CHIM M PRO | S-DI-JORO-JORO-JORO-JORO-JORO-JORO-JORO-JOR | CHLORO-BROMO-METHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | BROMIDE TOTAL (UG/L) ND ND ND ND ND 1,2- TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND | CHLO-RIDE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | ENE CHLO- RIDE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TRI- CHLORO- ETHANE TOTAL (UG/L) ND ND ND ND ND TETRA- CHLORO- ETHYL- ENE TOTAL (UG/L) ND ND | CHLORO-ETHANE TOTAL (UG/L) ND ND ND ND TRANS- 1,3-DI- CHLORO-PROPER TOTAL (UG/L) ND ND | CHLORO-ETHYL- ENE TOTAL (UG/L) ND | TRI-CHLORGETHANI (UG/L) ND N | TETRA- CHLORO- E ETHANE E TOTAL) (UG/L) ND ND ND ND ND ND ND ND ND N | | | APR 1988 13 MAY 10 JUN 22 AUG 03 OCT 04 APR 1988 13 MAY 10 JUN 22 AUG | FOR TOT (UG/8 ND | 1,2 CHIMAN PROCESS M PROCESS L) (UC L) (UC L) | G-DI- OROO- OROO- DPENE DTAL G/L) ND ND ND ND ND ND ND ND ND N | CHLORO-BROMO-METHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | BROMIDE TOTAL (UG/L) ND ND ND ND ND TRANSDI CHLORO-ETHENE TOTAL (UG/L) ND ND ND ND ND | CHLO-RIDE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | ENE CHLO- RIDE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TRI-CHLORO-ETHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-ETHANE TOTAL (UG/L) ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND N | TRI-CHLORGETHANI TOTAI (UG/L) ND | TETRA- CHLORO- E CHLORO- E CHANE L TOTAL) (UG/L) ND ND ND ND ND ND ND ND ND N | | | APR 1988 13 MAY 10 JUN 22 AUG 03 OCT 04 DATE APR 1988 13 MAY 10 JUN 22 | FOR TOT (UG/8 ND | 1,2 CHIMAN PROCESS M PROCESS L) (UC L) (UC L) | S-DI-JORO-JORO-JORO-JORO-JORO-JORO-JORO-JOR | CHLORO-BROMO-METHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | BROMIDE TOTAL (UG/L) ND ND ND ND ND 1,2- TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND | CHLO-RIDE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | ENE CHLO- RIDE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TRI- CHLORO- ETHANE TOTAL (UG/L) ND ND ND ND ND TETRA- CHLORO- ETHYL- ENE TOTAL (UG/L) ND ND | CHLORO-ETHANE TOTAL (UG/L) ND ND ND ND TRANS- 1,3-DI- CHLORO-PROPER TOTAL (UG/L) ND ND | CHLORO-ETHYL- ENE TOTAL (UG/L) ND | TRI-CHLORGETHANI (UG/L) ND N | TETRA- CHLORO- E ETHANE E TOTAL) (UG/L) ND ND ND ND ND ND ND ND ND N | | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). #### STREAMS TRIBUTARY TO ST. LAWRENCE RIVER ### 04266500 RAQUETTE RIVER AT PIERCEFIELD, NY LOCATION.--Lat 44 14'05", long 74 34'20", St. Lawrence County, Hydrologic Unit 04150305, on left bank 0.5 mi downstream from powerplant at Piercefield, and 1.5 mi upstream from Dead Creek. DRAINAGE AREA. -- 721 mi 2 . PERIOD OF RECORD.--Water years 1955, 1970-72, April 1988 to current year. CHEMICAL DATA: 1955, 1970-72 (a), 1988 (b), 1989 (a). MINOR ELEMENTS DATA: 1955, 1970-72 (a), 1988 (b), 1989 (a). PESTICIDE DATA: 1988 (b), 1989 (a). ORGANIC DATA: OC--1988 (a). NUTRIENT DATA: 1970-72 (a), 1988 (b), 1989 (a). SEDIMENT DATA: 1988-89 (a). REMARKS.--Water-discharge data obtained from stream-flow gage at this site. ### WATER-QUALITY DATA | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND | SPE-
CIFIC
CON-
DUCT-
ANCE
LAB
(US/CM) | PH WATER WHOLE FIELD (STAND- ARD UNITS) | TEMPER-
ATURE
WATER
(DEG C) | TUR-
BID-
ITY
(NTU) | BARO-
METRIC
PRES-
SURE
(MM
OF
HG) | OXYGEN,
DIS-
SOLVED
(MG/L) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | |----------------|--|--|--|---|--|--|---|---|--|--|---|---| | APR 1988 | | | | | | | | | | | | | | 14
May | 1100 | 3320 | 35 | 5.5 | 8.5 | 0.80 | | 11.8 | 10 | 3.2 | 0.59 | 1.7 | | 12
JUN | 1100 | 2210 | 34 | 6.0 | 14.0 | 0.60 | 760 | 14.2 | 11 | 3.3 | 0.59 | 1.5 | | 23
OCT | 1130 | 408 | 40 | 6.5 | 21.5 | 1.0 | | 10.7 | 13 | 3.9 | 0.78 | 2.0 | | 06 | 1500 | 483 | 39 | 6.9 | 11.0 | 1.0 | | 13.0 | 13 | 3.8 | 0.80 | 1.8 | | DATE | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K) | ALKA-
LINITY
LAB
(MG/L
AS
CACO3) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | SOLIDS,
RESIDUE
AT 105
DEG. C,
TOTAL
(MG/L) | SOLIDS,
VOLA-
TILE ON
IGNI-
TION,
TOTAL
(MG/L) | RESIDUE
TOTAL
FIXED
(MG/L) | NITRO-
GEN,
NITRITE
TOTAL
(MG/L
AS N) | NITRO-
GEN,
NO2+NO3
TOTAL
(MG/L
AS N) | | APR 1988
14 | 0.40 | 4.0 | 9.9 | 1.7 | 0.10 | | 20 | 42 | 15 | 27 | ND | 0.440 | | MAY
12 | 1.4 | 5.0 | 9.2 | 1.5 | 0.30 | 58 | 21 | 65 | 38 | 27 | ND | 0.400 | | JUN | | | | | | | | | | | | | | 23
⊙CT | 0.40 | 7.0 | 9.2 | 1.9 | 0.30 | | 23 | 21 | 11 | 10 | ND | 0.160 | | 06 | 0.60 | 9.0 | 8.3 | 1.8 | 0.10 | 22 | 23 | 31 | 15 | 16 | ND | 0.130 | | DATE | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS NH4) | NITRO-
GEN,
ORGANIC
TOTAL
(MG/L
AS N) | NITRO-
GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | NITRO-
GEN,
TOTAL
(MG/L
AS N) | NITRO-
GEN,
TOTAL
(MG/L
AS NO3) | PHOS-
PHORUS
TOTAL
(MG/L
AS P) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P) | PHOS-
PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4) | ALUM-
INUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS AL) | CADMIUM
TOTAL
RECOV-
ERABLE
(UG/L
AS CD) | COPPER,
TOTAL
RECOV-
ERABLE
(UG/L
AS CU) | | APR 1988 | | | | | | | | | | | _ | _
| | 14
MAY | 0.010 | 0.01 | 0.19 | 0.20 | 0.64 | 2.8 | 0.010 | 0.00 | 0.0 | 150 | 2 | 9 | | 12
JUN | 0.030 | 0.04 | 0.36 | 0.39 | 0.79 | 3.5 | 0.00 | ND | | 100 | 2 | 17 | | 23
⊙CT | 0.040 | 0.05 | 0.40 | 0.44 | 0.60 | 2.7 | 0.320 | 0.00 | 0.0 | 70 | <1 | 18 | | 06 | 0.060 | 0.08 | 0.40 | 0.46 | 0.59 | 2.6 | 0.020 | ND | | 130 | 2 | 52 | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). # 04266500 RAQUETTE RIVER AT PIERCEFIELD, NY - continued ## WATER-QUALITY DATA (continued) | DATE | IRON,
TOTAL
RECOV-
ERABLE
(UG/L
AS FE) | LEAD,
TOTAL
RECOV-
ERABLE
(UG/L
AS PB) | MANGA-
NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | MERCURY
TOTAL
RECOV-
ERABLE
(UG/L
AS HG) | TOTAL
RECOV-
ERABLE
(UG/L | RECOV-
ERABLE
(UG/L | PHENOL
(C6H-
5OH)
TOTAL
UG/L) | BROMO-
FORM
TOTAL
(UG/L) | CARBON-
TETRA-
CHLO-
RIDE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
DI-
BROMO-
METHANE
TOTAL
(UG/L) | CHLORO-
ETHANE
TOTAL
(UG/L) | |-----------------------|---|---|---|---|---|---------------------------|---|--|---|--|--|--------------------------------------| | APR 1988
14 | 160 | <5 | 30 | <0.10 | 4 | 10 | | ND | ND | ND | ND | ND | | MAY
12 | 210 | 35 | 20 | <0.10 | 7 | 20 | | ND | ND | ND | ND | ND | | JUN
23
OCT | 320 | <5 | 80 | <0.10 | <1 | 20 | 0.0 | ND | ND | ND | ND | ND | | 06 | 380 | <5 | 60 | <0.10 | <1 | 40 | | ND | ND | ND | ND | ND | | DATE | CHLOR
FORM
TOTA
(UG/L | PROPEI
L TOTAL | O- BROM
NE METHA
L TOTA | O-
METHY
NE BROMI
L TOTA | DE RIDE | CHLO-
RIDE | - 1,1,1
TRI-
CHLOR
ETHAN
TOTAL
(UG/L | 1,1-I
RO- CHLOR
IE ETHAN
TOTA | RO- ETHY
NE EN
AL TOT | RO- TRI
L- CHLO
E ETHA
AL TOT | - TETF
RO- CHLO
NE ETHA
AL TOT | RA-
DRO-
ANE
FAL | | APR 1988 | | | | | | | | | | | | | | 14
MAY | ND NI |) | | 12
JUN | ND NI |) | | 23
⊙CT | ND NI |) | | 06 | 0 | .1 ND | NI |) | | DATE | 1,2-D
CHLOR
BENZE
TOTA
(UG/L | O- WATEI
NE WHOLI
L TOTAI | D-
E 1,2-E
R CHLOR
E PROPA
L TOTA | O- CHLOR
NE ETHEN
L TOTA | EDI 1,3-DI
RO- CHLORO
RE BENZEN
LL TOTAL | - CHLORO
E BENZEN | - ETHYL | O- 1,3-E
CHLOF
PROPE
L TOTA | OI - CHLO
RO - ETHY
ENE EN
AL TOT | RO- ETHY
L- VINY
E ETH
AL TOT | RO-
L- VIN
L- CHI
ER RII
AL TOI | O-
E | | APR 1988
14
MAY | ND NI |) | | 12
JUN | ND NI |) | | 23
⊙CT | ND NE |) | | 06 | ND NE |) | # SUSPENDED SEDIMENT DISCHARGE | | | DIS- | | SEDI- | |----------|--------------|---------|--------|---------| | | | CHARGE, | | MENT, | | | | INST. | SEDI- | DIS- | | | | CUBIC | MENT, | CHARGE, | | | | FEET | SUS- | SUS- | | DATE | TIME | PER | PENDED | PENDED | | | | SECOND | (MG/L) | (T/DAY) | | | | | | | | JUN 1988 | | | | | | 23 | 1130 | 408 | 1 | 1.1 | | OCT | | | | | | 06 | 150 0 | 483 | 7 | 9.1 | | | | | | | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). #### 04273500 SARANAC RIVER AT PLATTSBURGH, NY LOCATION.--Lat 44 40'54", long 73 28'18", Clinton County, Hydrologic Unit 02010006, on right bank at Plattsburgh, 600 ft downstream from Imperial Paper and Color Corp. dam, 3.0 mi upstream from mouth, and 5.5 mi downstream from Mead Brook. DRAINAGE AREA. -- 608 mi 2 . PERIOD OF RECORD. -- Water years 1955, 1959, 1966-67, 1971-72, 1987 to 1989. CHEMICAL DATA: 1955 (a), 1959 (d), 1966-67, 1971-72 (a), 1987 (b), 1988 (c), 1989 (a). MINOR ELEMENTS DATA: 1955 (a), 1959 (d), 1966-67, 1972 (a), 1987 (b), 1988 (c), 1989 (a). PESTICIDE DATA: 1987 (b), 1988 (c), 1989 (a). NUTRIENT DATA: 1955 (a), 1959 (d), 1966-67, 1971-72 (a), 1987 (b), 1988 (c), 1989 (a). SEDIMENT DATA: 1988 (b), 1989 (a). REMARKS.--Water-discharge data obtained from stream-flow gage at this site. #### WATER-QUALITY DATA | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | SPE-
CIFIC
CON-
DUCT-
ANCE
LAB
(US/CM) | PH WATER WHOLE FIELD (STAND- ARD UNITS) | TEMPER-
ATURE
WATER
(DEG C) | TUR-
BID-
ITY
(NTU) | BARO-
METRIC
PRES-
SURE
(MM
OF
HG) | OXYGEN,
DIS-
SOLVED
(MG/L) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | |-----------|---------------|--|---|--|---|--------------------------------------|------------------------------|--|-------------------------------------|--|---|--| | APR 1987 | | | | | | | | | | | | | | 27 | 1615 | 853 | | | 7.4 | 14.0 | 1.0 | | 10.4 | | 27 | 7.5 | | MAY
26 | 1630 | 587 | | 91 | 7.8 | 18.5 | 1.0 | | 9.9 | | 33 | 9.3 | | JUN | 1030 | 367 | | 31 | 7.0 | 10.3 | 1.0 | | 3.3 | | 33 | 9.3 | | 16 | 1355 | 813 | | 81 | 7.6 | 20.5 | 1.3 | ~- | 9.1 | | 30 | 8.4 | | AUG | 4515 | 282 | | | | 12 5 | 1 0 | | 0.0 | | 2.0 | 10 | | 03
SEP | 1 51 5 | 282 | | | 8.0 | 12.5 | 1.0 | | 8.8 | | 36 | 10 | | 28 | 1545 | 282 | | | 8.0 | 19.0 | 1.4 | | 11.1 | | 36 | 9.6 | | NOV | | | | | | | | | | | | | | 04
DEC | 1530 | 416 | | | 7.6 | 10.5 | 2.1 | | 14.0 | | 40 | 12 | | 02 | 1600 | 1500 | | | 7.6 | 0.0 | 3.5 | | 18.3 | | 30 | 8.1 | | APR 1988 | | | | | | | | | | | | | | 06 | 1430 | 2000 | 70 | 67 | 6.4 | 7.5 | 1.6 | 760 | 12.4 | 104 | 23 | 6.4 | | 18
JUN | 1530 | 1280 | 75 | 71 | 6.6 | 9.0 | 1.5 | 746 | 12.0 | 106 | 26 | 7.1 | | 08 | 1500 | 369 | 93 | 92 | 7.1 | 19.0 | 1.5 | | 9.2 | | 36 | 9.7 | | 20 | 1700 | 238 | 100 | 95 | 8.0 | 26.0 | 1.2 | | 8.9 | | 37 | 10 | | JUL
20 | 1500 | 274 | 107 | 106 | 8.1 | 25.5 | 0.80 | 762 | 8.5 | 104 | 41 | 11 | | SEP | 1300 | 2/4 | 107 | 106 | 0.1 | 25.5 | 0.60 | 762 | 0.5 | 104 | 41 | 11 | | 12 | 1800 | 205 | 99 | 98 | 8.0 | 18.0 | 0.73 | 752 | 8.9 | 96 | 38 | 10 | | OCT | 0015 | -14 | 07 | 0.4 | | | 0.00 | | 10.0 | | 20 | 1.0 | | 20
Nov | 0815 | 314 | 97 | 94 | 7.3 | 7.5 | 0.90 | | 12.0 | | 38 | 10 | | 17 | 0900 | 1080 | 75 | 73 | 7.3 | 5.0 | 1.1 | | 11.6 | | 27 | 7.2 | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). ## 04273500 SARANAC RIVER AT PLATTSBURGH, NY - continued ## WATER-OUALITY DATA (continued) | | | | | | WAT | rer-qual | ITY DAT | A (conti | nued) | | | | | | |------------------|--|--|---|--|--|--|---|--|--|--|-------------------------------|--|--|-------------------------------------| | DATE | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K) | ALKA
LINIT
LAE
(MGA
AS
CACO | TY SULE
B DIS
/L SOI
(MC | FATE R
S- D
LVED S
G/L (| HLO-
IDE,
IS-
OLVED
MG/L
S CL) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F) | SOLIDS
RESIDI
AT 180
DEG.
DIS-
SOLVI
(MG/I | UE SUN
O CON
C TUE
- I
ED SO | ISTI - | SOLIDS,
RESIDUE
AT 105
DEG. C,
TOTAL
(MG/L) | SOLIDS,
VOLA-
TILE ON
IGNI-
TION,
TOTAL
(MG/L) | RESIDUE
TOTAL
FIXED
(MG/L) | | APR 1987
27 | 1.9 | | | | | | | | : | 26 | | 58 | 15 | 39 | | MAY
26 | 2.4 | | | | | | | | | 4 9 | | 64 | 26 | 47 | | JUN
16 | 2.3 | | | | | | | | | 78 | | 64 | 38 | 44 | | AUG
03 | 2.7 | | | | <u>.</u> . | | | | : | 81 | | 67 | 37 | 43 | | SEP
28
NOV | 2.9 | | | | | | | | | 56 | | 67 | 45 | 36 | | 04
DEC | 2.4 | | | | - | | | | | 59 | | 68 | 55 | 17 | | 02
APR 1988 | 2.4 | | | | - | | | | | 50 | | 78 | 39 | 25 | | 06
18 | 1.8 | 2.7
2.9 | 0.60
0.60 | 16
18 | 1: | | 4.1 | 0.10
0.10 | | 52
60 | 37
39 | 66
68 | 28
23 | 38
45 | | JUN
08 | 2.8 | 3.8 | 0.70 | 29 | 1 | | 5.5 | 0.30 | | 55 | 51 | 81 | 28 | 53 | | 20
JUL | 2.8 | 3.9 | 0.60 | 29 | | 9.7 | 5.4 | 0.30 | | 56 | 50 | 63
89 | 50
49 | 13
40 | | 20
SEP
12 | 3.3 | 4.7 | 0.70 | 3 4
32 | | 9.8
9.2 | 6.6 | 0.10 | | 76 | 57
53 | 92 | 44 | 48 | | ОСТ
20 | 3.1 | 4.3 | 0.70 | 30 | 1 | | 6.1 | <0.10 | | 66 | 53 | 69 | 33 | 36 | | NOV
17 | 2.1 | 3.2 | 0.60 | 17 | 1 | | 5.2 | <0.10 | | | 42 | 81 | 36 | 45 | | DATE | NIT
GE
NITR
TOT
(MG | N, GE
ITE NO2+
AL TOT
/L (MG | N, G
NO3 AMM
AL TO'
/L (M | TAL
G/L |
NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS NH4) | NITRO-
GEN,
ORGANIC
TOTAL
(MG/L
AS N) | MONIA | AM-
A + NIC
VL CO
VL (MC | EN,
F AL
G/L | NITRO-
GEN,
TOTAL
(MG/L
S NO3) | PHOS
PHORU
TOTA
(MG, | US DIS
AL SOLV
/L (MG/ | US PHI
HO, OR
E- DI
ED SOI
L (MG | ATE,
THO,
IS-
LVED
G/L | | APR 1987
27 | ,
ND | 0. | 190 0 | .010 | 0.01 | 0.10 | 0. | .11 | 0.30 | 1.3 | 0.0 | 010 0. | 00 | 0.0 | | MAY
26 | ND | 0. | 120 0 | .070 | 0.09 | 0.11 | . 0 | . 18 | 0.30 | 1.3 | 0.0 | 020 0. | 00 | 0.0 | | JUN
16
AUG | ND | 0. | 180 0 | .010 | 0.01 | 0.22 | 2 0 | .23 | 0.41 | 1.8 | 0.0 | 020 0. | 00 | 0.0 | | 03
SEP | ND | 0. | 080 0 | .00 | 0.0 | 0.20 | 0 0 | .20 | 0.28 | 1.2 | 0.0 | 020 0. | 00 | 0.0 | | 28
NOV | ND | 0. | 070 0 | .020 | 0.03 | 0.23 | 3 0 | .25 | 0.32 | 1.4 | 0.0 | 020 0. | 00 | 0.0 | | 04
DEC | ND | | | .010 | 0.01 | 0.15 | | | 0.34 | 1.5 | | | | 0.0 | | 02
APR 1988 | | | 260 N | | | | | | 0.49 | 2.2 | | | | 0.0 | | 06
18
JUN | ND
ND | | | .030
.010 | 0.04 | 0.41 | | | 0.75
0.45 | 3.3 | | 020 NE
010 0. | | 0.0 | | 08
20
JUL | ne
ne | | | .020
.010 | 0.03 | 0.25 | | | 0.35 | 1.5 | | 020 0.
020 พย | | 0.0 | | 20
SEP | NE | 0. | 140 0 | .010 | 0.01 | 0.19 | 9 0 | .20 | 0.34 | 1.5 | 0.6 | 010 NE | , | | | 12
OCT | NE | 0. | 080 N | D | | | 0 | .19 | 0.27 | 1.2 | 0. | 010 ทธ |) | | | 20
NOV | NC | | | .010 | 0.01 | 0.24 | | | 0.34 | 1.5 | | 010 NE | | - | | 17 | NE | 0. | 250 0 | .020 | 0.03 | 0.29 | 9 0 | .31 | 0.56 | 2.5 | 0. | 010 0. | 00 | 0.0 | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). # 04273500 SARANAC RIVER AT PLATTSBURGH, NY - continued | DATE | ALUM-
INUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS AL) | ALUM-
INUM,
DIS-
SOLVED
(UG/L
AS AL) | CADMIUM
TOTAL
RECOV-
ERABLE
(UG/L
AS CD) | CADMIUM
DIS-
SOLVED
(UG/L
AS CD) | COPPER,
TOTAL
RECOV-
ERABLE
(UG/L
AS CU) | COPPER,
DIS-
SOLVED
(UG/L
AS CU) | IRON,
TOTAL
RECOV-
ERABLE
(UG/L
AS FE) | IRON,
DIS-
SOLVED
(UG/L
AS FE) | LEAD,
TOTAL
RECOV-
ERABLE
(UG/L
AS PB) | LEAD,
DIS-
SOLVED
(UG/L
AS PB) | MANGA-
NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | |--|--|--|--|--|--|--|--|--|--|---|---| | APR 1987 | | | | | | | | | | | | | 27
MAY | | | <10 | | <10 | | 280 | | <100 | | 20 | | 26
JUN | | | <10 | | <10 | | 300 | | <5 | | 30 | | 16
AUG | | | <10 | | <10 | | 420 | | <5 | | 30 | | 03
SEP | | | <10 | | 30 | | 450 | | 6 | | 40 | | 28 | | | <1 | | 5 | | 440 | | <5 | | 40 | | NOV
04
DEC | | | <1 | | 7 | | 320 | | < 5 | | 20 | | 02 | | | <1 | 1.0 | 7 | 3 | 370 | | <5 | <5 | 20 | | APR 1988
06 | 120 | 50 | 1 | <1.0 | 5 | <1 | 290 | 110 | <5 | <5 | 20 | | 18
JUN | 60 | | <1 | | 3 | | 210 | | <5 | | 30 | | 08 | 60
60 | 30 | 2
<1 | <1.0 | 7
4 | 4 | 350
340 | 180 | <5
<5 | <5
 | 50
80 | | JUL
20 | 50 | | <1 | | 4 | | 410 | | < 5 | | 50 | | SEP | | | | | | | | | | | | | 12
⊙CT | 40 | | 1 | | 8 | | 320 | | < 5 | | 40 | | 20
NOV | 50 | 10 | <1 | <1.0 | 6 | 3 | 350 | 240 | <5 | <5 | 10 | | 17 | 110 | | 1 | | 8 | | 320 | | <5 | | 30 | | | | | | | | | | | | | | | DATE | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN) | MERCURY
TOTAL
RECOV-
ERABLE
(UG/L
AS HG) | NICKEL,
TOTAL
RECOV-
ERABLE
(UG/L
AS NI) | NICKEL,
DIS-
SOLVED
(UG/L
AS NI) | ZINC,
TOTAL
RECOV-
ERABLE
(UG/L
AS ZN) | ZINC,
DIS-
SOLVED
(UG/L
AS ZN) | BROMO-
FORM
TOTAL
(UG/L) | CARBON-
TETRA-
CHLO-
RIDE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
DI-
BROMO-
METHANE
TOTAL
(UG/L) | CHLORO-
ETHANE
TOTAL
(UG/L) | | DATE APR 1987 27 | NESE,
DIS-
SOLVED
(UG/L | TOTAL
RECOV-
ERABLE
(UG/L | TOTAL
RECOV-
ERABLE
(UG/L | DIS-
SOLVED
(UG/L | TOTAL
RECOV-
ERABLE
(UG/L | DIS-
SOLVED
(UG/L | FORM
TOTAL | TETRA-
CHLO-
RIDE
TOTAL | BENZENE
TOTAL | DI-
BROMO-
METHANE
TOTAL | ETHANE
TOTAL | | APR 1987
27
MAY
26 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL
RECOV-
ERABLE
(UG/L
AS HG) | TOTAL
RECOV-
ERABLE
(UG/L
AS NI) | DIS-
SOLVED
(UG/L
AS NI) | TOTAL
RECOV-
ERABLE
(UG/L
AS ZN) | DIS-
SOLVED
(UG/L
AS ZN) | FORM
TOTAL
(UG/L) | TETRA-
CHLO-
RIDE
TOTAL
(UG/L) | BENZENE
TOTAL
(UG/L) | DI-
BROMO-
METHANE
TOTAL
(UG/L) | ETHANE
TOTAL
(UG/L) | | APR 1987
27
MAY
26
JUN
16 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL
RECOV-
ERABLE
(UG/L
AS HG) | TOTAL
RECOV-
ERABLE
(UG/L
AS NI) | DIS-
SOLVED
(UG/L
AS NI) | TOTAL
RECOV-
ERABLE
(UG/L
AS ZN) | DIS-
SOLVED
(UG/L
AS ZN) | FORM TOTAL (UG/L) | TETRA-
CHLO-
RIDE
TOTAL
(UG/L) | BENZENE
TOTAL
(UG/L)
ND | DI-
BROMO-
METHANE
TOTAL
(UG/L) | ETHANE
TOTAL
(UG/L) | | APR 1987
27
MAY
26
JUN
16
AUG
03 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL
RECOV-
ERABLE
(UG/L
AS HG) | TOTAL
RECOV-
ERABLE
(UG/L
AS NI)
<100 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL
RECOV-
ERABLE
(UG/L
AS ZN)
<10 | DIS-
SOLVED
(UG/L
AS ZN) | FORM TOTAL (UG/L) ND ND | TETRA-
CHLO-
RIDE
TOTAL
(UG/L)
ND | BENZENE
TOTAL
(UG/L)
ND
ND | DI-
BROMO-
METHANE
TOTAL
(UG/L)
ND | ETHANE
TOTAL
(UG/L)
ND | | APR 1987
27
MAY
26
JUN
16
AUG
03
SEP
28 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV- ERABLE (UG/L AS HG) <0.10 | TOTAL RECOV- ERABLE (UG/L AS NI) <100 <1 <1 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV- ERABLE (UG/L AS ZN) <10 <10 | DIS-
SOLVED
(UG/L
AS ZN) | FORM TOTAL (UG/L) ND ND | TETRA-CHLO-RIDE TOTAL (UG/L) ND ND | BENZENE
TOTAL
(UG/L)
ND
ND | DI-
BROMO-
METHANE
TOTAL
(UG/L)
ND
ND | ETHANE
TOTAL
(UG/L)
ND
ND | | APR 1987
27
MAY
26
JUN
16
AUG
03
SEP
28
NOV
04 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV- ERABLE (UG/L AS HG) <0.10 <0.10 | TOTAL RECOV- ERABLE (UG/L AS NI) <100 <1 <1 <1 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV- ERABLE (UG/L AS ZN) <10 <10 10 <10 | DIS-
SOLVED
(UG/L
AS ZN) | FORM TOTAL (UG/L) ND ND ND | TETRA- CHLO- RIDE TOTAL (UG/L) ND ND ND | BENZENE
TOTAL
(UG/L)
ND
ND
ND | DI-
BROMO-
METHANE
TOTAL
(UG/L)
ND
ND | ETHANE
TOTAL
(UG/L)
ND
ND
ND | | APR 1987 27 MAY 26 JUN 16 AUG 03 SEP 28 NOV 04 DEC 02 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV-
ERABLE (UG/L AS HG) <0.10 <0.10 <0.10 <0.10 | TOTAL RECOV- ERABLE (UG/L AS NI) <100 <1 <1 <1 41 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV- ERABLE (UG/L AS ZN) <10 <10 <10 <10 <10 | DIS-
SOLVED
(UG/L
AS ZN) | FORM TOTAL (UG/L) ND ND ND ND ND | TETRA-CHLO-RIDE RIDE TOTAL (UG/L) ND ND ND ND ND | BENZENE
TOTAL
(UG/L)
ND
ND
ND
ND | DI-
BROMO-
METHANE
TOTAL
(UG/L)
ND
ND
ND | ETHANE TOTAL (UG/L) ND ND ND ND ND ND | | APR 1987 27 MAY 26 JUN 16 AUG 03 SEP 28 NOV 04 DEC 02 APR 1988 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV-ERABLE (UG/L AS HG) <0.10 <0.10 <0.10 <0.10 <0.10 | TOTAL RECOV- ERABLE (UG/L AS NI) <100 <1 <1 <1 <4 4 3 <1 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV- ERABLE (UG/L AS ZN) <10 <10 <10 <10 <10 <10 <10 <10 <10 | DIS-
SOLVED
(UG/L
AS ZN) | FORM TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TETRA-CHLO-RIDE RIDE TOTAL (UG/L) ND ND ND ND ND ND ND ND | BENZENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND
ND | DI-
BROMO-
METHANE
TOTAL
(UG/L)
ND
ND
ND
ND | ETHANE TOTAL (UG/L) ND | | APR 1987
27
MAY
26
JUN
16
AUG
03
SEP
28
NOV
04
DEC
02
APR 1988
06
18 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV-ERABLE (UG/L AS HG) <0.10 <0.10 <0.10 <0.10 | TOTAL RECOV- ERABLE (UG/L AS NI) <100 <1 <1 <1 4 3 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV- ERABLE (UG/L AS ZN) <10 <10 <10 <10 <20 | DIS-
SOLVED
(UG/L
AS ZN) | FORM TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TETRA-CHLO-RIDE TOTAL (UG/L) ND ND ND ND ND ND | BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND | DI- BROMO- METHANE TOTAL (UG/L) ND ND ND ND ND | ETHANE TOTAL (UG/L) ND ND ND ND ND ND ND | | APR 1987 27 MAY 26 JUN 16 AUG 03 SEP 28 NOV 04 DEC 02 APR 1988 06 18 JUN 08 20 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV-ERABLE (UG/L AS HG) <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 | TOTAL RECOV- ERABLE (UG/L AS NI) <100 <1 <1 <1 <4 4 3 <1 2 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV- ERABLE (UG/L AS ZN) <10 <10 <10 <10 <10 <10 <10 <10 <10 <1 | DIS-
SOLVED
(UG/L
AS 2N) | FORM
TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TETRA-CHLO-RIDE RIDE TOTAL (UG/L) ND | BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | DI- BROMO- METHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND | ETHANE TOTAL (UG/L) ND | | APR 1987 27 MAY 26 JUN 16 AUG 03 SEP 28 NOV 04 DEC 02 APR 1988 06 18 JUN 08 20 JUL | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV-ERABLE (UG/L AS HG) <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 | TOTAL RECOV- REABLE (UG/L AS NI) <100 <1 <1 <1 4 3 <1 2 3 3 4 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV-ERABLE (UG/L AS ZN) <10 | DIS-
SOLVED
(UG/L
AS 2N) | FORM TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TETRA-CHLO-RIDE RIDE TOTAL (UG/L) ND | BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | DI- BROMO- METHANE TOTAL (UG/L) ND | ETHANE TOTAL (UG/L) ND | | APR 1987 27 MAY 26 JUN 16 AUG 03 SEP 28 NOV 04 DEC 02 APR 1988 06 18 JUN 08 20 JUL 20 SEP | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV-
ERABLE (UG/L AS HG) <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 | TOTAL RECOV- REABLE (UG/L AS NI) <100 <1 <1 4 3 <1 2 3 4 1 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV- REABLE (UG/L AS ZN) <10 | DIS-
SOLVED
(UG/L
AS 2N) | FORM TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TETRA-CHLO-RIDE RIDE TOTAL (UG/L) ND | BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | DI- BROMO- BROMO- METHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | ETHANE TOTAL (UG/L) ND | | APR 1987 27 MAY 26 JUN 16 AUG 03 SEP 28 NOV 04 DEC 02 APR 1988 06 18 JUN 08 20 JUL 20 SEP 12 OCT | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV-ERABLE (UG/L AS HG) <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 | TOTAL RECOV- ERABLE (UG/L AS NI) <100 <1 <1 <1 4 3 <1 2 3 3 4 1 100 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV-ERABLE (UG/L AS ZN) <10 <10 <10 <10 <10 <10 <10 <10 <10 <1 | DIS-
SOLVED
(UG/L
AS 2N) | FORM TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TETRA-CHLO-RIDE RIDE TOTAL (UG/L) ND | BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | DI- BROMO- METHANE TOTAL (UG/L) ND | ETHANE TOTAL (UG/L) ND | | APR 1987 27 MAY 26 JUN 16 AUG 03 SEP 28 NOV 04 DEC 02 APR 1988 06 18 JUN 08 20 JUL 20 SEP | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV-
ERABLE (UG/L AS HG) <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 | TOTAL RECOV- REABLE (UG/L AS NI) <100 <1 <1 4 3 <1 2 3 4 1 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV- REABLE (UG/L AS ZN) <10 | DIS-
SOLVED
(UG/L
AS 2N) | FORM TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TETRA-CHLO-RIDE RIDE TOTAL (UG/L) ND | BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | DI- BROMO- BROMO- METHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | ETHANE TOTAL (UG/L) ND | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). # 04273500 SARANAC RIVER AT PLATTSBURGH, NY - continued | DATE | CHLORO-
FORM
TOTAL
(UG/L) | CIS
1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | DI-
CHLORO-
BROMO-
METHANE
TOTAL
(UG/L) | METHYL-
BROMIDE
TOTAL
(UG/L) | METHYL-
CHLO-
RIDE
TOTAL
(UG/L) | METHYL-
ENE
CHLO-
RIDE
TOTAL
(UG/L) | 1,1,1-
TRI-
CHLORO-
ETHANE
TOTAL
(UG/L) | 1,1-DI-
CHLORO-
ETHANE
TOTAL
(UG/L) | 1,1-DI-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 1,1,2-
TRI-
CHLORO-
ETHANE
TOTAL
(UG/L) | 1,1,2,2
TETRA-
CHLORO-
ETHANE
TOTAL
(UG/L) | |--|--|--|--|--|--|--|--|--|--|---|--| | APR 1987 | | | | | | | | | | | | | 27
MAY | ND | ND | ND | ИD | ND | 26
JUN | ND | 16
AUG | ИD | ND | 03
SEP | ND | 28
NOV | ИD | ND | 04 | ИD | ND | 02
APR 1988 | ND | ND | ND | ND | ND | ИD | ND | ИD | ND | ND | ND | | 06 | ND | 18
Jun | ND | 08 | ND | 20 | ND | JUL
20
SEP | ND | 12
OCT | 0.1 | ND | ND | ND | ND | ИD | ИD | ND | ИD | ND | ИD | | 20
NOV | ND | 17 | ND | ND | ND | ND | ND | ИD | ND | ND | ND | ИD | ИD | | | | | | | | | | | | | | | DATE | 1,2-DI-
CHLORO-
BENZENE
TOTAL
(UG/L) | 1,2-DI-
CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L) | 1,2-DI-
CHLORO-
PROPANE
TOTAL
(UG/L) | 1,2-
TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L) | 1,3-DI-
CHLORO-
BENZENE
TOTAL
(UG/L) | 1,4-DI-
CHLORO-
BENZENE
TOTAL
(UG/L) | TETRA-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | TRANS-
1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | TRI-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 2-
CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L) | VINYL
CHLO-
RIDE
TOTAL
(UG/L) | | APR 1987 | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L) | CHLORO-
PROPANE
TOTAL
(UG/L) | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L) | CHLO-
RIDE
TOTAL
(UG/L) | | APR 1987
27
MAY | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L) | CHLORO-
PROPANE
TOTAL
(UG/L) | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L) | CHLO-
RIDE
TOTAL
(UG/L) | | APR 1987
27 | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L) | CHLORO-
PROPANE
TOTAL
(UG/L) | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L) | CHLO-
RIDE
TOTAL
(UG/L) | | APR 1987
27
MAY
26
JUN | CHLORO-
BENZENE
TOTAL
(UG/L)
ND | CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L)
ND | CHLORO-
PROPANE
TOTAL
(UG/L)
ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND | CHLORO-
BENZENE
TOTAL
(UG/L)
ND | CHLORO-
BENZENE
TOTAL
(UG/L)
ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND | CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L)
ND | CHLO-
RIDE
TOTAL
(UG/L)
ND | | APR 1987
27
MAY
26
JUN
16
AUG
03
SEP
28 | CHLORO-
BENZENE
TOTAL
(UG/L)
ND
ND | CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L)
ND
ND | CHLORO-
PROPANE
TOTAL
(UG/L)
ND
ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND | CHLORO-
BENZENE
TOTAL
(UG/L)
ND
ND | CHLORO-
BENZENE
TOTAL
(UG/L)
ND
ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND
ND | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
ND
ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND
ND | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND ND | CHLO-
RIDE
TOTAL
(UG/L)
ND
ND | | APR 1987
27
MAY
26
JUN
16
AUG
03
SEP
28
NOV
04 | CHLORO-
BENZENE
TOTAL
(UG/L)
ND
ND
ND | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND ND ND | CHLORO-
PROPANE
TOTAL
(UG/L)
ND
ND
ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND | CHLORO- BENZENE TOTAL (UG/L) ND ND ND | CHLORO- BENZENE TOTAL (UG/L) ND ND ND | CHLORO-ETHYL-ENE TOTTAL (UG/L) ND ND ND | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
ND
ND
ND | CHLORO-ETHYL-ENE ENE TOTAL (UG/L) ND ND ND | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND ND ND | CHLO-
RIDE
TOTAL
(UG/L)
ND
ND | | APR 1987
27
MAY
26
JUN
16
AUG
03
SEP
28
NOV
04
DEC
02 | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND ND ND ND ND | CHLORO-
PROPANE
TOTAL
(UG/L)
ND
ND
ND
ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND | CHLORO-ETHYL-ENE ENE TOTAL (UG/L) ND ND ND ND | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
ND
ND
ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND
ND
ND | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND ND ND ND ND | CHLO-
RIDE
TOTAL
(UG/L)
ND
ND
ND | | APR 1987 27 MAY 26 JUN 16 AUG 03 SEP 28 NOV 04 DEC 02 APR 1988 06 | CHLORO- BENZENE TOTAL (UG/L) ND | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND | CHLORO-PROPANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N |
TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND | CHLORO-ETHYL-ENE ENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND ND ND ND ND ND ND ND ND | CHLO-RIDE TOTAL (UG/L) ND | | APR 1987 27 MAY 26 JUN 16 AUG 03 SEP 28 NOV 04 DEC 02 APR 1988 06 18 JUN | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND | CHLORO-PROPANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-ETHYL- ENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-ETHYL-ENE ENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND | CHLO- RIDE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | | APR 1987 27 MAY 26 JUN 16 AUG 03 SEP 28 NOV 04 DEC 02 APR 1988 06 18 | CHLORO- BENZENE TOTAL (UG/L) ND | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND | CHLORO-PROPANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND | CHLORO-ETHYL-ENE ENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND ND ND ND ND ND ND ND ND | CHLO-RIDE TOTAL (UG/L) ND | | APR 1987 27 MAY 26 JUN 16 AUG 03 SEP 28 NOV 04 DEC 02 APR 1988 06 18 JUN 08 20 | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND | CHLORO-PROPANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TRANSDI CHLORO- CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-ETHYL-ENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND | CHLORO-ETHYL-ENE ENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND | CHLO-RIDE TOTAL (UG/L) ND | | APR 1987 27 MAY 26 JUN 16 AUG 03 SEP 28 NOV 04 DEC 02 APR 1988 06 18 JUN 08 20 JUN 20 SEP 12 CCT | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND | CHLORO-PROPANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-ETHYL- ENE ENE TOTAL (UG/L) ND | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-ETHYL-ENE ENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND | CHLO- RIDE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | | APR 1987 27 MAY 26 JUN 16 AUG 03 SEP 28 NOV 04 DEC 02 APR 1988 06 18 JUN 08 JUN 20 SEP 20 SEP | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND | CHLORO-PROPANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-ETHYL-ENE ENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-ETHYL-ENE ENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND | CHLO-RIDE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). # 04273500 SARANAC RIVER AT PLATTSBURGH, NY - continued ### SUSPENDED SEDIMENT DISCHARGE | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND | SEDI-
MENT,
SUS-
PENDED
(MG/L) | SEDI-
MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY) | |-----------|------|--|--|--| | JUN 1988 | | | | | | 08 | 1500 | 369 | 2 | 2.0 | | JUL
20 | 1500 | 274 | 2 | 1.5 | | SEP | | | | | | 12 | 1800 | 205 | 3 | 1.7 | | OCT | | | | | | 20 | 0815 | 314 | 1 | 0.85 | | NOV | | | | | | 17 | 0900 | 1080 | 4 | 12 | # BED MATERIAL ANALYSES | | | SOLIDS, | CADMIUM | CHRO- | COPPER, | IRON, | LEAD, | MANGA- | |----------|------|---------|---------|---------|---------|---------|---------|---------| | | | VOLA- | RECOV. | MIUM, | RECOV. | RECOV. | RECOV. | NESE, | | | | TILE IN | FM BOT- | RECOV. | FM BOT- | FM BOT- | FM BOT- | RECOV. | | | | BOTTOM | TOM MA- | FM BOT- | TOM MA- | TOM MA- | TOM MA- | FM BOT- | | | | MA- | TERIAL | TOM MA- | TERIAL | TERIAL | TERIAL | TOM MA- | | DATE | TIME | TERIAL | (UG/G | TERIAL | (UG/G | (UG/G | (UG/G | TERIAL | | | | (MG/KG) | AS CD) | (UG/G) | AS CU) | AS FE) | AS PB) | (UG/G) | | SEP 1987 | | | | | | | | | | 28 | 1545 | 24800 | <1 | <10 | 20 | 5900 | 60 | 89 | | SEP 1988 | | | | | | | | | | 12 | 1815 | | | | | | | ~- | | DATE | MERCURY
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS HG) | NICKEL,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS NI) | ZINC,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS ZN) | BED
MAT.
FALL
DIAM.
% FINER
THAN
.004 MM | BED
MAT.
SIEVE
DIAM.
% FINER
THAN
.062 MM | BED
MAT.
SIEVE
DIAM.
% FINER
THAN
.125 MM | BED
MAT.
SIEVE
DIAM.
% FINER
THAN
2.00 MM | |----------------------------|--|--|--|--|---|---|---| | SEP 1987
28
SEP 1988 | 0.12 | <10 | 100 | 0 | 3 | 9 | 76 | | 12 | | | | 2 | 6 | 100 | | #### 04276500 BOUOUET RIVER AT WILLSBORD, NY LOCATION.--Lat 42 21'30", long 73 23'50, Essex County, Hydrologic Unit 02010004, on right bank 0.5 mi upstream from bridge on State Highway 22, 2.5 mi downstream from North Branch Bouquet River, and 3.0 mi upstream from mouth, Willsboro. DRAINAGE AREA. -- 275 mi2. PERIOD OF RECORD.--Water years 1987 to 1989. CHEMICAL DATA: 1987 (b), 1988 (c), 1989 (a). MINOR ELEMENT DATA: 1987 (b), 1988 (c), 1989 (a). PESTICIDE DATA: 1987 (b), 1988 (c), 1989 (a). ORGANIC DATA: PCB--1988 (a). NUTRIENT DATA: 1987 (b), 1988 (c), 1989 (a). SEDIMENT DATA: 1988 (b), 1989 (a). REMARKS .-- Water-discharge data obtained from a discharge rating developed for this site. #### WATER-OUALITY DATA | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | SPE-
CIFIC
CON-
DUCT-
ANCE
LAB
(US/CM) | PH WATER WHOLE FIELD (STAND- ARD UNITS) | TEMPER-
ATURE
WATER
(DEG C) | TUR-
BID-
ITY
(NTU) | BARO-
METRIC
PRES-
SURE
(MM
OF
HG) | OXYGEN,
DIS-
SOLVED
(MG/L) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | |-----------------------|------|--|---|--|---|--------------------------------------|------------------------------|--|-------------------------------------|--|---|--| | APR 1987 | | | | | | | | | | | | | | 27
MAY | 1745 | | | | 7.6 | 8.5 | 1.0 | | 11.0 | | 42 | 12 | | 26 | 1800 | | | | 7.4 | 20.0 | 1.0 | | 9.9 | | 56 | 16 | | JUN
16 | 1530 | | | 116 | 8.1 | 21.5 | 1.4 | | 8.9 | | 42 | 12 | | AUG | 1530 | | | 116 | 0.1 | 21.5 | 1.4 | | 0.3 | | 42 | 14 | | 03 | 1250 | | | | 7.9 | 11.5 | 4.0 | | 8.9 | | 70 | 20 | | SEP
28 | 1400 | | | | 7.9 | 14.0 | 1.7 | | 11.6 | | 39 | 12 | | NOV | | | | | | | | | | | | | | 04 | 1330 | | | 133 | 7.3 | 14.5 | 2.6 | | 11.1 | | 51 | 15 | | DEC
02
APR 1988 | 1430 | | | | 7.6 | 2.0 | 7.3 | | 18.9 | | 39 | 11 | | 06 | 1245 | 746 | 76 | 74 | 6.7 | 7.5 | | 760 | 12.0 | 100 | 26 | 7.3 | | 18
JUN | 1330 | 375 | 129 | 119 | 6.7 | 10.5 | 1.8 | 746 | 11.8 | 108 | 40 | 11 | | 08 | 1300 | 254 | 196 | 155 | 7.4 | 18.5 | 1.4 | | 9.7 | | 57 | 16 | | 20 | 1530 | 204 | 186 | 184 | 8.4 | 27.0 | 1.0 | | 9.3 | | 66 | 18 | | JUL
20 | 1300 | 213 | 188 | 188 | 8.3 | 24.5 | 1.5 | 762 | 9.7 | 117 | 70 | 19 | | SEP | | | | | | | | | | ••• | | 4.5 | | 12
OCT | 1345 | | 161 | 160 | 7.8 | 18.0 | 1.0 | 752 | 10.2 | 109 | 55 | 15 | | 19 | 1300 | | 177 | 181 | 7.7 | 10.5 | 0.80 | 762 | 11.0 | 99 | 70 | 19 | | 16 | 1300 | 856 | 102 | 101 | 7.6 | 4.5 | 2.0 | 768 | 12.0 | 92 | 34 | 9.5 | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). # 04276500 BOUQUET RIVER AT WILLSBORO, NY - continued ## WATER-QUALITY DATA (continued) | | | | | | WA' | 'ER-QUAL | ITY DATA | (Conti | nuea) | | | | | |------------------|--
--|---|---|--|--|------------------------------|--|--|-----------------------------|--|--|-------------------------------------| | DATE | DIS- | SODIUM,
DIS-
SOLVED S
(MG/L (| OTAS-
SIUM,
DIS-
OLVED
MG/L
S K) | ALKA-
LINITY
LAB
(MG/I
AS
CACO | SULI
DIS
SOI
(MC | FATE R
S- D
LVED S
S/L (| IDE,
IS-
OLVED
MG/L | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | CONSTI- | SOLIDS,
RESIDUE
AT 105
DEG. C,
TOTAL
(MG/L) | SOLIDS,
VOLA-
TILE ON
IGNI-
TION,
TOTAL
(MG/L) | RESIDUE
TOTAL
FIXED
(MG/L) | | APR 1987 | | | | | | | | | | | | | | | 27
May | 2.8 | | | | - | | | | 49 | | 72 | 10 | 59 | | 26 | 3.8 | | | | - | | | | 81 | | 107 | 40 | 83 | | JUN
16 | 2.8 | | | | - | - - | | | 98 | | 98 | 38 | 60 | | AUG
03 | 4.0 | | | | | | | | 129 | | 130 | 47 | 90 | | SEP | 4.9 | | | | _ | | | | | | | | | | 28
NOV | 2.3 | | | | • | | | | 82 | | 89 | 49 | 46 | | 04 | 3.4 | | | | | | | | 89 | | 90 | 63 | 27 | | DEC
02 | 2.7 | | | | - | | | | 59 | | 84 | 30 | 36 | | APR 1988
06 | 1.8 | 3.3 | 0.40 | 17 | 13 | 1 | 5.4 | 0.10 | 57 | 40 | 78 | 12 | 66 | | 18 | 3.1 | 5.7 | 0.40 | 31 | 1 | | 9.6 | 0.10 | 82 | | | 32 | 55 | | JUN
08 | 4.1 | 7.5 | 0.60 | 46 | 12 | 2 | 12 | 0.20 | 94 | 80 | 120 | 41 | 79 | | 20 | 5.0 | 9.4 | 0.70 | 52 | 11 | | 15 | 0.20 | 108 | 90 | 121 | 63 | 58 | | JUL
20 | 5.5 | 10 | 0.70 | 57 | 1 | l | 17 | 0.10 | 121 | 97 | 131 | 43 | 88 | | SEP
12 | 4.3 | 9.6 | 0.50 | 42 | | 9.9 | 15 | 0.10 | 104 | 80 | 118 | 36 | 82 | | OCT | | | | | | | | | | | | | | | 19
NOV | 5.5 | 9.7 | 0.90 | 53 | 13 | 2 | 15 | <0.10 | 108 | 94 | 115 | 43 | 72 | | 16 | 2.6 | 5.0 | 0.40 | 24 | 13 | 3 | 8.8 | 0.10 | 68 | 54 | 75 | 21 | 54 | | DATE | NITR
GEN
NITRI
TOTA
(MG/
AS N | , GEN,
TE NO2+NO3
L TOTAL
L (MG/L | GE | N,
NIA AI
'AL ' | NITRO-
GEN,
MMONIA
FOTAL
(MG/L
S NH4) | NITRO-
GEN,
ORGANIC
TOTAL
(MG/L
AS N) | MONIA | 1-
+ NIT
IC GE
L TOT
L (MG | N, G
AL TO | EN, PHO
TAL TO
G/L (M | | RUS PHA
PHO, ORT
S- DI
VED SOI
VL (MO | ATE,
THO,
IS-
LVED
G/L | | APR 1987 | | | | | | | | | | | | | | | 27
MAY | ND | 0.110 | 0. | 040 | 0.05 | 0.06 | 0.1 | 10 0 | .21 | 0.93 0 | .00 и | - | | | 26
JUN | ND | 0.080 | 0. | 020 | 0.03 | 0.08 | 0.1 | 10 0 | .18 | 0.80 0 | .010 NI | - | | | 16 | ND | 0.090 | 0. | 010 | 0.01 | 0.08 | 0.0 | 9 0 | .18 | 0.80 0 | .00 мг | - | | | AUG
03 | ND | ND | 0. | 020 | 0.03 | 0.12 | 0.1 | .4 - | - | 0 | .010 NI | | | | SEP
28 | ND | ND | ٥. | 010 | 0.01 | 0.21 | 0.2 | 22 - | - | 0 | .00 NI | , . | | | NOV
04 | ND | 0.100 | 0. | 020 | 0.03 | 0.15 | 0.1 | 17 0 | .27 | 1.2 0 | .010 NI |) - | - - | | DEC 02 | ND | 0.190 | | 010 | 0.01 | 0.19 | 0.2 | | | | | .00 (| 0.0 | | APR 1988 | | | | | | | | | | | | | | | 06
18 | ND
ND | 0.230
0.120 | | 010
0 40 | 0.01 | 0.23 | 0.2
0.1 | | | | .040 NE | | 0.0 | | JUN | | | | | | | | | | | | | | | 08
20 | ND
ND | ND
0.080 | | 010
010 | 0.01 | 0.14
0.19 | 0.1 | | | | .010 NE | | | | JUL
20 | ND | ND | | 070 | 0.09 | 0.19 | 0.2 | | | | .00 мг | | | | SEP
12 | | | | 020 | 0.03 | 0.10 | | | _ | 0 | .00 NI |) - | | | | | | | U4U | 0.03 | 0.10 | 0.1 | - | - | 0 | .00 NI | , . | - | | OCT | ND | ND | | | | | | _ | | | | | | | OCT
19
NOV | ND
ND | ND
ND | | 00 | 0.0 | 0.15 | 0.1 | 15 - | - | 0 | .010 NE |) - | · - | | 19 | | | 0. | | 0.0 | 0.15 | 0.1 | | | | .010 NE | | - -
 | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). # 04276500 BOUQUET RIVER AT WILLSBORD, NY - continued | DATE | ALUM-
INUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS AL) | ALUM-
INUM,
DIS-
SOLVED
(UG/L
AS AL) | CADMIUM
TOTAL
RECOV-
ERABLE
(UG/L
AS CD) | CADMIUM
DIS-
SOLVED
(UG/L
AS CD) | COPPER,
TOTAL
RECOV-
ERABLE
(UG/L
AS CU) | COPPER,
DIS-
SOLVED
(UG/L
AS CU) | IRON,
TOTAL
RECOV-
ERABLE
(UG/L
AS FE) | IRON,
DIS-
SOLVED
(UG/L
AS FE) | LEAD,
TOTAL
RECOV-
ERABLE
(UG/L
AS PB) | LEAD,
DIS-
SOLVED
(UG/L
AS PB) | MANGA-
NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | |---|--|--|--|--|---|--|---|--|---|--|---| | APR 1987 | | | | | | | | | | | | | 27
May | | | <10 | | <10 | | 190 | | <100 | | 10 | | 26
JUN | | | <10 | | 20 | | 160 | | <5 | | 10 | | 16 | | | <10 | | <10 | | 200 | | < 5 | | 20 | | 03
SEP | | | <10 | | 20 | | 420 | | <5 | | 30 | | 28 | | | <1 | | 4 | | 250 | | <5 | | 10 | | NOV
04
DEC | | | <1 | | 3 | | 240 | | < 5 | | 10 | | 02 | | | <1 | 1.0 | 16 | 4 | 500 | | <5 | <5 | 10 | | APR 1988
06 | 740 | 60 | <1 | <1.0 | 3 | 1 | 720 | 77 | <5 | <5 | 20 | | 18
JUN | 120 | | <1 | | 2 | | 200 | | <5 | | 20 | | 08
20 | 80
100 | 20 | 2
<1 | <1.0 | 5
9 | 2 | 190
180 | 86
 | <5
<5 | <5
 | 20
20 | | JUL
20 | 100 | ~- | 1 | ~- | 7 | | 200 | | <5 | | 20 | | SEP
12 | 110 | | 1 | | 3 | | 200 | | <5 | | 10 | | ОСТ
19 | 60 | <10 | <1 | <1.0 | 6 | 4 | 210 | 96 | <5 | 5 | 20 | | NOV | | <10 | | | | 4 | | 96 | | | | | 16 | 180 | | 3 | | 31 | ~- | 310 | | 6 | | 10 | | | | | | | | | | | | | | | DATE | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN) | MERCURY
TOTAL
RECOV-
ERABLE
(UG/L
AS HG) | NICKEL,
TOTAL
RECOV-
ERABLE
(UG/L
AS NI) | NICKEL,
DIS-
SOLVED
(UG/L
AS NI) | ZINC,
TOTAL
RECOV-
ERABLE
(UG/L
AS ZN) | ZINC,
DIS-
SOLVED
(UG/L
AS ZN) | BROMO-
FORM
TOTAL
(UG/L) | CARBON-
TETRA-
CHLO-
RIDE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
DI-
BROMO-
METHANE
TOTAL
(UG/L) | CHLORO-
ETHANE
TOTAL
(UG/L) | | APR 1987 | NESE,
DIS-
SOLVED
(UG/L | TOTAL
RECOV-
ERABLE
(UG/L | TOTAL
RECOV-
ERABLE
(UG/L | DIS-
SOLVED
(UG/L | TOTAL
RECOV-
ERABLE
(UG/L
AS ZN) | DIS-
SOLVED
(UG/L | FORM
TOTAL
(UG/L) | TETRA-
CHLO-
RIDE
TOTAL
(UG/L) | BENZENE
TOTAL
(UG/L) | DI-
BROMO-
METHANE
TOTAL
(UG/L) | ETHANE
TOTAL
(UG/L) | | APR 1987
27
MAY
26 | NESE,
DIS-
SOLVED
(UG/L | TOTAL
RECOV-
ERABLE
(UG/L
AS HG) | TOTAL
RECOV-
ERABLE
(UG/L
AS NI) | DIS-
SOLVED
(UG/L
AS NI) | TOTAL
RECOV-
ERABLE
(UG/L | DIS-
SOLVED
(UG/L
AS ZN) | FORM
TOTAL | TETRA-
CHLO-
RIDE
TOTAL | BENZENE
TOTAL | DI-
BROMO-
METHANE
TOTAL | ETHANE
TOTAL | | APR 1987
27
MAY | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL
RECOV-
ERABLE
(UG/L
AS HG) | TOTAL
RECOV-
ERABLE
(UG/L
AS NI) | DIS-
SOLVED
(UG/L
AS NI) | TOTAL
RECOV-
ERABLE
(UG/L
AS ZN) | DIS-
SOLVED
(UG/L
AS ZN) | FORM TOTAL (UG/L) | TETRA-
CHLO-
RIDE
TOTAL
(UG/L) | BENZENE
TOTAL
(UG/L)
ND | DI-
BROMO-
METHANE
TOTAL
(UG/L) | ETHANE
TOTAL
(UG/L)
ND | | APR 1987
27
MAY
26
JUN
16 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL
RECOV-
ERABLE
(UG/L
AS HG)

<0.10 | TOTAL RECOV- ERABLE (UG/L AS NI) <100 <1 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV- ERABLE (UG/L AS ZN) <10 <10 20 | DIS-
SOLVED
(UG/L
AS ZN) | FORM TOTAL (UG/L) ND ND | TETRA-CHLO-RIDE TOTAL (UG/L) ND ND | BENZENE
TOTAL
(UG/L)
ND
ND | DI -
BROMO-
METHANE
TOTAL
(UG/L)
ND
ND | ETHANE
TOTAL
(UG/L)
ND
ND | | APR 1987
27
MAY
26
JUN
16
AUG
03
SEP | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV- ERABLE (UG/L AS HG) <0.10 <0.10 | TOTAL RECOV- ERABLE (UG/L AS NI) <100 <1 <1 <1 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV- ERABLE (UG/L AS ZN) <10 <10 20 <10 | DIS-
SOLVED
(UG/L
AS ZN) | FORM TOTAL (UG/L) ND ND ND | TETRA- CHLO- RIDE TOTAL (UG/L) ND ND ND | BENZENE
TOTAL
(UG/L)
ND
ND
ND | DI-
BROMO-
METHANE
TOTAL
(UG/L)
ND
ND
ND | ETHANE TOTAL (UG/L) ND ND ND ND | | APR 1987
27
MAY
26
JUN
16
AUG
03
SEP
28
NOV | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV- REABLE (UG/L AS HG) <0.10 <0.10 <0.10 <0.10 | TOTAL RECOV- REABLE (UG/L AS NI) <100 <1 <1 <1 <1 <1 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV- PERABLE (UG/L AS ZN) <10 <10 <10 <10 <10 | DIS-
SOLVED
(UG/L
AS ZN) | FORM TOTAL
(UG/L) ND ND ND ND ND | TETRA- CHLO- RIDE TOTAL (UG/L) ND ND ND ND ND | BENZENE TOTAL (UG/L) ND ND ND ND ND | DI-
BROMO-
METHANE
TOTAL
(UG/L)
ND
ND
ND | ETHANE TOTAL (UG/L) ND ND ND ND ND | | APR 1987 27 MAY 26 JUN 16 AUG 03 SEP 28 NOV 04 DEC | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV- ERABLE (UG/L AS HG) <0.10 <0.10 | TOTAL RECOV- ERABLE (UG/L AS NI) <100 <1 <1 <1 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV- ERABLE (UG/L AS ZN) <10 <10 20 <10 | DIS-
SOLVED
(UG/L
AS ZN) | FORM TOTAL (UG/L) ND ND ND | TETRA- CHLO- RIDE TOTAL (UG/L) ND ND ND | BENZENE
TOTAL
(UG/L)
ND
ND
ND | DI-
BROMO-
METHANE
TOTAL
(UG/L)
ND
ND
ND | ETHANE TOTAL (UG/L) ND ND ND ND | | APR 1987
27
MAY
26
JUN
16
AUG
03
SEP
28
NOV | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV- REABLE (UG/L AS HG) <0.10 <0.10 <0.10 <0.10 | TOTAL RECOV- REABLE (UG/L AS NI) <100 <1 <1 <1 <1 <1 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV- PERABLE (UG/L AS ZN) <10 <10 <10 <10 <10 | DIS-
SOLVED
(UG/L
AS ZN) | FORM TOTAL (UG/L) ND ND ND ND ND | TETRA- CHLO- RIDE TOTAL (UG/L) ND ND ND ND ND | BENZENE TOTAL (UG/L) ND ND ND ND ND | DI-
BROMO-
METHANE
TOTAL
(UG/L)
ND
ND
ND | ETHANE TOTAL (UG/L) ND ND ND ND ND | | APR 1987 27 MAY 26 JUN 16 AUG 03 SEP 28 NOV 04 DEC 02 APR 1988 06 18 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV- ERABLE (UG/L AS HG) <0.10 <0.10 <0.10 <0.10 | TOTAL RECOV- ERABLE (UG/L AS NI) <100 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV- ERABLE (UG/L AS ZN) <10 <10 <10 <10 <10 <10 <10 | DIS-
SOLVED
(UG/L
AS ZN) | FORM TOTTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TETRA- CHLO- RIDE TOTAL (UG/L) ND ND ND ND ND | BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | DI- BROMO- METHANE TOTAL (UG/L) ND ND ND ND ND | ETHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND | | APR 1987 27 MAY 26 JUN 16 AUG 03 SEP 28 NOV 04 DEC 02 APR 1998 06 18 JUN 08 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV- ERABLE (UG/L AS HG) <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 | TOTAL RECOV- ERABLE (UG/L AS NI) <100 <1 <1 <1 3 <1 3 4 4 4 3 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV- ERABLE (UG/L AS ZN) <10 <10 <10 <10 <10 <10 <10 <10 <10 <1 | DIS-
SOLVED
(UG/L
AS ZN) | FORM TOTTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TETRA- CHLO- RIDE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | DI- BROMO- METHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | ETHANE TOTAL (UG/L) ND | | APR 1987 27 MAY 26 JUN 16 AUG 03 SEP 28 NOV 04 DEC 02 APR 1988 06 18 JUN 08 20 JUL | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV- ERABLE (UG/L AS HG) <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 | TOTAL RECOV- REABLE (UG/L AS NI) <100 <1 <1 <1 3 <1 3 4 4 4 3 <1 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV- ERABLE (UG/L AS ZN) <10 <10 <10 <10 <10 <10 <10 <20 <10 <10 <20 <10 <10 <10 <10 | DIS-
SOLVED
(UG/L
AS ZN) | FORM TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TETRA-CHLO-RIDE RIDE TOTAL (UG/L) ND | BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | DI- BROMO- METHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | ETHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | | APR 1987 27 MAY 26 JUN 16 AUG 03 SEP 28 NOV 04 DEC 02 APR 1988 06 18 JUN 08 20 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV- ERABLE (UG/L AS HG) <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 | TOTAL RECOV- ERABLE (UG/L AS NI) <100 <1 <1 <1 3 <1 3 4 4 4 3 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV- ERABLE (UG/L AS ZN) <10 <10 <10 <10 <10 <10 <10 <10 <10 <1 | DIS-
SOLVED
(UG/L
AS ZN) | FORM TOTTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TETRA- CHLO- RIDE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | DI- BROMO- METHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | ETHANE TOTAL (UG/L) ND | | APR 1987 27 MAY 26 JUN 16 AUG 03 SEP 28 NOV 04 DEC 02 APR 1988 06 18 JUN 08 20 JUL 20 SEP | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV- ERABLE (UG/L AS HG) <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 | TOTAL RECOV- REABLE (UG/L AS NI) <100 <1 <1 <1 3 <1 3 4 4 4 3 <1 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV- ERABLE (UG/L AS ZN) <10 <10 <10 <10 <10 <10 <10 <20 <10 <10 <20 <10 <10 <10 <10 | DIS-
SOLVED
(UG/L
AS ZN) | FORM TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TETRA-CHLO-RIDE RIDE TOTAL (UG/L) ND | BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | DI- BROMO- METHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | ETHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | | APR 1987 27 MAY 26 JUN 16 AUG 03 SEP 28 NOV 04 DEC 02 APR 1988 06 18 JUN 08 20 JUL 20 SEP | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOVERAGE (UG/L AS HG) <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 | TOTAL RECOV- REABLE (UG/L AS NI) <100 <1 <1 <1 3 <1 3 4 4 3 <1 3 <1 3 | DIS-
SOLVED
(UG/L
AS NI) | TOTAL RECOV- PERABLE (UG/L AS ZN) <10 <10 <10 <10 <10 <10 <10 <10 <10 <1 | DIS-
SOLVED
(UG/L
AS ZN) | FORM TOTTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TETRA-CHLO-RIDE RIDE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | DI- BROMO- METHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | ETHANE TOTAL (UG/L) ND | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). # 04276500 BOUQUET RIVER AT WILLSBORO, NY - continued | DATE | CHLORO-
FORM
TOTAL
(UG/L) | CIS
1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | DI -
CHLORO-
BROMO-
METHANE
TOTAL
(UG/L) | METHYL-
BROMIDE
TOTAL
(UG/L) | METHYL-
CHLO-
RIDE
TOTAL
(UG/L) | METHYL-
ENE
CHLO-
RIDE
TOTAL
(UG/L) | 1,1,1-
TRI-
CHLORO-
ETHANE
TOTAL
(UG/L) | 1,1-DI-
CHLORO-
ETHANE
TOTAL
(UG/L) | 1,1-DI-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 1,1,2-
TRI-
CHLORO-
ETHANE
TOTAL
(UG/L) | 1,1,2,2
TETRA-
CHLORO-
ETHANE
TOTAL
(UG/L) | |---|--|---|--|---|---|--|---|---|---|---|--| | APR 1987
27 | ND | MAY
26 | ND | JUN
16 | ND | AUG
03 | ND ИD | ND | | SEP
28 | ND | NOV
04
DEC | ND | 02
APR 1988 | ND | 06
18
JUN | ND
ND | ND
ND | ND
ND | ND
ND | ND
ND | N D
ND | ND
ND | ND
ND | ND
ND | ND
ND | ND
ND | | 08
20 | ND
ND | JUL
20 | | ND
ND | ND | | | ND
ND | ND | ND | ND | ND | ND | | 20
SEP
12 | ND
0.1 | ND | ND | ND
ND | ND
ND | 1.0 | ND | ND | ND | ND | ND | | OCT
19 | ND | NOV
16 | ND | ND | ND | ND | ND | 0.5 | ND | ND | ND | ND | ND | | 10 | ND. | ND | ND | ND | ND | 0.5 | No | ND | ND | | | | | | | | | | | | | | | | | DATE | 1,2-DI-
CHLORO-
BENZENE
TOTAL
(UG/L) | 1,2-DI-
CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L) | 1,2-DI-
CHLORO-
PROPANE
TOTAL
(UG/L) | 1,2-
TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L) | 1,3-DI-
CHLORO-
BENZENE
TOTAL
(UG/L) | 1,4-DI-
CHLORO-
BENZENE
TOTAL
(UG/L) | TETRA-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | TRANS-
1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | TRI-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 2-
CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L) | VINYL
CHLO-
RIDE
TOTAL
(UG/L) | | DATE APR 1987 27 | CHLORO-
BENZENE
TOTAL | CHLORO-
ETHANE
WATER
WHOLE
TOTAL | CHLORO-
PROPANE
TOTAL | TRANSDI
CHLORO-
ETHENE
TOTAL | CHLORO-
BENZENE
TOTAL | CHLORO-
BENZENE
TOTAL | CHLORO-
ETHYL-
ENE
TOTAL | 1,3-DI-
CHLORO-
PROPENE
TOTAL | CHLORO-
ETHYL-
ENE
TOTAL | CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL | CHLO-
RIDE
TOTAL | | APR 1987 | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L) | CHLORO-
PROPANE
TOTAL
(UG/L) | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L) | CHLO-
RIDE
TOTAL
(UG/L) | | APR 1987
27
MAY
26
JUN
16 | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L) | CHLORO-
PROPANE
TOTAL
(UG/L) | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L) | CHLO-
RIDE
TOTAL
(UG/L) | | APR 1987
27
MAY
26
JUN
16
AUG
03 | CHLORO-
BENZENE
TOTAL
(UG/L)
ND |
CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L)
ND | CHLORO-
PROPANE
TOTAL
(UG/L)
ND | TRANSDI
CHLORO-
EPHEME
TOTAL
(UG/L)
ND | CHLORO-
BENZENE
TOTAL
(UG/L)
ND | CHLORO-
BENZENE
TOTAL
(UG/L)
ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND | CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L)
ND | CHLO-
RIDE
TOTAL
(UG/L)
ND | | APR 1987
27
MAY
26
JUN
16
AUG
03
SEP
28 | CHLORO-
BENZENE
TOTAL
(UG/L)
ND
ND | CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L)
ND
ND | CHLORO-
PROPANE
TOTAL
(UG/L)
ND
ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND | CHLORO-
BENZENE
TOTAL
(UG/L)
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND
ND | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
ND
ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND
ND | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND ND | CHLO-
RIDE
TOTAL
(UG/L)
ND
ND | | APR 1987 27 MAY 26 JUN 16 AUG 03 SEP 28 NOV 04 | CHLORO-
BENZENE
TOTAL
(UG/L)
ND
ND
ND | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND ND ND | CHLORO-
PROPANE
TOTAL
(UG/L)
ND
ND
ND | TRANSDI
CHLORO-
EPHENE
TOTAL
(UG/L)
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND
ND
ND | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
ND
ND
ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND
ND
ND | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND ND ND | CHLO-
RIDE
TOTAL
(UG/L)
ND
ND
ND | | APR 1987 27 MAY 26 JUN 16 AUG 03 SEP 28 NOV 04 DEC 02 | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND ND ND ND | CHLORO- PROPANE TOTAL (UG/L) ND ND ND ND | TRANSDI
CHLORO-
EPHENE
TOTAL
(UG/L)
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND
ND
ND | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
ND
ND
ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND
ND
ND | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND ND ND ND ND | CHLO- RIDE TOTAL (UG/L) ND ND ND ND | | APR 1987 27 MAY 26 JUN 16 AUG 03 SEP 28 NOV 04 DEC 02 APR 1988 06 | CHLORO- BENZENE TOTAL (UG/L) ND | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO- PROPANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-ETHYL-ENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-ETHYL-ENE ENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND | CHLO-RIDE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | | APR 1987 27 MAY 26 JUN 16 AUG 03 SEP 28 VOV 04 DEC 02 APR 1988 06 18 JUN | CHLORO- BENZENE TOTAL (UG/L) ND | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO- PROPANE TOTTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TRANSDI
CHLORO-
EPHENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-ETHYL-ENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-ETHYL-ENE ENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND | CHLO- RIDE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | | APR 1987 27 MAY 26 JUN 16 AUG 03 SEP 28 NOV 04 DEC 02 APR 1988 06 18 JUN 08 20 | CHLORO- BENZENE TOTAL (UG/L) ND | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO- PROPANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-ETHYL-ENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-ETHYL-ENE ENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND | CHLO-RIDE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | | APR 1987 27 MAY 26 JUN 16 AUG 03 SEP 28 NOV 04 DEC 02 APR 1988 06 18 JUN 08 20 JUL 20 | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-PROPANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TRANSDI
CHLORO-
EPHENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-ETHYL-ENE TOTAL (UG/L) ND | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-ETHYL-ENE ENE TOTAL (UG/L) ND | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND | CHLO-RIDE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | | APR 1987 27 MAY 26 JUN 16 AUG 03 SEP 28 NOV 04 DEC 02 APR 1988 06 18 JUN 08 20 JUL 20 SEP | CHLORO- BENZENE TOTAL (UG/L) ND | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-PROPANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TRANSDI
CHLORO-
EPHENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO- ETHYL- ENE ENE TOTAL (UG/L) ND | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-ETHYL-ENE ENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND | CHLO-RIDE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | | APR 1987 27 MAY 26 JUN 16 AUG 03 SEP 28 NOV 04 DEC 02 APR 1988 06 18 JUN 08 20 JUL 20 SEP | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-PROPANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO- ETHYL- ENE ENE TOTAL (UG/L) ND | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-ETHYL-ENE ENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND | CHLO-RIDE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). # 04276500 BOUQUET RIVER AT WILLSBORO, NY - continued # SUSPENDED SEDIMENT DISCHARGE | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND | SEDI-
MENT,
SUS-
PENDED
(MG/L) | SEDI-
MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY) | |----------|------|--|--|--| | JUN 1988 | | | | | | 08 | 1300 | 254 | 2 | 1.4 | | 20 | 1530 | 204 | 2 | 1.1 | | JUL | | | | | | 20 | 1300 | 213 | 5 | 2.9 | | SEP | | | | | | 12 | 1345 | | 6 | | | OCT | | | | | | 19 | 1300 | | 2 | | | NOV | | | | | | 16 | 1300 | 8 56 | 2 | 4.6 | # BED MATERIAL ANALYSES | DATE SEP 1987 28 SEP 1988 12 | T
B | | INUM, R RECOV. FM M BOT- TO OM MA- T TERIAL (| ECOV. NOTE TO SERVICE | MIUM, RE RECOV. FM M BOT- TOM OM MA- TE TERIAL (C | COV. REBOT- FM MA- TOM CRIAL TE | COV. REBOT- FM MA- TON KRIAL TE | COV. NE BOT- RE MA- FM CRIAL TOM JG/G TE | SE, RECOV. FM BOT- TOM MA- TE CRIAL (U G/G) AS | COV. RE
BOT- FM
MA- TOM
RIAL TE
G/G (U | KEL, ZINC, COV. RECOV. BOT- FM BOT- MA- TOM MA- RIAL TERIAL G/G (UG/G NI) AS ZN) <10 20 <100 <10 | |-------------------------------|---|--|--
---|---|---|---|---|--|---|---| | DATE
SEP 1987 | AROCLO
1221
IN
BOTTOM
MAT.
(UG/KG | AROCLO
1248
PCB
BOT.M | B 1254
PCB
AT BOT.MAT | 1260
PCB | IN BOT-
TOM MA-
T TERIAL | ALPHA
BHC
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | ATRA-
ZINE,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | BETA BENZENE HEXA- CHLOR- IDE BOT.MAT (UG/KG) | CHLOR-
DANE,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | CHLOR-
PYRIFOS
IN BOT.
MAT.
(UG/KG) | DELTA
BENZENE
HEXA-
CHLOR-
IDE
BOT.MAT
(UG/KG) | | 28 | | | | | | | | | | | | | SEP 1988
12 | ND | DATE | DI-
AZINON
TOTAL
IN BOT
TOM MA
TERIA
(UG/KG | TOTAL
- IN BO
- TOM MA
L TERL | L ENDO- | ENDO-
SULFAN
BETA
BOT.MA
(UG/KG | SULFATE
T BOT.MAT | ENDRIN,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | ENDRIN
ALDE-
HYDE
BOT.MAT
(UG/KG) | ETHION,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | HEPTA-
CHLOR,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | HEPTA-
CHLOR
EPOXIDE
TOT. IN
BOTTOM
MATL.
(UG/KG) | MALA-
THION,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | | SEP 1987
28 | | | | | | | | - - | | | | | SEP 1988
12 | ND NĎ | ND | | DATE | METH-
OXY-
CHLOR
TOT: I
BOTTO
MATI
(UG/KG | MIRE
TOTA
N IN BO
OM TOM M | L TOTAL
T- IN BOT-
A- TOM MA-
AL TERIAL | TOM MA | DDT, TOTAL IN BOT- TOM MA- L TERIAL | PARA-
THION,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | TOXA-
PHENE,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | BED
MAT.
FALL
DIAM.
% FINER
THAN
.004 MM | BED
MAT.
SIEVE
DIAM.
% FINER
THAN
.062 MM | BED
MAT.
SIEVE
DIAM.
% FINER
THAN
.125 MM | BED MAT. SIEVE DIAM. % FINER THAN 2.00 MM | | SEP 1987
28
SEP 1988 | | | -~ | | | | | 0 | E 2 | 7 | 100 | | 12 | ND 1 | 2 | 100 | | ### 04279015 LA CHUTE AT STATE HIGHWAY 22 AT TICONDEROGA, NY LOCATION.--Lat 43 50'38", long 73 25'57", Essex County, Hydrologic Unit 02010001, River Channel Gage on right bank 250 ft (76 m) downstream from International Paper Company "C" Mill Dam, 250 ft (76 m) upstream from Trout Brook, and 0.5 mi (0.8 km) downstream from upper ("A" Mill) Dam. DRAINAGE AREA. -- 244 mi2. PERIOD OF RECORD.--Water years 1987 to 1989. CHEMICAL DATA: 1987 (b), 1988 (c), 1989 (a). MINOR ELEMENT DATA: 1987 (b), 1988 (c), 1989 (a). PESTICIDE DATA: 1987 (b), 1988 (c), 1989 (a). ORGANIC DATA: PCB--1988 (b). NUTRIENT DATA: 1987 (b), 1988 (c), 1989 (a). BIOLOGICAL DATA: Bacteria--1987 (a). SEDIMENT DATA: 1988 (b), 1989 (a). REMARKS .-- Water-discharge data obtained from a discharge rating developed for this site. ### WATER-QUALITY DATA | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | SPE-
CIFIC
CON-
DUCT-
ANCE
LAB
(US/CM) | PH WATER WHOLE FIELD (STAND- ARD UNITS) | TEMPER-
ATURE
WATER
(DEG C) | TUR-
BID-
ITY
(NTU) | BARO-
METRIC
PRES-
SURE
(MM
OF
HG) | OXYGEN,
DIS-
SOLVED
(MG/L) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION) | COLI-
FORM,
TOTAL,
IMMED.
(COLS.
PER
100 ML) | FECAL
COLI-
FORM
24-HR
MEM.FIL
(COLS./
100 ML) | |-----------|------|--|---|--|---|--------------------------------------|------------------------------|--|-------------------------------------|--|--|--| | APR 1987 | | | | | | | | | | | | | | 28 | 1030 | | | | 7.6 | 8.5 | 3.6 | | 11.0 | | | | | MAY | | | | | | | | | | | | | | 27 | 1045 | | | 141 | 7.8 | 16.0 | 3.0 | | 9.6 | | | | | JUN
17 | 0830 | | | 111 | 7.8 | 19.0 | 2.4 | | 9.0 | | >120 | 24.0 | | AUG | 0830 | | | 111 | 7.8 | 19.0 | 2.4 | | 9.0 | | >120 | 24.0 | | 03 | 1045 | | | | 7.9 | 12.5 | 1.6 | | 8.6 | | | | | SEP | | | | | | | | | | | | | | 28 | 1145 | | | | 7.6 | 13.5 | 0.90 | | 10.1 | | | | | NOV | | | | | | | | | | | | | | 04
DEC | 1145 | | | | 7.6 | 14.5 | 3.5 | | 12.5 | | | | | 02 | 1130 | | | | 7.7 | 4.0 | 3.5 | | 17.7 | | | | | APR 1988 | 1130 | | | | • • • • | ••• | 2.0 | | | | | | | 06 | 1045 | 30 | 142 | 135 | 7.9 | 8.5 | | 760 | 12.2 | 104 | | | | 18 | 1130 | 70 | 133 | 137 | 8.1 | 10.5 | 28 | 746 | 11.1 | 102 | | | | JUN | | | | | | | | | | | | | | 08 | 1100 | 46 | 137 | 137 | 8.0 | 18.0 | 3.1 | | 9.5 | | | | | 20
JUL | 1330 | 46 | 138 | 134 | 7.8 | 25.5 | 0.90 | | 8.4 | | | | | 20 | 1115 | 59 | 144 | 124 | 8.2 | 25.0 | 1.5 | 762 | 8.6 | 104 | | | | SEP | 1113 | 32 | | 124 | 0.2 | 23.0 | 1.5 | 702 | 0.0 | 101 | | | | 12 | 1200 | 32 | 125 | 128 | 8.1 | 19.0 | 1.1 | 752 | 9.5 | 103 | | | | OCT | | | | | | | | | | | | | | 19 | 1115 | 63 | 138 | 140 | 7.8 | 12.0 | 1.6 | 762 | 10.8 | 100 | | | | NOV | 1200 | 262 | 100 | 1.44 | 7. | | F 6 | 260 | 12.6 | | | | | 16 | 1200 | 362 | 139 | 141 | 7.8 | 5.5 | 5.0 | 768 | 12.6 | 9 9 | | | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). ## 04279015 LA CHUTE AT STATE HIGHWAY 22 AT TICONDEROGA, NY - continued | DATE | HARD-
NESS
TOTAL
(MG/L
AS
CACO3) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K) | ALKA-
LINITY
LAB
(MG/L
AS
CACO3) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | SOLIDS,
RESIDUE
AT 105
DEG. C,
TOTAL
(MG/L) | |---|--|--|--|--|---|---|--|--|---|---|---|---| | APR
1987 | | | | | | | | | | | | | | 28
May | 59 | 18 | 3.5 | | | | | ~- | | 52 | | 82 | | 27
JUN | 53 | 16 | 3.2 | | | | | | | 73 | | 111 | | 17
AUG | 42 | 13 | 2.3 | | | | | | | 83 | | 96 | | 03
SEP | 52 | 16 | 3.0 | | | | | | | 76 | | 80 | | 28
NOV | 36 | 9.8 | 2.8 | | | | | | | 55 | | 58 | | 04
DEC | 60 | 17 | 4.2 | | | | | | | 62 | | 69 | | 02
APR 1988 | 51 | 15 | 3.3 | | | | | | | 64 | | 85 | | 06 | 4 9
50 | 14 | 3.3 | 6.2 | 0.60 | 38 | 12 | 10 | 0.10 | 82 | 69 | 90 | | JUN | | 15 | 3.0 | 4.9 | 0.60 | 44 | 12 | 8.2 | 0.10 | 105 | 70 | 124 | | 08
20 | 5 4
51 | 16
15 | 3.4
3.4 | 5.1
5.1 | 0.60
0.50 | 45
42 | 11
7.1 | 7.8
8.3 | 0.30
0.30 | 80
75 | 71
65 | 84
84 | | JUL
20 | 57 | 17 | 3.6 | 5.8 | 0.60 | 46 | 11 | 9.1 | 0.10 | 94 | 75 | 105 | | SEP
12 | 50 | 15 | 3.1 | 5.2 | 0.50 | 38 | 12 | 8.9 | 0.10 | 111 | 68 | 119 | | ∞T
19 | 57 | 17 | 3.5 | 5.7 | 0.90 | 44 | 11 | 8.7 | <0.10 | | 73 | 74 | | NOV
16 | 53 | 15 | 3.8 | 5.5 | 0.80 | 42 | 15 | 9.2 | 0.10 | 90 | 75 | 98 | | | SOLIDS, | | | | | | | Nambo | | | | NIOT | | DATE | VOLA-
TILE ON
IGNI-
TION,
TOTAL
(MG/L) | RESIDUE
TOTAL
FIXED
(MG/L) | NITRO-
GEN,
NITRITE
TOTAL
(MG/L
AS N) | NITRO-
GEN,
NO2+NO3
TOTAL
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS NH4) | NITRO-
GEN,
ORGANIC
TOTAL
(MG/L
AS N) | NITRO-
GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | NITRO-
GEN,
TOTAL
(MG/L
AS N) | NITRO-
GEN,
TOTAL
(MG/L
AS NO3) | PHOS-
PHORUS
TOTAL
(MG/L
AS P) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P) | | APR 1987 | TILE ON
IGNI-
TION,
TOTAL
(MG/L) | TOTAL
FIXED
(MG/L) | GEN,
NITRITE
TOTAL
(MG/L
AS N) | GEN,
NO2+NO3
TOTAL
(MG/L
AS N) | GEN,
AMMONIA
TOTAL
(MG/L
AS N) | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4) | GEN,
ORGANIC
TOTAL
(MG/L
AS N) | GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | GEN,
TOTAL
(MG/L
AS N) | GEN,
TOTAL
(MG/L
AS NO3) | PHORUS
TOTAL
(MG/L
AS P) | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P) | | APR 1987
28
MAY | TILE ON
IGNI-
TION,
TOTAL
(MG/L) | TOTAL
FIXED
(MG/L) | GEN, NITRITE TOTAL (MG/L AS N) ND | GEN,
NO2+NO3
TOTAL
(MG/L
AS N) | GEN,
AMMONIA
TOTAL
(MG/L
AS N) | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4) | GEN,
ORGANIC
TOTAL
(MG/L
AS N) | GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | GEN,
TOTAL
(MG/L
AS N) | GEN,
TOTAL
(MG/L
AS NO3) | PHORUS
TOTAL
(MG/L
AS P) | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P) | | APR 1987
28
MAY
27
JUN | TILE ON IGNI-TION, TOTAL (MG/L) | TOTAL
FIXED
(MG/L)
67 | GEN, NITRITE TOTAL (MG/L AS N) ND | GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
0.060
ND | GEN,
AMMONIA
TOTAL
(MG/L
AS N)
0.010
0.040 | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4)
0.01 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.08 | GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
0.09 | GEN,
TOTAL
(MG/L
AS N)
0.15 | GEN,
TOTAL
(MG/L
AS NO3)
0.66 | PHORUS
TOTAL
(MG/L
AS P)
0.010 | PHORUS ORTHO, DIS- SOLVED (MG/L AS P) ND 0.00 | | APR 1987
28
MAY
27
JUN
17 | TILE ON IGNI-TION, TOTAL (MG/L) 10 30 35 | TOTAL
FIXED
(MG/L)
67
81 | GEN,
NITRITE
TOTAL
(MG/L
AS N)
ND
ND | GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
0.060
ND | GEN,
AMMONIA
TOTAL
(MG/L
AS N)
0.010
0.040 | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4)
0.01
0.05 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.08
0.05 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.09 0.09 | GEN,
TOTAL
(MG/L
AS N) | GEN,
TOTAL
(MG/L
AS NO3) | PHORUS
TOTAL
(MG/L
AS P)
0.010
0.010 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
ND | | APR 1987
28
MAY
27
JUN
17
AUG
03
SEP | TILE ON IGNI-TION, TOTAL (MG/L) 10 30 35 | TOTAL
FIXED
(MG/L)
67
81
61
49 | GEN, NITRITE TOTAL (MG/L AS N) ND ND ND ND | GEN, NO2+NO3 TOTAL (MG/L AS N) 0.060 ND ND | GEN,
AMMONIA
TOTAL
(MG/L
AS N)
0.010
0.040
0.010 | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4)
0.01
0.05
0.01 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.08
0.05
0.06 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.09 0.09 0.07 | GEN,
TOTAL
(MG/L
AS N)
0.15 | GEN,
TOTAL
(MG/L
AS NO3)
0.66 | PHORUS
TOTAL
(MG/L
AS P)
0.010
0.010
0.010 | PHORUS ORTHO, DIS- SOLVED (MG/L AS P) ND 0.00 ND | | APR 1987
28
MAY
27
JUN
17
AUG
03
SEP
28
NOV | TILE ON IGNI-TION, TOTAL (MG/L) 10 30 35 29 38 | TOTAL
FIXED
(MG/L)
67
81
61
49
28 | GEN, NITRITE TOTAL (MG/L AS N) ND ND ND ND ND ND | GEN, NO2+NO3 TOTAL (MG/L AS N) 0.060 ND ND ND | GEN, AMMONIA TOTAL (MG/L AS N) 0.010 0.040 0.010 0.010 0.010 | GEN, AMMONIA TOTAL (MG/L AS NH4) 0.01 0.05 0.01 0.01 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.08
0.05
0.06
0.13 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.09 0.09 0.07 0.14 | GEN,
TOTAL
(MG/L
AS N)
0.15 | GEN,
TOTAL
(MG/L
AS NO3)
0.66 | PHORUS
TOTAL
(MG/L
AS P)
0.010
0.010
0.010
0.010 | PHORUS ORTHO, DIS- SOLVED (MG/L AS P) ND 0.00 ND ND | | APR 1987 28 MAY 27 JUN 17 AUG 03 SEP 28 NOV 04 DEC | TILE ON IGNI- TION, TOTAL (MG/L) 10 30 35 29 38 51 | TOTAL
FIXED
(MG/L)
67
81
61
49
28 | GEN, NITRITE TOTAL (MG/L AS N) ND ND ND ND ND ND | GEN, NO2+NO3 TOTAL (MG/L AS N) 0.060 ND ND ND ND | GEN, AMMONIA TOTAL (MG/L AS N) 0.010 0.040 0.010 0.010 0.000 | GEN, AMMONIA TOTAL (MG/L AS NH4) 0.01 0.05 0.01 0.01 0.01 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.08
0.05
0.06
0.13
0.15 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.09 0.09 0.07 0.14 0.15 | GEN,
TOTAL
(MG/L
AS N)
0.15 | GEN,
TOTAL
(MG/L
AS NO3)
0.66 | PHORUS
TOTAL
(MG/L
AS P)
0.010
0.010
0.010
0.010
0.000 | PHORUS ORTHO, DIS- SOLVED (MG/L AS P) ND 0.00 ND ND ND ND ND ND ND ND | | APR 1987 28 MAY 27 JUN 17 AUG 03 SEP 28 NOV 04 DEC 02 APR 1988 | TILE ON IGNI- TION, TOTAL (MG/L) 10 30 35 29 38 51 31 | TOTAL
FIXED
(MG/L)
67
81
61
49
28
23 | GEN, NITRITE TOTAL (MG/L AS N) ND | GEN, NO2+NO3 TOTAL (MG/L AS N) 0.060 ND | GEN, AMMONIA TOTAL (MG/L AS N) 0.010 0.040 0.010 0.010 0.010 0.010 ND | GEN, AMMONIA TOTAL (MG/L AS NH4) 0.01 0.05 0.01 0.01 0.0 0.01 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.08
0.05
0.06
0.13
0.15 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.09 0.07 0.14 0.15 0.20 0.11 | GEN,
TOTAL
(MG/L
AS N)
0.15 | GEN,
TOTAL
(MG/L
AS NO3)
0.66 | PHORUS TOTAL (MG/L AS P) 0.010 0.010 0.010 0.010 0.000 0.000 0.000 | PHORUS ORTHO, DIS- SOLVED (MG/L AS P) ND 0.00 ND ND 0.00 0.00 0.00 | | APR 1987 28 MAY 27 JUN 17 AUG 03 SEP 28 NOV 04 DEC 02 APR 1988 06 18 | TILE ON IGNI- TION, TOTAL (MG/L) 10 30 35 29 38 51 | TOTAL
FIXED
(MG/L)
67
81
61
49
28 | GEN, NITRITE TOTAL (MG/L AS N) ND ND ND ND ND ND | GEN, NO2+NO3 TOTAL (MG/L AS N) 0.060 ND ND ND ND | GEN, AMMONIA TOTAL (MG/L AS N) 0.010 0.040 0.010 0.010 0.000 | GEN, AMMONIA TOTAL (MG/L AS NH4) 0.01 0.05 0.01 0.01 0.01 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.08
0.05
0.06
0.13
0.15 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.09 0.09 0.07 0.14 0.15 | GEN,
TOTAL
(MG/L
AS N)
0.15 | GEN,
TOTAL
(MG/L
AS NO3)
0.66 | PHORUS
TOTAL
(MG/L
AS P)
0.010
0.010
0.010
0.010
0.000 | PHORUS ORTHO, DIS- SOLVED (MG/L AS P) ND 0.00 ND ND ND ND ND ND ND ND | | APR 1987 28 MAY 27 JUN 17 AUG 03 SEP 28 NOV 04 DEC 02 APR 1988 06 | TILE ON IGNI- TION, TOTAL (MG/L) 10 30 35 29 38 51 31 | TOTAL
FIXED
(MG/L)
67
81
61
49
28
23
42 | GEN, NITRITE TOTAL (MG/L AS N) ND | GEN, NO2+NO3 TOTAL (MG/L AS N) 0.060 ND ND ND ND ND ND O.070 0.080 | GEN, AMMONIA TOTAL (MG/L AS N) 0.010 0.040 0.010 0.010 0.010 ND | GEN, AMMONIA TOTAL (MG/L AS NH4) 0.01 0.05 0.01 0.01 0.0 0.01 0.01 0.05 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.08
0.05
0.06
0.13
0.15
0.19 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.09 0.09 0.07 0.14 0.15 0.20 0.11 0.17 0.16 0.18 | GEN,
TOTAL
(MG/L
AS N)
0.15

0.18 | GEN,
TOTAL
(MG/L
AS NO3)
0.66

0.80 | PHORUS TOTAL (MG/L AS P) 0.010 0.010 0.010 0.010 0.010 0.000 0.000 0.010 0.010 0.010 | PHORUS ORTHO, ORTHO, DIS-SOLVED (MG/L AS P) ND ND ND ND ND ND ND ND ND N | | APR 1987 28 MAY 27 JUN 17 AUG 03 SEP 28 NOV 04 DEC 02 APR 1988 06 18 JUN 08 | TILE ON IGNI- TION, TOTAL (MG/L) 10 30 35 29 38 51 31 10 38 25 | TOTAL
FIXED
(MG/L)
67
81
61
49
28
23
42
80
86
59 | GEN, NITRITE TOTAL (MG/L AS N) ND | GEN, NO2+NO3 TOTAL (MG/L AS N) 0.060 ND | GEN, AMMONIA TOTAL (MG/L AS N) 0.010 0.040 0.010 0.010 0.010 0.010 ND 0.010 0.040 0.010 | GEN, AMMONIA TOTAL (MG/L AS NH4) 0.01 0.05 0.01 0.01 0.01 0.01 0.05 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.08
0.05
0.06
0.13
0.15
0.19 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.09 0.07 0.14 0.15 0.20 0.11 0.17 0.16 0.18 0.20 | GEN,
TOTAL
(MG/L
AS N)
0.15

0.18
0.25

0.31 | GEN,
TOTAL
(MG/L
AS NO3)
0.66

0.80
1.1 | PHORUS TOTAL (MG/L AS P) 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 | PHORUS ORTHO, DIS- SOLVED (MG/L AS P) ND 0.00 ND ND ND ND ND ND ND ND ND | | APR 1987 28 MAY 27 JUN 17 AUG 03 SEP 28 NOV 04 DEC 02 APR 1988 06 18 JUN 08 20 JUL | TILE ON IGNI- IGNI- TION, TOTAL (MG/L) 10 30 35 29
38 51 31 10 38 25 45 | TOTAL
FIXED
(MG/L)
67
81
61
49
28
23
42
80
86
59 | GEN, NITRITE TOTAL (MG/L AS N) ND | GEN, NO2+NO3 TOTAL (MG/L AS N) 0.060 ND ND ND ND ND ND ND O.070 0.080 ND 0.130 ND | GEN, AMMONIA TOTAL (MG/L AS N) 0.010 0.040 0.010 0.010 0.010 0.010 ND 0.010 0.010 0.010 0.010 | GEN, AMMONIA TOTAL (MG/L AS NH4) 0.01 0.05 0.01 0.01 0.0 0.01 0.01 0.05 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.08
0.05
0.06
0.13
0.15
0.19 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.09 0.09 0.07 0.14 0.15 0.20 0.11 0.17 0.16 0.18 | GEN,
TOTAL
(MG/L
AS N)
0.15

0.18
0.25

0.31 | GEN,
TOTAL
(MG/L
AS NO3)
0.66

0.80
1.1 | PHORUS TOTAL (MG/L AS P) 0.010 0.010 0.010 0.010 0.010 0.000 0.000 0.010 0.010 0.010 | PHORUS ORTHO, DIS- SOLVED (MG/L AS P) ND 0.00 ND ND ND ND ND ND ND ND ND | | APR 1987 28 MAY 27 JUN 17 AUG 03 SEP 28 NOV 04 DEC 02 APR 1988 06 18 JUN 08 20 JUL 20 SEP | TILE ON IGNI- TION, TOTAL (MG/L) 10 30 35 29 38 51 31 10 38 25 45 | TOTAL
FIXED
(MG/L)
67
81
61
49
28
23
42
80
86
59
39
64 | GEN, NITRITE TOTAL (MG/L AS N) ND | GEN, NO2+NO3 TOTAL (MG/L AS N) 0.060 ND | GEN, AMMONIA TOTAL (MG/L AS N) 0.010 0.040 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 | GEN, AMMONIA TOTAL (MG/L AS NH4) 0.01 0.05 0.01 0.01 0.01 0.05 0.01 0.01 0.05 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.08
0.05
0.06
0.13
0.15
0.19

0.16
0.12
0.19
0.19 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.09 0.07 0.14 0.15 0.20 0.11 0.17 0.16 0.18 0.20 0.19 | GEN,
TOTAL
(MG/L
AS N)
0.15

0.18
0.25

0.31 | GEN,
TOTAL
(MG/L
AS NO3)
0.66

0.80
1.1

1.4 | PHORUS TOTAL (MG/L AS P) 0.010 0.010 0.010 0.010 0.010 0.000 0.010 0.010 0.010 0.010 0.010 0.010 | PHORUS ORTHO, ORTHO, DIS-SOLVED (MG/L AS P) ND O.00 ND ND ND ND ND ND ND ND ND | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). ## 04279015 LA CHUTE AT STATE HIGHWAY 22 AT TICONDEROGA, NY - continued WATER-QUALITY DATA (continued) | | | | | | WATER-QU | DALITY DA | TA (CONTI | nuea) | | | | | |-------------------|---|--|----------------------------------|--|--|---|--|---|-------------------------------------|-----------------------------|--|---| | DATE | PHOS-
PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4) | ALUM-
INUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS AL) | INUM,
DIS-
SOLVED
(UG/L | ADMIUM
TOTAL
RECOV-
ERABLE
(UG/L
AS CD) | CADMIUM
DIS-
SOLVED
(UG/L
AS CD) | COPPER,
TOTAL
RECOV-
ERABLE
(UG/L
AS CU) | COPPER,
DIS-
SOLVED
(UG/L
AS CU) | IRON,
TOTAL
RECOV-
ERABLE
(UG/L
AS FE) | IRON,
DIS-
SOLVED
(UG/L | RECOV-
ERABLE S
(UG/L | EAD,
DIS-
SOLVED
UG/L
AS PB) | MANGA-
NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | | APR 1987 | | | | •• | | 10 | | 200 | | -100 | | 10 | | 28
MA Y | | | | <10 | | <10 | | 280 | | <100 | | | | 27
JUN | 0.0 | | | <10 | | <10 | | 240 | | <5 | | 20 | | 17 | | | | <10 | | 10 | | 170 | | <5 | | 10 | | AUG
03 | | | | <10 | | 20 | | 180 | | <5 | | 20 | | SEP
28 | | | | <1 | | 4 | | 90 | | <5 | | <10 | | NOV 04 | 0.0 | | | <1 | | 4 | | 130 | | < 5 | | <10 | | DEC | | | | | | | | | | | | | | 02
APR 1988 | 0.0 | | | <1 | | 9 | | 250 | | <5 | | <10 | | 06
18 | 0.0 | 140
1300 | <10
 | <1
2 | <1.0 | 5
8 | <1 | 170
1700 | 23 | <5
6 | <5
 | 10
50 | | JUN
08 | | 140 | 20 | <1 | <1.0 | 6 | 3 | 230 | 52 | < 5 | <5 | 20 | | 20 | | 90 | | <1 | | 4 | | 230 | | <5 | | 20 | | JUL
20 | | 110 | | <1 | | 5 | | 280 | | 7 | | 20 | | SEP
12 | | 90 | | <1 | | 4 | | 170 | | <5 | | <10 | | ОСТ
19 | | 130 | 20 | <1 | <1.0 | 4 | 2 | 220 | 46 | < 5 | <5 | <10 | | NOA | | | | 2 | | | | | 40 | < 5 | ~~ | 10 | | 16 | | 150 | | 2 | | 14 | | 280 | | ζ, | | 10 | | DATE | MANGA
NESE,
DIS-
SOLVE
(UG/L
AS MN | TOTAL
RECOV
D ERABL
(UG/L | TOTAL RECOV E ERABL UG/L | NICKE
- DIS-
E SOLV
(UG/ | RECO
FED ERAI | AL ZIN
OV- DI
BLE SOL
/L (UG | S- BROMO
VED FORM | M RIDE
AL TOTA | A-
- CHLORO
BENZEN
L TOTAL | | CHLOF
ETHAN
TOTA | ie
AL | | APR 1987 | , | | | | | | | | | | | | | 28
May | | | <10 | 0 | • | <10 - | - ND | ND | ND | ND | ND | | | 27
JUN | | <0.1 | .0 < | 1 | | <10 - | - ND | ND | ND | ND | ИD | | | 17
AUG | | <0.1 | .0 < | 1 | | <10 - | - ND | ND | ND | ND | ND | | | 03 | | <0.1 | .0 < | 1 | | <10 - | - ND | ND | ND | ND | ИD | | | SEP
28 | | <0.1 | .0 | 4 | | <10 - | ~ ND | ND | ND | ND | ND | | | NOV
04 | | <0.1 | .0 | 3 | | <10 - | - ир | ND | ND | ND | ND | | | DEC
02 | | <0.1 | | 1 | | | - ND | ND | ND | ND | ND | | | APR 1988 | 3 | | | | | | | | | | | | | 06
18 | | 7 <0.1
<0.1 | | 1
2 | | <10
20 - | 7 ND - ND | ND
ND | ND
ND | ND
ND | ND
ND | | | JUN
08 | | 9 <0.1 | .0 < | 1 | 1 . | <10 | 3 ND | ир | ND | ND | ND | | | 20
JUL | ~- | <0.1 | | 2 | | <10 ~ | | ND | ND | ND | ND | | | 20 | | <0.1 | .0 | 2 | | <10 ~ | - ND | ND | ND | ND | ND | | | SEP
12 | | <0.1 | .0 | 4 | | <10 - | - ND | ND | ND | ND | ND | | | ОСТ
19 | | 4 <0.1 | .0 | 4 | <1 < | <10 | 8 ND | ND | ND | ND | ND | | | NOV
16 | | <0.1 | | 6 | | | - ND | ND | ND | ND | ND | | | 10 | | 70.1 | .~ | - | Ì | | ND | ND | 110 | 110 | 110 | | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). # 04279015 LA CHUTE AT STATE HIGHWAY 22 AT TICONDEROGA, NY- continued | DATE | CHLORO-
FORM
TOTAL
(UG/L) | CIS
1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | DI -
CHLORO-
BROMO-
METHANE
TOTAL
(UG/L) | METHYL-
BROMIDE
TOTAL
(UG/L) | METHYL-
CHLO-
RIDE
TOTAL
(UG/L) | METHYL-
ENE
CHLO-
RIDE
TOTAL
(UG/L) | 1,1,1-
TRI-
CHLORO-
ETHANE
TOTAL
(UG/L) | 1,1-DI-
CHLORO-
ETHANE
TOTAL
(UG/L) | 1,1-DI-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 1,1,2-
TRI-
CHLORO-
ETHANE
TOTAL
(UG/L) | 1,1,2,2
TETRA-
CHLORO-
ETHANE
TOTAL
(UG/L) | |---|---|--|--|---|--|---|---|--|--|---|--| | APR 1987
28 | ND | MAY
27 | ND | ND | ND
ND | ND | Ј ИМ
17 | ND | AUG
03 | ND | SEP
28 | ND | 04 | ND | DEC
02
APR 1988 | ND | 06
18 | ND
ND | JUN
08 | ND | ND | | ND | | | | | | | | | 20 | ND | ND | ND
ND | ND | ND
ND | JUL
20
SEP | ND | 12
OCT | 0.1 | ND | ND | ИD | ИD | 0.9 | ND | ND | ND | ND | ND | | 19 | 0.1 | ND | 16 | 0.1 | ND | | | | | | | | | | | | | | DATE | 1,2-DI-
CHLORO-
BENZENE
TOTAL
(UG/L) | 1,2-DI-
CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L) | 1,2-DI-
CHLORO-
PROPANE
TOTAL
(UG/L) | 1,2-
TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L) | 1,3-DI-
CHLORO-
BENZENE
TOTAL
(UG/L) | 1,4-DI-
CHLORO-
BENZENE
TOTAL
(UG/L) | TETRA-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | TRANS-
1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | TRI-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 2-
CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L) | VINYL
CHLO-
RIDE
TOTAL
(UG/L) | | APR 1987 | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L) | CHLORO-
PROPANE
TOTAL
(UG/L) | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L) | CHLO-
RIDE
TOTAL
(UG/L) | | APR 1987
28
MAY | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L) | CHLORO-
PROPANE
TOTAL
(UG/L) | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L) | CHLO-
RIDE
TOTAL
(UG/L) | | APR 1987
28 | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L) | CHLORO-
PROPANE
TOTAL
(UG/L) |
TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L)
ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND | CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L)
ND | CHLO-
RIDE
TOTAL
(UG/L)
ND | | APR 1987
28
MAY
27
JUN | CHLORO-
BENZENE
TOTAL
(UG/L)
ND | CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L)
ND | CHLORO-
PROPANE
TOTAL
(UG/L)
ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L)
ND | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L) | CHLO-
RIDE
TOTAL
(UG/L) | | APR 1987
28
MAY
27
JUN
17
AUG
03
SEP
28 | CHLORO-BENZENE TOTAL (UG/L) ND ND ND | CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L)
ND
ND | CHLORO-
PROPANE
TOTAL
(UG/L)
ND
ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND ND | CHLORO-
BENZENE
TOTAL
(UG/L)
ND
ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND
ND | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
ND
ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND
ND | CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L)
ND
ND | CHLO-
RIDE
TOTAL
(UG/L)
ND
ND | | APR 1987
28
MAY
27
JUN
17
AUG
03
SEP
28
NOV
04 | CHLORO-
BENZENE
TOTAL
(UG/L)
ND
ND
ND | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND ND ND | CHLORO-PROPANE TOTAL (UG/L) ND ND ND ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND | CHLORO-BENZEME TOTAL (UG/L) ND ND ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND ND ND | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
ND
ND
ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND
ND | CHLORO-ETHYL-VINYL-ETHER TOTAL (UG/L) ND ND ND | CHLO-
RIDE
TOTAL
(UG/L)
ND
ND
ND | | APR 1987 28 MAY 27 JUN 17 AUG 03 SEP 28 NOV 04 DEC 02 | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND | CHLORO-
ETHANE WATER WHOLE TOTAL (UG/L) ND ND ND ND | CHLORO-PROPANE TOTAL (UG/L) ND ND ND ND ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND | CHLORO-BENZEME TOTAL (UG/L) ND ND ND ND ND | CHLORO-ETHYL-ENE ENE TOTAL (UG/L) ND ND ND ND | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND ND ND ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND
ND
ND | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND ND ND ND ND | CHLO-
RIDE
TOTAL
(UG/L)
ND
ND
ND | | APR 1987 28 MAY 27 JUN 17 AUG 03 SEP 28 NOV 04 DEC 02 APR 1988 06 | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND | CHLORO-PROPANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND | CHLORO-BENZEME TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-ETHYL-ENE TOTAL (UG/L) ND N | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-ETHYL-ENE ENE TOTAL (UG/L) ND | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND | CHLO- RIDE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | | APR 1987 28 MAY 27 JUN 17 AUG 03 SEP 28 NOV 04 DEC 02 APR 1988 06 18 JUN | CHLORO- BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND | CHLORO-PROPANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO- BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-ETHYL-ENE ENE TOTAL (UG/L) ND N | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-ETHYL-ENE ENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND | CHLO-
RIDE
TOTAL
(UG/L)
ND
ND
ND
ND
ND
ND | | APR 1987 28 MAY 27 JUN 17 AUG 03 SEP 28 NOV 04 DEC 02 APR 1988 066 18 | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND | CHLORO-PROPANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND | CHLORO-BENZEME TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-ETHYL-ENE TOTAL (UG/L) ND N | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-ETHYL-ENE ENE TOTAL (UG/L) ND | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND | CHLO- RIDE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | | APR 1987 28 MAY 27 JUN 17 AUG 03 SEP 28 NOV 04 DEC 02 APR 1988 06 18 JUN 08 20 | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND | CHLORO-PROPANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND
ND | CHLOROBENZEME TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-ETHYL-ENE TOTAL (UG/L) ND N | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND | CHLORO-ETHYL-ENE ENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND | CHLO- RIDE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | | APR 1987 28 MAY 27 JUN 17 AUG 03 SEP 28 NOV 04 DEC 02 APR 1988 06 18 JUN 08 20 JUL 20 | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND | CHLORO-PROPANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND
ND
ND | CHLOROBENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO- BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-ETHYL-ENE ENE TOTAL (UG/L) ND N | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-ETHYL-ENE ENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND | CHLO- RIDE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | | APR 1987 28 MAY 27 JUN 17 AUG 03 SEP 28 NOV 04 DEC 02 APR 1988 06 18 JUN 08 20 JUL 20 SEP | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND | CHLORO-PROPANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND
ND
ND
ND | CHLOROBENZEME TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-ETHYL-ENE ENE TOTAL (UG/L) ND N | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-ETHYL-ENE ENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND | CHLO- RIDE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). # 04279015 LA CHUTE AT STATE HIGHWAY 22 AT TICONDEROGA, NY - continued # SUSPENDED SEDIMENT DISCHARGE | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND | SEDI-
MENT,
SUS-
PENDED
(MG/L) | SEDI-
MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY) | |----------|------|--|--|--| | JUN 1988 | | | | | | 08 | 1100 | 46 | 3 | 0.37 | | 20 | 1330 | 46 | 2 | 0.25 | | JUL | | | | | | 20 | 1115 | 59 | 5 | 0.80 | | OCT | | | | | | 19 | 1115 | 63 | 2 | 0.34 | | NOV | | | | | | 16 | 1200 | 362 | 13 | 13 | # BED MATERIAL ANALYSES | DATE SEP 1987 28 SEP 1988 12 | TIME TE (MC | DLA- IN LE IN RE TOM FM NA- TOM CRIAL TE | IUM, RE
CCOV. FM
BOT- TOM
I MA- TE
CRIAL (U | COV. MI
BOT- RE
MA- FM
RIAL TOM | COV. FM BOT- TOM MA- TE CRIAL (C | ECOV. R
BOT- FM
MA- TO
ERIAL T
JG/G (| ECOV. R BOT- FM M MA- TO ERIAL T UG/G (| ECOV. N
BOT- R
M MA- FM
ERIAL TO:
UG/G T | ESE, R
ECOV. FM
BOT- TO
M MA- T
ERIAL (| ECOV. R
BOT- FM
M MA- TO
ERIAL T
UG/G (1 | ECOV. RE BOT- FM M MA- TOM ERIAL TE UG/G (U | NC,
COV.
BOT-
MA-
RIAL
G/G
ZN) | |----------------------------------|--|--|---|--|---|---|--|--|--|---|---|--| | DATE | AROCLOR
1221
IN
BOTTOM
MAT.
(UG/KG) | AROCLOR
1248
PCB
BOT.MAT
(UG/KG) | AROCLOR
1254
PCB
BOT.MAT
(UG/KG) | AROCLOR
1260
PCB
BOT.MAT
(UG/KG) | ALDRIN,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | ALPHA
BHC
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | ATRA-
ZINE,
TOTAL
IN BOT-
TOM MA-
TERIAI
(UG/KG) | IDE
BOT.MAT | CHLOR-DANE,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | CHLOR-
PYRIFOS
IN BOT.
MAT.
(UG/KG) | DELTA
BENZENE
HEXA-
CHLOR-
IDE
BOT.MAT
(UG/KG) | | | SEP 1987
28
SEP 1988
12 |
ND |
ND

ND |
ND |
E1.0 |
ND |
ND |
ND |
ND |
ND |
ND | | | DATE | DI-
AZINON,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | DI-
ELDRIN,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | ENDO-
SULFAN
ALPHA
BOT.MAT
(UG/KG) | ENDO-
SULFAN
BETA
BOT.MAT
(UG/KG) | ENDO-
SULFAN
SULFATE
BOT.MAT
(UG/KG) | ENDRIN,
TOTAL
IN BOT-
TOM MA-
TERIAI
(UG/KG) | ENDRIN
ALDE-
HYDE | ETHION,
TOTAL
IN BOT-
TOM MA- | HEPTA-
CHLOR,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | HEPTA-
CHLOR
EPOXIDE
TOT. IN
BOTTOM
MATL.
(UG/KG) | MALA-
THION,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | | | SEP 1987 | | | | | | | | | | | | | | SEP 1988
12 | ND | ND | 1.0 | ND | | DATE | METH-
OXY-
CHLOR,
TOT. IN
BOTTOM
MATL.
(UG/KG) | MIREX,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | P,P' DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) | P,P' DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) | P, P' DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) | PARA-
THION,
TOTAL
IN BOT-
TOM MA-
TERIAI
(UG/KG) | TOM MA- | FALL DIAM. FINER THAN | BED
MAT.
SIEVE
DIAM.
% FINER
THAN
.062 MM | BED
MAT.
SIEVE
DIAM.
% FINER
THAN
.125 MM | BED
MAT.
SIEVE
DIAM.
% FINER
THAN
2.00 MM | | | SEP 1987
28
SEP 1988 | | | | | | | | 1 | 5 | 14 | 97 | | | 12 | ND 5 | 12 | 100 | | | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). ### STREAMS TRIBUTARY TO ST. LAWRENCE RIVER #### 04295000 RICHELIEU RIVER (LAKE CHAMPLAIN) AT ROUSES POINT, NY LOCATION. -- Lat 44 59'46", long 73 21'37", Clinton County, Hydrologic Unit 02010006, on left bank at outlet of Lake Champlain in Rouses Point, and 1.0 mi south of Fort Montgomery ruins. Water-quality sampling site at stage station. DRAINAGE AREA. -- 8,277 mi 2 . PERIOD OF RECORD.--Water years 1966-67, 1969-72, 1974 to current year. CHEMICAL DATA: 1966-67 (a), 1969 (b), 1970 (c), 1971-72 (b), 1974-82 (c), 1983-86 (b), 1987 (c), 1988 (d), 1989 (b). MINOR ELEMENTS DATA: 1974-86 (b), 1987 (c), 1988 (d), 1989 (b). PESTICIDE DATA: 1976-79 (b), 1980 (a), 1982 (b), 1987 (b), 1988 (c), 1989 (a). ORGANIC DATA: OC--1974 (a), 1975-77 (b), 1978 (a), 1979-81 (c), 1988 (b), 1989 (a). PCB--1978-79 (b), 1980 (a), 1982 (b), 1988 (a). NUTRIENT DATA: 1970 (c), 1971-72 (b), 1974 (b), 1975-82 (c), 1983-86 (b), 1987 (c), 1988 (d), 1989 (b). BIOLOGICAL DATA: Bacteria--1974 (a), 1975-82 (c), 1983-86 (b), 1987-88 (b), 1989 (a). Phytoplankton--1975 (c), 1976-80 (b). SEDIMENT DATA: 1975-82 (c), 1983-87 (b), 1988-89 (c). REMARKS.--Water-quality data was also collected at this site for the National Stream-accounting network. #### WATER-OUALITY DATA | DATE | TIME | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | SPE-
CIFIC
CON-
DUCT-
ANCE
LAB
(US/CM) | PH WATER WHOLE FIELD (STAND- ARD UNITS) | TEMPER-
ATURE
WATER
(DEG C) | TUR-
BID-
ITY
(NTU) | BARO-
METRIC
PRES-
SURE
(MM
OF
HG) | OXYGEN,
DIS-
SOLVED
(MG/L) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION) | COLI-
FORM,
TOTAL,
IMMED.
(COLS.
PER
100 ML) | FECAL
COLI-
FORM
24-HR
MEM.FIL
(COLS./
100 ML) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3) | |----------------|------|---|--|---|--------------------------------------|------------------------------|--|-------------------------------------|--|--|--|---| | APR 1987 | | | | | | | | | | | | | | 27
May | 1450 | | | 8.1 | 12.0 | 0.80 | | 15.4 | | ~- | | 58 | | 26 | 1500 | | 161 | 8.5 | 19.0 | 0.40 | | 10.9 | | | | 60 | | JUN
16 | 1200 | | 156 | 8.0 | 19.5 | 0.60 | | 9.4 | | | | | | AUG | 1200 | | 136 | 0.0 | 13.3 | 0.00 | | J.4 | | | | | | 04
SEP | 0930 | | | 8.0 | 12.0 | 0.30 | | 8.3 | | | | 61 | | 29 | 1000 | | | 7.6 | 15.0 | 1.0 | | 10.1 | | 1800 | 50.0 | 21 | | иол | | | | | | | | | | | | | | 05
DEC | 0915 | | 172 | 7.6 | 11.5 | 1.8 | | 11.0 | | | | 63 | | 03 | 0900 | | | 7.8 | | 1.0 | | 18.4 | | >200 | 200 | 66 | | APR 1988
07 | 0915 | | 154 | | 4.0 | 0.60 | | 14.4 | | | | 57 | | 19 | 0915 | | 15 4
169 | 6.9
6.9 | 4.0
6.0 | 0.60
0.80 | | 13.3 | | | | 61 | | JUN | 0,50 | | 107 | 0.5 | 0.0 | 0.00 | | 13.3 | | | | 01 | | 09 | 0900 | ~- | 163 | 7.0 | 13.0 | 1.5 | | 10.3 | | | | 63 | | 21 | 0930 | ~- | 163 | 8.3 | 20.5 | 0.80 | | 9.8 | | | | 63 | | JUL
21 | 0900 | ~- | 167 | 6.9 | 23.0 | 0.50 | | 7.1 | | | | 64 | | AUG | 0,00 | | 107 | 0.5 | 23.0 | 0.30 | | 7.1 | | | | 04 | | 24 | 0830 | 156 | 159 | 8.2 | 20.0 | 1.4 | 760 | 8.4 | 93 | | | 61 | | SEP
12 | 1645 | 161 | 162 | 0.6 | 10.0 | | 752 | 10.Ž | 111 | | | 63 | | oct | 1043 | 101 | 102 | 8.6 | 19.0 | | 152 | 10.2 | 111 | | | 62 | | 19 | 1600 | 171 | 171 | 7.8 | 10.0 | 1.2 | 762 | 10.8 | 96 | | | 66 | | NOV
16 | 1600 | 167 | 170 | | | | 760 | 11 6 | 00 | | | - | | 10 | 1000 | 167 | 170 | 7.5 | 5.5 | 9.0 | 768 | 11.6 | 92 | | | 63 | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). # 04295000 RICHELIEU RIVER (LAKE CHAMPLAIN) AT ROUSES POINT, NY - continued | DATE | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K) | ALKA-
LINITY
LAB
(MG/L
AS
CACO3) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | SOLIDS,
RESIDUE
AT 105
DEG. C,
TOTAL
(MG/L) | SOLIDS, VOLA- TILE ON IGNI- TION, TOTAL (MG/L) | |---|--|--|--|---|--|---|--|--|--|---|---|---| | APR 1987 | | | | | | | | | | | | | | 27 | 17 | 3.7 | | | | | | | 63 | | 85 | 22 | | MAY | _ | | | | | | | | | | | | | 26 | 18 | 3.7 | | | | | | | 97 | | 108 | 36 | | JUN
16 | | | | | | | | | 107 | | 110 | 48 | | AUG | | | | | | | | | 107 | | 110 | •• | | 04 | 18 | 3.8 | | | | | | | 84 | | 89 | 38 | | SEP | | 1 2 | | | | | | | 01 | | 122 | 54 | | 29
NOV | 6.6 | 1.2 | | | | | | | 81 | | 122 | 34 | | 05 | 18 | 4.3 | | | | | | | 98 | | 103 | 61 | | DEC | | | | | | | | | | | | 2.0 | | 03
APR 1988 | 19 | 4.5 | | | | | | | 85 | | 103 | 38 | | 07 | 16 | 4.1 | 6.2 | 1.3 | 46 | 14 | 9.6 | 0.10 | 86 | 79 | 88 | 36 | | 19 | 17 | 4.4 | 7.0 | 1.3 | 51 | 14 | 9.6 | 0.10 | 100 | 84 | 120 | 34 | | JUN
09 | 18 | 4.3 | 7.1 | 1.4 | 51 | 14 | 9.9 | 0.20 | 94 | 86 | 97 | 35 | | 21 | 18 | 4.4 | 7.0 | 1.2 | 51 | 14 | 9.8 | 0.20 | 96 | 85 | 87 | 53 | | JUL | | | | | | | | | | | | | | 21
AUG | 18 | 4.6 | 7.3 | 1.2 | 51 | 14 | 10 | 0.10 | 107 | 86 | 122 | 44 | | 24 | 17 | 4.4 | 7.1 | 1.0 | 49 | 13 | 10 | 0.10 | 90 | 85 | | | | SEP | | | | | | | | | | | | | | 12 | 17 | 4.7 | 7.5 | 1.2 | 49 | 14 | 10 | 0.10 | | 84 | | | | ОСТ
19 | 19 | 4.6 | 7.8 | 1.6 | 53 | 15 | 11 | 0.10 | 91 | 91 | 96 | 16 | | NOV | 17 | 4.0 | 7.0 | 1.0 | 33 | 13 | ** | 0.10 | 71 | 71 | ,, | 10 | | 16 | 18 | 4.5 | 6.8 | 1.6 | 51 | 15 | 11 | 0.10 | 113 | 88 | 152 | 50 | | | | | | | | | | | | | | | | DATE | RESIDUE
TOTAL
FIXED
(MG/L) | NITRO-
GEN,
NITRITE
TOTAL
(MG/L
AS N) | NITRO-
GEN,
NO2+NO3
TOTAL
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS NH4) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS NH4) | NITRO-
GEN,
ORGANIC
TOTAL
(MG/L
AS N) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | NITRO-
GEN,
TOTAL
(MG/L
AS N) | NITRO-
GEN,
TOTAL
(MG/L
AS NO3) | PHOS-
PHORUS
TOTAL
(MG/L
AS P) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P) | | | TOTAL
FIXED | GEN,
NITRITE
TOTAL
(MG/L |
GEN,
NO2+NO3
TOTAL
(MG/L | GEN,
AMMONIA
TOTAL
(MG/L | GEN,
AMMONIA
TOTAL
(MG/L | GEN,
AMMONIA
DIS-
SOLVED
(MG/L | GEN,
ORGANIC
TOTAL
(MG/L | GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L | GEN,
TOTAL
(MG/L | GEN,
TOTAL
(MG/L | PHORUS
TOTAL
(MG/L | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L | | APR 1987 | TOTAL
FIXED
(MG/L) | GEN,
NITRITE
TOTAL
(MG/L
AS N) | GEN,
NO2+NO3
TOTAL
(MG/L
AS N) | GEN,
AMMONIA
TOTAL
(MG/L
AS N) | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4) | GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS NH4) | GEN,
ORGANIC
TOTAL
(MG/L
AS N) | GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | GEN,
TOTAL
(MG/L
AS N) | GEN,
TOTAL
(MG/L
AS NO3) | PHORUS
TOTAL
(MG/L
AS P) | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P) | | | TOTAL
FIXED | GEN,
NITRITE
TOTAL
(MG/L | GEN,
NO2+NO3
TOTAL
(MG/L | GEN,
AMMONIA
TOTAL
(MG/L | GEN,
AMMONIA
TOTAL
(MG/L | GEN,
AMMONIA
DIS-
SOLVED
(MG/L | GEN,
ORGANIC
TOTAL
(MG/L | GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L | GEN,
TOTAL
(MG/L | GEN,
TOTAL
(MG/L | PHORUS
TOTAL
(MG/L | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L | | APR 1987
27
MAY
26 | TOTAL
FIXED
(MG/L) | GEN,
NITRITE
TOTAL
(MG/L
AS N) | GEN,
NO2+NO3
TOTAL
(MG/L
AS N) | GEN,
AMMONIA
TOTAL
(MG/L
AS N) | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4) | GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS NH4) | GEN,
ORGANIC
TOTAL
(MG/L
AS N) | GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | GEN,
TOTAL
(MG/L
AS N) | GEN,
TOTAL
(MG/L
AS NO3) | PHORUS
TOTAL
(MG/L
AS P) | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P) | | APR 1987
27
MAY
26
JUN | TOTAL
FIXED
(MG/L)
70 | GEN, NITRITE TOTAL (MG/L AS N) ND ND | GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
0.160
0.110 | GEN,
AMMONIA
TOTAL
(MG/L
AS N)
0.010 | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4)
0.01 | GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS NH4) | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.11 | GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
0.12 | GEN,
TOTAL
(MG/L
AS N)
0.28 | GEN,
TOTAL
(MG/L
AS NO3)
1.2
0.93 | PHORUS
TOTAL
(MG/L
AS P)
0.010 | PHORUS ORTHO, DIS- SOLVED (MG/L AS P) ND | | APR 1987
27
MAY
26 | TOTAL
FIXED
(MG/L) | GEN, NITRITE TOTAL (MG/L AS N) ND | GEN,
NO2+NO3
TOTAL
(MG/L
AS N) | GEN,
AMMONIA
TOTAL
(MG/L
AS N) | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4) | GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS NH4) | GEN,
ORGANIC
TOTAL
(MG/L
AS N) | GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | GEN,
TOTAL
(MG/L
AS N) | GEN,
TOTAL
(MG/L
AS NO3) | PHORUS
TOTAL
(MG/L
AS P) | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P) | | APR 1987
27
MAY
26
JUN
16
AUG
04 | TOTAL
FIXED
(MG/L)
70 | GEN, NITRITE TOTAL (MG/L AS N) ND ND | GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
0.160
0.110 | GEN,
AMMONIA
TOTAL
(MG/L
AS N)
0.010 | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4)
0.01 | GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS NH4) | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.11 | GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
0.12 | GEN,
TOTAL
(MG/L
AS N)
0.28 | GEN,
TOTAL
(MG/L
AS NO3)
1.2
0.93 | PHORUS
TOTAL
(MG/L
AS P)
0.010 | PHORUS ORTHO, DIS- SOLVED (MG/L AS P) ND | | APR 1987
27
MAY
26
JUN
16
AUG
04
SEP | TOTAL
FIXED
(MG/L)
70
72
62
54 | GEN, NITRITE TOTAL (MG/L AS N) ND ND ND ND | GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
0.160
0.110
0.120
ND | GEN,
AMMONIA
TOTAL
(MG/L
AS N)
0.010
0.030
<0.010 | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4)
0.01
0.04 | GEN, AMMONIA DIS- SOLVED (MG/L AS NH4) | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.11
0.07 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.12 0.10 0.16 0.18 | GEN,
TOTAL
(MG/L
AS N)
0.28
0.21 | GEN,
TOTAL
(MG/L
AS NO3)
1.2
0.93
1.2 | PHORUS
TOTAL
(MG/L
AS P)
0.010
0.010
0.010 | PHORUS ORTHO, DIS- SOLVED (MG/L AS P) ND ND ND | | APR 1987
27
MAY
26
JUN
16
AUG
04
SEP
29 | TOTAL
FIXED
(MG/L)
70
72
62 | GEN, NITRITE TOTAL (MG/L AS N) ND ND | GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
0.160
0.110 | GEN,
AMMONIA
TOTAL
(MG/L
AS N)
0.010
0.030
<0.010 | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4)
0.01 | GEN, AMMONIA DIS- SOLVED (MG/L AS NH4) | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.11 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.12 0.10 0.16 | GEN,
TOTAL
(MG/L
AS N)
0.28
0.21 | GEN,
TOTAL
(MG/L
AS NO3)
1.2
0.93 | PHORUS
TOTAL
(MG/L
AS P)
0.010
0.010 | PHORUS ORTHO, DIS- SOLVED (MG/L AS P) ND ND | | APR 1987
27
MAY
26
JUN
16
AUG
04
SEP
29
NOV | TOTAL
FIXED
(MG/L)
70
72
62
54 | GEN, NITRITE TOTAL (MG/L AS N) ND ND ND ND | GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
0.160
0.110
0.120
ND | GEN,
AMMONIA
TOTAL
(MG/L
AS N)
0.010
0.030
<0.010 | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4)
0.01
0.04 | GEN, AMMONIA DIS- SOLVED (MG/L AS NH4) | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.11
0.07 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.12 0.10 0.16 0.18 | GEN,
TOTAL
(MG/L
AS N)
0.28
0.21 | GEN,
TOTAL
(MG/L
AS NO3)
1.2
0.93
1.2 | PHORUS
TOTAL
(MG/L
AS P)
0.010
0.010
0.010 | PHORUS ORTHO, DIS- SOLVED (MG/L AS P) ND ND ND | | APR 1987 27 MAY 26 JUN 16 AUG 04 SEP 29 NOV 05 DEC | TOTAL
FIXED
(MG/L)
70
72
62
54
63
42 | GEN, NITRITE TOTAL (MG/L AS N) ND ND ND ND ND ND ND | GEN, NO2+NO3 TOTAL (MG/L AS N) 0.160 0.110 0.120 ND ND 0.120 | GEN, AMMONIA TOTAL (MG/L AS N) 0.010 0.030 <0.010 <0.010 0.010 0.010 | GEN, AMMONIA TOTAL (MG/L AS NH4) 0.01 0.04 0.01 0.01 | GEN, AMMONIA DIS- SOLVED (MG/L AS NH4) | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.11
0.07

0.25
0.21 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.12 0.10 0.16 0.18 0.26 | GEN,
TOTAL
(MG/L
AS N)
0.28
0.21
0.28 | GEN,
TOTAL
(MG/L
AS NO3)
1.2
0.93
1.2

1.5 | PHORUS
TOTAL
(MG/L
AS P)
0.010
0.010
0.010
0.010
0.010 | PHORUS ORTHO, DIS- SOLVED (MG/L AS P) ND ND ND ND ND ND ND ND ND N | | APR 1987 27 MAY 26 JUN 16 AUG 04 SEP 29 NOV 05 DEC 03 | TOTAL
FIXED
(MG/L)
70
72
62
54
63 | GEN, NITRITE TOTAL (MG/L AS N) ND ND ND ND ND | GEN, NO2+NO3 TOTAL (MG/L AS N) 0.160 0.110 0.120 ND | GEN, AMMONIA TOTAL (MG/L AS N) 0.010 0.030 <0.010 <0.010 0.010 | GEN,
AMMONIA
TOTAL
(MG/L
AS NH4)
0.01
0.04

0.01 | GEN, AMMONIA DIS- SOLVED (MG/L AS NH4) | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.11
0.07 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.12 0.10 0.16 0.18 | GEN,
TOTAL
(MG/L
AS N)
0.28
0.21
0.28 | GEN,
TOTAL
(MG/L
AS NO3)
1.2
0.93
1.2 | PHORUS
TOTAL
(MG/L
AS P)
0.010
0.010
0.010
0.010 | PHORUS ORTHO, DIS- SOLVED (MG/L AS P) ND ND ND ND | | APR 1987 27 MAY 26 JUN 16 AUG 04 SEP 29 NOV 05 DEC 03 APR 1988 07 | TOTAL
FIXED
(MG/L)
70
72
62
54
63
42
48
52 | GEN, NITRITE TOTAL (MG/L AS N) ND | GEN, NO2+NO3 TOTAL (MG/L AS N) 0.160 0.110 0.120 ND ND 0.120 0.170 0.200 | GEN, AMMONIA TOTAL (MG/L AS N) 0.010 0.030 <0.010 0.010 0.010 0.010 ND | GEN, AMMONIA TOTAL (MG/L AS NH4) 0.01 0.04 0.01 0.01 0.01 | GEN, AMMONIA DIS- SOLVED (MG/L AS NH4) | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.11
0.07

0.25
0.21

0.27 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.12 0.10 0.16 0.18 0.26 0.22 0.12 | GEN,
TOTAL
(MG/L
AS N)
0.28
0.21
0.29

0.34
0.29 | GEN,
TOTAL
(MG/L
AS NO3)
1.2
0.93
1.2

1.5
1.3 | PHORUS
TOTAL
(MG/L
AS P)
0.010
0.010
0.010
0.010
0.010
0.010 | PHORUS ORTHO, DIS- SOLVED (MG/L AS P) ND ND ND ND ND ND ND ND ND N | | APR 1987 27 MAY 26 JUN 16 AUG 04 SEP 29 NOV 05 DEC 03 APR 1988 07 19 | TOTAL
FIXED
(MG/L)
70
72
62
54
63
42
48 | GEN, NITRITE TOTAL (MG/L AS N) ND | GEN, NO2+NO3 TOTAL (MG/L AS N) 0.160 0.110 0.120 ND ND 0.120 0.170 | GEN, AMMONIA TOTAL (MG/L AS N) 0.010 0.030 <0.010 <0.010 0.010 0.010 | GEN, AMMONIA TOTAL (MG/L AS NH4) 0.01 0.04 0.01 0.01 | GEN, AMMONIA DIS- SOLVED (MG/L AS NH4) | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.11
0.07

0.25
0.21 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.12 0.10 0.16 0.18 0.26 0.22 | GEN,
TOTAL
(MG/L
AS N)
0.28
0.21
0.28

0.34 | GEN,
TOTAL
(MG/L
AS NO3)
1.2
0.93
1.2

1.5 | PHORUS
TOTAL
(MG/L
AS P)
0.010
0.010
0.010
0.010
0.010 | PHORUS ORTHO, DIS- SOLVED (MG/L AS P) ND ND ND ND O.00 0.00 | | APR 1987 27 MAY 26 JUN 16 AUG 04 SEP 29 NOV 05 DEC 03 APR 1988 07 19 JUN | TOTAL
FIXED
(MG/L)
70
72
62
54
63
42
48
52
86 | GEN, NITRITE TOTAL (MG/L AS N) ND | GEN, NO2+NO3 TOTAL (MG/L AS N) 0.160 0.110 0.120 ND ND 0.120 0.170 0.200 0.130 | GEN, AMMONIA TOTAL (MG/L AS N) 0.010 0.030 <0.010 0.010 0.010 0.010 0.010 0.010 | GEN, AMMONIA TOTAL (MG/L AS NH4) 0.01 0.04 0.01 0.01 0.01 | GEN, AMMONIA DIS- SOLVED (MG/L AS NH4) | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.11
0.07

0.25
0.21

0.27
0.14 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.12 0.10 0.16 0.18 0.26 0.22 0.12 0.28 0.15 |
GEN,
TOTAL
(MG/L
AS N)
0.28
0.21
0.28

0.34
0.29
0.48
0.28 | GEN,
TOTAL
(MG/L
AS NO3)
1.2
0.93
1.2

1.5
1.3
2.1 | PHORUS
TOTAL
(MG/L
AS P)
0.010
0.010
0.010
0.010
0.010
0.010
0.010 | PHORUS ORTHO, DIS- SOLVED (MG/L AS P) ND ND ND ND ND ND ND ND ND O.00 O.00 | | APR 1987 27 MAY 26 JUN 16 AUG 04 SEP 29 NOV 05 DEC 03 APR 1988 07 19 | TOTAL
FIXED
(MG/L)
70
72
62
54
63
42
48
52 | GEN, NITRITE TOTAL (MG/L AS N) ND | GEN, NO2+NO3 TOTAL (MG/L AS N) 0.160 0.110 0.120 ND ND 0.120 0.170 0.200 | GEN, AMMONIA TOTAL (MG/L AS N) 0.010 0.030 <0.010 0.010 0.010 0.010 ND | GEN, AMMONIA TOTAL (MG/L AS NH4) 0.01 0.04 0.01 0.01 0.01 | GEN, AMMONIA DIS- SOLVED (MG/L AS NH4) | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.11
0.07

0.25
0.21

0.27 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.12 0.10 0.16 0.18 0.26 0.22 0.12 | GEN,
TOTAL
(MG/L
AS N)
0.28
0.21
0.29

0.34
0.29 | GEN,
TOTAL
(MG/L
AS NO3)
1.2
0.93
1.2

1.5
1.3 | PHORUS
TOTAL
(MG/L
AS P)
0.010
0.010
0.010
0.010
0.010
0.010 | PHORUS ORTHO, DIS- SOLVED (MG/L AS P) ND ND ND ND ND ND ND ND ND N | | APR 1987 27 MAY 26 JUN 16 AUG 04 SEP 29 NOV 05 DEC 03 APR 1988 07 19 JUN 09 JUL JUL JUL | TOTAL FIXED (MG/L) 70 72 62 54 63 42 48 52 86 62 34 | GEN, NITRITE TOTAL (MG/L AS N) ND | GEN, NO2+NO3 TOTAL (MG/L AS N) 0.160 0.110 0.120 ND 0.120 0.170 0.200 0.130 0.260 ND | GEN, AMMONIA TOTAL (MG/L AS N) 0.010 0.030 <0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 | GEN, AMMONIA TOTAL (MG/L AS NH4) 0.01 0.04 0.01 0.01 0.01 0.01 0.01 0.01 | GEN, AMMONIA DIS- SOLVED (MG/L AS NH4) | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.11
0.07

0.25
0.21

0.27
0.14
0.18
0.25 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.12 0.10 0.16 0.18 0.26 0.22 0.12 0.28 0.15 0.18 0.26 | GEN,
TOTTAL
(MG/L
AS N)
0.28
0.21
0.28

0.34
0.29
0.48
0.28 | GEN,
TOTAL
(MG/L
AS NO3)
1.2
0.93
1.2

1.5
1.3
2.1
1.2 | PHORUS TOTAL (MG/L AS P) 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 | PHORUS ORTHO, DIS- SOLVED (MG/L AS P) ND ND ND ND ND O.00 O.00 O.00 <0.010 | | APR 1987 27 MAY 26 JUN 16 AUG 04 SEP 29 NOV 05 DEC 03 APR 1988 07 19 JUN 09 21 JUL 21 | TOTAL
FIXED
(MG/L)
70
72
62
54
63
42
48
52
86 | GEN, NITRITE TOTAL (MG/L AS N) ND | GEN, NO2+NO3 TOTAL (MG/L AS N) 0.160 0.110 0.120 ND ND 0.120 0.170 0.200 0.130 0.260 | GEN, AMMONIA TOTAL (MG/L AS N) 0.010 0.030 <0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 | GEN, AMMONIA TOTAL (MG/L AS NH4) 0.01 0.04 0.01 0.01 0.01 0.01 0.01 | GEN, AMMONIA DIS- SOLVED (MG/L AS NH4) | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.11
0.07

0.25
0.21

0.27
0.14 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.12 0.10 0.16 0.18 0.26 0.22 0.12 0.28 0.15 0.18 | GEN,
TOTAL
(MG/L
AS N)
0.28
0.21
0.28

0.34
0.29
0.48
0.28 | GEN,
TOTAL
(MG/L
AS NO3)
1.2
0.93
1.2

1.5
1.3
2.1
1.2 | PHORUS
TOTAL
(MG/L
AS P)
0.010
0.010
0.010
0.010
0.010
0.010
0.010
0.010 | PHORUS ORTHO, DIS- SOLVED (MG/L AS P) ND ND ND ND ND ND ND O.00 ND O.00 O.00 | | APR 1987 27 MAY 26 JUN 16 SEP 29 NOV 05 DEC 03 APR 1988 07 19 JUL 21 AUG | TOTAL FIXED (MG/L) 70 72 62 54 63 42 48 52 86 62 34 | GEN, NITRITE TOTAL (MG/L AS N) ND | GEN, NO2+NO3 TOTAL (MG/L AS N) 0.160 0.110 0.120 ND 0.120 0.170 0.200 0.130 0.260 ND | GEN, AMMONIA TOTAL (MG/L AS N) 0.010 0.030 <0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 | GEN, AMMONIA TOTAL (MG/L AS NH4) 0.01 0.04 0.01 0.01 0.01 0.01 0.01 0.01 0.01 | GEN, AMMONIA DIS- SOLVED (MG/L AS NH4) | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.11
0.07

0.25
0.21

0.27
0.14
0.18
0.25 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.12 0.10 0.16 0.18 0.26 0.22 0.12 0.28 0.15 0.18 0.26 0.37 | GEN,
TOTTAL
(MG/L
AS N)
0.28
0.21
0.28

0.34
0.29
0.48
0.28 | GEN,
TOTAL
(MG/L
AS NO3)
1.2
0.93
1.2

1.5
1.3
2.1
1.2 | PHORUS TOTAL (MG/L AS P) 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 | PHORUS ORTHO, DIS- SOLVED (MG/L AS P) ND ND ND ND ND O.00 O.00 O.00 <0.010 | | APR 1987 27 MAY 26 JUN 16 AUG 04 SEP 29 NOV 05 DEC 03 APR 1988 07 19 JUN 09 21 JUL 21 AUG 24 SEP | TOTAL FIXED (MG/L) 70 72 62 54 63 42 48 52 86 62 34 78 | GEN, NITRITE TOTAL (MG/L AS N) ND | GEN, NO2+NO3 TOTAL (MG/L AS N) 0.160 0.110 0.120 ND 0.120 0.170 0.200 0.130 0.260 ND 0.080 | GEN, AMMONIA TOTAL (MG/L AS N) 0.010 0.030 <0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 | GEN, AMMONIA TOTAL (MG/L AS NH4) 0.01 0.04 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.01 | GEN, AMMONIA DIS- SOLVED (MG/L AS NH4) | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.11
0.07

0.25
0.21

0.27
0.14
0.18
0.25
0.34 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.12 0.10 0.16 0.18 0.26 0.22 0.12 0.28 0.15 0.18 0.26 0.37 <0.20 | GEN,
TOTAL
(MG/L
AS N)
0.28
0.21
0.28

0.34
0.29
0.48
0.28
0.44
 | GEN, TOTAL (MG/L AS NO3) 1.2 0.93 1.2 1.5 1.3 2.1 1.2 1.9 2.0 | PHORUS TOTAL (MG/L AS P) 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 | PHORUS ORTHO, DIS- SOLVED (MG/L AS P) ND ND ND ND ND ND ND ND ND N | | APR 1987 27 MAY 26 JUN 16 SEP 29 NOV 05 DEC 03 APR 1988 07 19 JUN 21 JUL AUG 24 SEP 12 | TOTAL FIXED (MG/L) 70 72 62 54 63 42 48 52 86 62 34 78 | GEN, NITRITE TOTAL (MG/L AS N) ND | GEN, NO2+NO3 TOTAL (MG/L AS N) 0.160 0.110 0.120 ND ND 0.120 0.170 0.200 0.130 0.260 ND 0.080 | GEN, AMMONIA TOTAL (MG/L AS N) 0.010 0.030 <0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 | GEN, AMMONIA TOTAL (MG/L AS NH4) 0.01 0.04 0.01 0.01 0.01 0.01 0.01 0.01 0.01 | GEN, AMMONIA DIS- SOLVED (MG/L AS NH4) | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.11
0.07

0.25
0.21

0.27
0.14
0.18
0.25
0.34 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.12 0.10 0.16 0.18 0.26 0.22 0.12 0.28 0.15 0.18 0.26 0.37 | GEN,
TOTAL
(MG/L
AS N)
0.28
0.21
0.28

0.34
0.29
0.48
0.28
0.44 | GEN,
TOTAL
(MG/L
AS NO3)
1.2
0.93
1.2

1.5
1.3
2.1
1.2 | PHORUS
TOTAL
(MG/L
AS P)
0.010
0.010
0.010
0.010
0.010
0.010
0.010
0.010
0.010
0.010 | PHORUS ORTHO, DIS- SOLVED (MG/L AS P) ND ND ND ND ND O.00 O.00 O.00 O.00 ND | | APR 1987 27 MAY 26 JUN 16 AUG 04 SEP 29 NOV 05 DEC 03 APR 1988 07 19 JUN 09 21 JUL 21 AUG 24 SEP 12 OCT | TOTAL FIXED (MG/L) 70 72 62 54 63 42 48 52 86 62 34 78 | GEN, NITRITE TOTAL (MG/L AS N) ND | GEN, NO2+NO3 TOTAL (MG/L AS N) 0.160 0.110 0.120 ND 0.120 0.170 0.200 0.130 0.260 ND 0.080 | GEN, AMMONIA TOTAL (MG/L AS N) 0.010 0.030 <0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 | GEN, AMMONIA TOTAL (MG/L AS NH4) 0.01 0.04 0.01 0.01 0.01 0.01 0.01 0.00 0.01 | GEN, AMMONIA DIS- SOLVED (MG/L AS NH4) | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.11
0.07

0.25
0.21

0.27
0.14
0.25
0.34
 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.12 0.10 0.16 0.18 0.26 0.22 0.12 0.28 0.15 0.18 0.26 0.37 <0.20 0.24 | GEN,
TOTTAL
(MG/L
AS N)
0.28
0.21
0.28

0.34
0.29
0.48
0.28
0.44
 | GEN, TOTAL (MG/L AS NO3) 1.2 0.93 1.2 1.5 1.3 2.1 1.2 1.9 2.0 | PHORUS TOTAL (MG/L AS P) 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 | PHORUS ORTHO, DIS- SOLVED (MG/L AS P) ND ND ND ND ND ND ND ND ND N | | APR 1987 27 MAY 26 JUN 16 SEP 29 NOV 05 DEC 03 APR 1988 07 19 JUN 21 JUL AUG 24 SEP 12 | TOTAL FIXED (MG/L) 70 72 62 54 63 42 48 52 86 62 34 78 | GEN, NITRITE TOTAL (MG/L AS N) ND | GEN, NO2+NO3 TOTAL (MG/L AS N) 0.160 0.110 0.120 ND 0.120 0.170 0.200 0.130 0.260 ND 0.080 | GEN, AMMONIA TOTAL (MG/L AS N) 0.010 0.030 <0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 | GEN, AMMONIA TOTAL (MG/L AS NH4) 0.01 0.04 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.01 0.00 0.01 | GEN, AMMONIA DIS- SOLVED (MG/L AS NH4) | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
0.11
0.07

0.25
0.21

0.27
0.14
0.18
0.25
0.34 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.12 0.10 0.16 0.18 0.26 0.22 0.12 0.28 0.15 0.18 0.26 0.37 <0.20 | GEN, TOTTAL (MG/L AS N) 0.28 0.21 0.28 0.34 0.29 0.49 0.28 0.44 0.45 | GEN, TOTAL (MG/L AS NO3) 1.2 0.93 1.2 1.5 1.3 2.1 1.2 1.9 2.0 | PHORUS TOTAL (MG/L AS P) 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 | PHORUS ORTHO, DIS- SOLVED (MG/L AS P) ND ND ND ND ND O.00 O.00 O.00 O.00 ND O.00 O.00 ND | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). # 04295000 RICHELIEU RIVER (LAKE CHAMPLAIN) AT ROUSES POINT, NY - continued | DATE | PHOS-
PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4) | ALUM-
INUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS AL) | ALUM-
INUM,
DIS-
SOLVED
(UG/L
AS AL) | CADMIUM
TOTAL
RECOV-
ERABLE
(UG/L
AS CD) | CADMIUM
DIS-
SOLVED
(UG/L
AS CD) | CHRO-
MIUM,
DIS-
SOLVED
(UG/L
AS CR) | COPPER,
TOTAL
RECOV-
ERABLE
(UG/L
AS CU) | COPPER,
DIS-
SOLVED
(UG/L
AS CU) | IRON,
TOTAL
RECOV-
ERABLE
(UG/L
AS FE) | IRON,
DIS-
SOLVED
(UG/L
AS FE) | LEAD,
TOTAL
RECOV-
ERABLE
(UG/L
AS PB) | LEAD,
DIS-
SOLVED
(UG/L
AS PB) | |--|--
--|---|--|--|---|---|--|---|--|--|--| | APR 1987 | | | | | | | | | | | | | | 27
May | | | | <10 | | | <10 | | 60 | | <100 | | | 26 | | | | <10 | | | <10 | | 20 | | <5 | | | JUN
16 | | | | <10 | | | <10 | ~- | 40 | | 7 | | | AUG
04
SEP | | | | <10 | | | 20 | | 30 | | <5 | | | 29
NOV | | | | <1 | <1.0 | | 2 | 2 | 80 | | <5 | <5 | | 05
DEC | 0.0 | | | <1 | | | 36 | ~- | 90 | | < 5 | | | 03
APR 1988 | 0.0 | | | <1 | | | 9 | | 50 | | <5 | | | 07
19 | 0.0 | 10
20 | <10
 | <1
<1 | <1.0 | | 2
6 | 3 | 40
40 | 13
 | <5
< 5 | <5
 | | JUN
09
21 | 0.0 | 4 0
30 | <10 | 2
<1 | <1.0 | | 6
3 | 2 | 80 | 17 | <5
<5 | < 5 | | JUL
21 | | <10 | | <1 | | | 3 | | 60
80 | | <5
<5 | | | AUG 24 | | | <10 | | <1.0 | <1 | | 1 | | 7 | | < 5 | | SEP
12 | | 10 | | 1 | | | 1 | | 20 | | <5 | | | ОСТ
19 | | 70 | <10 | 1 | <1.0 | | 5 | 2 | 120 | 8 | <5 | <5 | | NOV
16 | | 550 | | 2 | | | 9 | | 920 | ~- | 9 | | | | | | | | | | | | | | | | | DATE | MANGA-
NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN) | MERCURY
TOTAL
RECOV-
ERABLE
(UG/L
AS HG) | NICKEL,
TOTAL '
RECOV-
ERABLE
(UG/L
AS NI) | NICKEL,
DIS-
SOLVED
(UG/L
AS NI) | SILVER,
DIS-
SOLVED
(UG/L
AS AG) | ZINC,
TOTAL
RECOV-
ERABLE
(UG/L
AS ZN) | ZINC,
DIS-
SOLVED
(UG/L
AS ZN) | PHENOL
(C6H-
5OH)
TOTAL
(UG/L) | BROMO-
FORM
TOTAL
(UG/L) | CARBON-
TETRA-
CHLO-
RIDE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | | DATE APR 1987 27 | NESE,
TOTAL
RECOV-
ERABLE
(UG/L | NESE,
DIS-
SOLVED
(UG/L | TOTAL
RECOV~
ERABLE
(UG/L | TOTAL ' RECOV- ERABLE (UG/L AS NI) | DIS-
SOLVED
(UG/L | DIS-
SOLVED
(UG/L | TOTAL
RECOV-
ERABLE
(UG/L
AS 2N) | DIS-
SOLVED
(UG/L | (C6H-
50H)
TOTAL | FORM
TOTAL
(UG/L) | TETRA-
CHLO~
RIDE
TOTAL
(UG/L) | BENZENE
TOTAL
(UG/L) | | APR 1987 | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | NESE,
DIS-
SOLVED
(UG/L | TOTAL
RECOV-
ERABLE
(UG/L
AS HG) | TOTAL ' RECOV- ERABLE (UG/L | DIS-
SOLVED
(UG/L
AS NI) | DIS-
SOLVED
(UG/L
AS AG) | TOTAL
RECOV-
ERABLE
(UG/L
AS ZN) | DIS-
SOLVED
(UG/L
AS ZN) | (C6H-
5OH)
TOTAL
(UG/L) | FORM TOTAL (UG/L) ND | TETRA-
CHLO-
RIDE
TOTAL
(UG/L) | BENZENE TOTAL (UG/L) ND | | APR 1987
27
MAY
26
JUN
16 | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL
RECOV-
ERABLE
(UG/L
AS HG) | TOTAL 'RECOV-
ERABLE (UG/L
AS NI) | DIS-
SOLVED
(UG/L
AS NI) | DIS-
SOLVED
(UG/L
AS AG) | TOTAL
RECOV-
ERABLE
(UG/L
AS 2N) | DIS-
SOLVED
(UG/L
AS ZN) | (C6H-
5OH)
TOTAL
(UG/L) | FORM
TOTAL
(UG/L) | TETRA-
CHLO~
RIDE
TOTAL
(UG/L) | BENZENE
TOTAL
(UG/L) | | APR 1987
27
MAY
26
JUN
16
AUG
04 | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL
RECOV-
ERABLE
(UG/L
AS HG) | TOTAL 'RECOV-
ERABLE (UG/L
AS NI) | DIS-
SOLVED
(UG/L
AS NI) | DIS-
SOLVED
(UG/L
AS AG) | TOTAL
RECOV-
ERABLE
(UG/L
AS ZN)
60
<10 | DIS-
SOLVED
(UG/L
AS ZN) | (C6H-
5OH)
TOTAL
(UG/L) | FORM TOTAL (UG/L) ND ND | TETRA-
CHLO-
RIDE
TOTAL
(UG/L)
ND | BENZENE
TOTAL
(UG/L)
ND
ND | | APR 1987
27
MAY
26
JUN
16
AUG
04
SEP
29 | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN)
<10
10 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV- ERABLE (UG/L AS HG) <0.10 | TOTAL 'RECOV-
ERABLE (UG/L AS NI) | DIS-
SOLVED
(UG/L
AS NI) | DIS-
SOLVED
(UG/L
AS AG) | TOTAL RECOV- ERABLE (UG/L AS 2N) 60 <10 <10 | DIS-
SOLVED
(UG/L
AS ZN) | (C6H-
50H)
TOTAL
(UG/L) | FORM TOTAL (UG/L) ND ND | TETRA-CHLO-RIDE TOTAL (UG/L) ND ND | BENZENE
TOTAL
(UG/L)
ND
ND | | APR 1987
27
MAY
26
JUN
16
AUG
04
SEP
29
NOV
05 | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN)
<10
10
20 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOVERABLE (UG/L AS HG) | TOTAL 'RECOV-
ERABLE (UG/L AS NI) <100 <1 <1 7 | DIS-
SOLVED
(UG/L
AS NI) | DIS-
SOLVED
(UG/L
AS AG) | TOTAL RECOV- ERABLE (UG/L AS ZN) 60 <10 <10 <10 | DIS-
SOLVED
(UG/L
AS ZN) | (C6H-
50H)
TOTAL
(UG/L) | FORM TOTAL (UG/L) ND ND ND | TETRA-CHLO-RIDE TOTAL (UG/L) ND ND ND | BENZENE
TOTAL
(UG/L)
ND
ND
ND | | APR 1987
27
MAY
26
JUN
16
AUG
04
SEP
29
NOV
05
DEC
03 | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN)
<10
10
20
10
<10 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV-ERABLE (UG/L AS HG) | TOTAL 'RECOV- ERABLE (UG/L AS NI) <100 <1 <1 7 2 | DIS-
SOLVED
(UG/L
AS NI) | DIS-
SOLVED
(UG/L
AS AG) | TOTAL RECOV- ERABLE (UG/L AS ZN) 60 <10 <10 <10 <10 | DIS-
SOLVED
(UG/L
AS ZN) | (C6H-
50H)
TOTAL
(UG/L) | FORM TOTAL (UG/L) ND ND ND ND | TETRA-CHLO-RIDE RIDE TOTAL (UG/L) ND ND ND ND ND | BENZENE TOTAL (UG/L) ND ND ND ND ND | | APR 1987 27 MAY 26 JUN 16 AUG 04 SEP 29 NOV 05 DEC 03 APR 1988 07 19 | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) <10 10 20 10 <10 <10 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV-ERABLE (UG/L AS HG) <0.10 <0.10 <0.10 0.10 | TOTAL 'RECOV- REABLE (UG/L AS NI) <100 <1 <1 7 2 <1 | DIS-
SOLVED
(UG/L
AS NI) | DIS-
SOLVED
(UG/L
AS AG) | TOTAL RECOV- ERABLE (UG/L AS ZN) 60 <10 <10 <10 <10 <30 | DIS-
SOLVED
(UG/L
AS ZN) | (C6H-
50H)
TOTAL
(UG/L) | FORM TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TETRA-CHLO-RIDE TOTAL (UG/L) ND ND ND ND ND | BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | | APR 1987 27 MAY 26 JUN 16 AUG 04 SEP 29 NOV 05 DEC 03 APR 1988 07 19 JUN 09 21 | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) <10 10 20 10 <10 <10 <10 <10 <10 <10 <10 <10 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOV-ERABLE (UG/L AS HG) | TOTAL 'RECOV- REABLE (UG/L AS NI) <100 <1 <1 7 2 <1 4 2 | DIS-
SOLVED
(UG/L
AS NI) | DIS-
SOLVED
(UG/L
AS AG) | TOTAL RECOV- ERABLE (UG/L AS ZN) 60 <10 <10 <10 <10 <10 <10 <10 <10 <10 <1 | DIS-
SOLVED
(UG/L
AS ZN) | (C6H-
50H)
TOTAL
(UG/L) | FORM TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TETRA-CHLO-RIDE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | BENZENE TOTAL (UG/L) ND | | APR 1987 27 MAY 26 JUN 16 AUG 04 SEP 29 NOV 05 DEC 03 APR 1988 07 19 JUN 09 21 JUL 21 | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) <10 10 20 10 <10 <10 <10 <10 <10 <20 <10 <10 <10 <10 <10 <10 <10 <10 <10 <1 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOVERABLE (UG/L AS HG) <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 | TOTAL 'RECOV- REABLE (UG/L AS NI) <100 <1 <1 7 2 <1 4 2 <1 4 | DIS-
SOLVED
(UG/L
AS NI) | DIS-
SOLVED
(UG/L
AS AG) | TOTAL RECOV- REABLE (UG/L AS ZN) 60 <10 <10 <10 <10 <10 <10 <10 <10 <10 <1 | DIS-
SOLVED
(UG/L
AS ZN) | (C6H-
50H)
TOTAL
(UG/L) | FORM TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TETRA-CHLO-RIDE TOTAL (UG/L) ND | BENZENE TOTAL (UG/L) ND | | APR 1987 27 MAY 26 JUN 16 AUG 04 SEP 29 NOV 05 DEC 03 APR 1988 07 19 JUN 09 JUN 21 JUL 21 AUG 24 | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) <10 10 20 10 <10 <10 <10 <10 <20 20 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOVERABLE (UG/L AS HG) <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 | TOTAL 'RECOV- RECOV- ERABLE (UG/L AS NI) <100 <1 <1 7 2 <1 4 2 <1 4 2 <1 | DIS- SOLVED (UG/L AS NI) 1 1 3 | DIS-
SOLVED
(UG/L
AS AG) | TOTAL RECOV-ERABLE (UG/L AS ZN) 60 <10 <10 <10 <10 <10 <10 <10 <10 <10 <1 | DIS- SOLVED (UG/L AS ZN) <10 5 5 5 | (C6H-
50H)
TOTAL
(UG/L) | FORM TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TETRA-CHLO-RIDE RIDE TOTAL (UG/L) ND | BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | | APR 1987 27 MAY 26 JUN 16 SEP 29 NOV 05 DEC 03 APR 1988 07 19 JUN 21 AUG 24 SEP | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) <10 10 20 10 <10 <10 <10 <10 <10 <40 410 <40 40 | NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOVERABLE (UG/L AS HG) <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 | TOTAL RECOV- RECOV- ERABLE (UG/L AS NI) <100 <1 7 2 <1 4 2 <1 4 2 2 2 | DIS- SOLVED (UG/L AS NI) 1 1 3 | DIS-
SOLVED
(UG/L
AS AG) | TOTAL RECOV-ERABLE (UG/L AS ZN) 60 <10 <10 <10 <10 <10 <10 <10 <10 <10 <1 | DIS-
SOLVED
(UG/L
AS ZN) | (C6H-
50H)
TOTAL
(UG/L) | FORM TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TETRA-CHLO-RIDE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | BENZENE TOTAL (UG/L) ND | | APR 1987 27 MAY 26 JUN 16 AUG 04 SEP 29 NOV 05 DEC 03 APR 1988 07 19 JUN 21 AUG 24 SEP | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) <10 10 <10 <10 <10 <10 <10 <10 <10 <10 |
NESE,
DIS-
SOLVED
(UG/L
AS MN) | TOTAL RECOVERABLE (UG/L AS HG) | TOTAL 'RECOV- RECOV- ERABLE (UG/L AS NI) <100 <1 <1 7 2 <1 4 2 <1 4 2 <1 2 | DIS-
SOLVED (UG/L
AS NI) | DIS-
SOLVED
(UG/L
AS AG) | TOTAL RECOV-ERABLE (UG/L AS ZN) 60 <10 <10 <10 <10 <10 <10 <10 <10 <10 <1 | DIS-
SOLVED
(UG/L
AS ZN) | (C6H-
50H)
TOTAL
(UG/L) | FORM TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TETRA-CHLO-RIDE RIDE TOTAL (UG/L) ND | BENZENE TOTAL (UG/L) ND | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). ## 04295000 RICHELIEU RIVER (LAKE CHAMPLAIN) AT ROUSES POINT, NY - continued | DATE | CHLORO-
DI-
BROMO-
METHANE
TOTAL
(UG/L) | CHLORO-
ETHANE
TOTAL
(UG/L) | CHLORO-
FORM
TOTAL
(UG/L) | CIS
1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | DI-
CHLORO-
BROMO-
METHANE
TOTAL
(UG/L) | METHYL-
BROMIDE
TOTAL
(UG/L) | METHYL-
CHLO-
RIDE
TOTAL
(UG/L) | METHYL-
ENE
CHLO-
RIDE
TOTAL
(UG/L) | 1,1,1-
TRI-
CHLORO-
ETHANE
TOTAL
(UG/L) | 1,1-DI-
CHLORO-
ETHANE
TOTAL
(UG/L) | 1,1-DI-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 1,1,2-
TRI-
CHLORO-
ETHANE
TOTAL
(UG/L) | |--|--|--|---|--|---|---|---|---|---|--|---|--| | APR 1987
27 | ND | MAY
26 | ND | JUN
16 | ND | AUG
04 | ND | SEP
29 | ND | NOV
05 | ND | 03 | ND | APR 1988
07 | ND | 19
JUN | ND | 09 <i>.</i> | ND | ND | ND | ND | ND | ND | ND
ND | ND
ND | ND
ND | ND
ND | ND
ND | ND
ND | | 21
JUL | ND | ND | ND | ND | ND | ND | | | | | | | | 21
AUG | ND | 2 4
SEP | | | | | | | | | | | | | | 12 | ND | ND | 0.1 | ND | ND | ND | ND | 0.9 | ND | ND | ND | ND | | 19
NOV | ND | 16 | ND | ND | 0.1 | ND | | | | | | | | | | | | | | | DATE | 1,1,2,2
TETRA-
CHLORO-
ETHANE
TOTAL
(UG/L) | 1,2-DI-
CHLORO-
BENZENE
TOTAL
(UG/L) | 1,2-DI-
CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L) | 1,2-DI-
CHLORO-
PROPANE
TOTAL
(UG/L) | 1,2-
TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L) | 1,3-DI-
CHLORO-
BENZENE
TOTAL
(UG/L) | 1,4-DI-
CHLORO-
BENZENE
TOTAL
(UG/L) | TETRA-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | TRANS-
1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | TRI-
CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 2-
CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L) | VINYL
CHLO-
RIDE
TOTAL
(UG/L) | | APR 1987 | TETRA-
CHLORO-
ETHANE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L) | CHLORO-
PROPANE
TOTAL
(UG/L) | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L) | CHLO-
RIDE
TOTAL
(UG/L) | | APR 1987
27
MAY | TETRA-
CHLORO-
ETHANE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L) | CHLORO-
PROPANE
TOTAL
(UG/L) | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
BENZENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L) | CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L) | CHLO-
RIDE
TOTAL
(UG/L) | | APR 1987
27
MAY
26
JUN | TETRA-
CHLORO-
ETHANE
TOTAL
(UG/L)
ND | CHLORO-
BENZENE
TOTAL
(UG/L)
ND | CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L)
ND | CHLORO-
PROPANE
TOTAL
(UG/L)
ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND | CHLORO-
BENZENE
TOTAL
(UG/L)
ND | CHLORO-
BENZENE
TOTAL
(UG/L)
ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND | CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L)
ND | CHLO-
RIDE
TOTAL
(UG/L)
ND | | APR 1987
27
MAY
26
JUN
16
AUG | TETRA-
CHLORO-
ETHANE
TOTAL
(UG/L)
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND | CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L)
ND
ND | CHLORO-PROPANE TOTAL (UG/L) ND ND ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND ND | CHLORO-
BENZENE
TOTAL
(UG/L)
ND
ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND
ND | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
ND
ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND
ND | CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L)
ND
ND | CHLO-
RIDE
TOTAL
(UG/L)
ND
ND | | APR 1987
27
MAY
26
JUN
16
AUG
04
SEP | TETRA-CHLORO-ETHANE TOTAL (UG/L) ND ND ND ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND | CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L)
ND
ND | CHLORO-PROPANE TOTAL (UG/L) ND ND ND ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND ND ND ND | 1,3-DI-
CHLORO-
PROPENE
TOTAL
(UG/L)
ND
ND
ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND
ND
ND | CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L)
ND
ND | CHLO-
RIDE
TOTAL
(UG/L)
ND
ND | | APR 1987
27
MAY
26
JUN
16
AUG
04
SEP
29 | TETRA-CHLORO-ETHANE TOTAL (UG/L) ND ND ND ND ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND | CHLORO-
ETHANE
WATER
WHOLE
TOTAL
(UG/L)
ND
ND
ND | CHLORO-PROPANE TOTAL (UG/L) ND ND ND ND ND ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND | CHLORO- BENZENE TOTAL (UG/L) ND ND ND ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND ND ND ND ND ND ND | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND ND ND ND ND | CHLORO-
ETHYL-
ENE
TOTAL
(UG/L)
ND
ND
2.0
ND | CHLORO-
ETHYL-
VINYL-
ETHER
TOTAL
(UG/L)
ND
ND
ND | CHLO-
RIDE
TOTAL
(UG/L)
ND
ND
ND | | APR 1987 27 MAY 26 JUN 16 AUG 04 SEP 29 NOV 05 DEC | TETRA-CHLORO-ETHANE TOTAL (UG/L) ND ND ND ND ND ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND | CHLORO-ETHANE WATER WATER WHOLE TOTAL (UG/L) ND ND ND ND ND ND | CHLORO-PROPANE TOTAL (UG/L) ND ND ND ND ND ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND | CHLORO- BENZENE TOTAL (UG/L) ND ND ND ND ND ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND ND ND ND ND ND ND ND | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND ND ND ND ND ND | CHLORO-ETHYL-ENE ENE TOTAL (UG/L) ND ND ND ND ND ND | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND ND ND ND ND ND ND | CHLO-RIDE TOTAL (UG/L) ND ND ND ND ND ND | | APR 1987 27 MAY 26 JUN 16 AUG 04 SEP 29 NOV 05 DEC 03 APR 1988 | TETRA-CHLORO-CHLORO-CHANE TOTAL (UG/L) ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND | CHLORO- ETHANE WATER WHOLE TOTAL (UG/L) ND ND ND ND ND ND ND ND | CHLORO-PROPANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-ETHYL-ENE TOTAL (UG/L) ND | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-ETHYL-ENE ENE TOTAL (UG/L) ND ND ND ND ND ND ND ND | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND ND ND ND ND ND ND ND | CHLO-
RIDE
TOTAL
(UG/L)
ND
ND
ND
ND
ND | | APR 1987 27 MAY 26 JUN 16 AUG 04 SEP 29 NOV 05 DEC 03 APR 1988 07 19 | TETRA-CHLORO-CHLORO-CHANE TOTAL (UG/L) ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND | CHLORO-ETHANE WATER WATER WHOLE TOTAL (UG/L) ND ND ND ND ND ND | CHLORO-PROPANE TOTAL (UG/L) ND ND ND ND ND ND | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND | CHLORO- BENZENE TOTAL (UG/L) ND ND ND ND ND ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND ND ND ND ND ND ND ND | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND ND ND ND ND ND | CHLORO-ETHYL-ENE ENE TOTAL (UG/L) ND ND ND ND ND ND | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND ND ND ND ND ND ND | CHLO-RIDE TOTAL (UG/L) ND ND ND ND ND ND | | APR 1987 27 MAY 26 JUN 16 AUG 04 SEP 29 NOV 05 DEC 03 APR 1988 07 19 JUN 09 | TETRA-CHLORO-ETHANE TOTAL (UG/L) ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND | CHLORO-PROPANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N |
TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-ETHYL-ENE ENE TOTAL (UG/L) ND ND 19 ND N | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-ETHYL-ENE ENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND | CHLO-RIDE TOTAL (UG/L) ND | | APR 1987 27 MAY 26 JUN 16 AUG 04 SEP 29 NOV 05 DEC 03 APR 1988 07 19 JUN | TETRA-CHLORO-ETHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND | CHLORO-PROPANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-ETHYL-ENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-ETHYL-ENE ENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND | CHLO- RIDE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | | APR 1987 27 MAY 26 JUN 16 SEP 29 NOV 05 DEC 03 APR 1988 07 19 JUN 09 21 | TETRA-CHLORO-ETHANE TOTAL (UG/L) ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND | CHLORO-PROPANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-ETHYL-ENE ENE TOTAL (UG/L) ND ND 19 ND N | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-ETHYL-ENE ENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND | CHLO-RIDE TOTAL (UG/L) ND | | APR 1987 27 MAY 26 JUN 16 AUG 04 SEP 29 NOV 05 DEC 03 APR 1988 07 19 JUN 09 JUN 21 JUL 21 AUG 24 | TETRA-CHLORO-ETHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND | CHLORO-PROPANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-ETHYL-ENE ENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-ETHYL-ENE ENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND | CHLO- RIDE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | | APR 1987 27 MAY 26 JUN 16 AUG 04 SEP 29 NOV 05 DEC 03 APR 1988 07 19 JUN 09 21 JUL AUG 24 SEP 12 | TETRA-CHLORO-ETHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLOROBENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-ETHANE WATER WATER WHOLE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-PROPANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-ETHYL-ENE ENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-ETHYL-ENE ENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND | CHLO-RIDE RIDE TOTAL (UG/L) ND | | APR 1987 27 MAY 26 JUN 16 AUG 04 SEP 29 NOV 05 DEC 03 APR 1988 07 19 JUN 21 AUG 24 SEP | TETRA-CHLORO-ETHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND | CHLORO-PROPANE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | TRANSDI
CHLORO-
ETHENE
TOTAL
(UG/L)
ND
ND
ND
ND
ND
ND
ND
ND
ND | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-BENZENE TOTAL (UG/L) ND | CHLORO-ETHYL-ENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | 1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-ETHYL-ENE ENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND N | CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND | CHLO-RIDE TOTAL (UG/L) ND | # 04295000 RICHELIEU RIVER (LAKE CHAMPLAIN) AT ROUSES POINT, NY - continued # SUSPENDED SEDIMENT DISCHARGE | DATE | TIME | SEDI-
MENT,
SUS-
PENDED
(MG/L) | |----------------|-------|--| | APR 1987 | | | | 27 | 1450 | | | MAY | 1500 | | | 26
JUN | 1500 | | | 16 | 1200 | | | AUG | | | | 04
SEP | 0930 | | | 29 | 1000 | | | NOV | | | | 05 | 0915 | | | DEC | | | | 03
APR 1988 | 0900 | | | 07 | 0915 | | | 19 | 0930 | | | JUN | 0,500 | | | 09 | 0900 | 3 | | 21 | 0930 | | | JUL | | | | 21 | 0900 | | | AUG | | • | | 24
SEP | 0830 | 3 | | 12 | 1645 | | | OCT | 20.25 | | | 19 | 1600 | 4 | | NOV | | | | 16 | 1600 | 37 | | | | | ## BED MATERIAL ANALYSES | DATE | TIME | SOLI
VOL
TILE
BOTT
MA
TER
(MG/ | A- IN RETORMENT TO TO THE TOTAL TE | NUM, RI
ECOV. FM
BOT- TOI
1 MA- TI
ERIAL (U | DMIUM ECOV. BOT- MA- ERIAL JG/G ECD) | CHRO-
MIUM,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G) | FM TOM
TOM
TE: | COV. RI
BOT- FM
MA- TOI
RIAL TI
G/G (I | RON,
ECOV.
BOT-
M MA-
ERIAL
UG/G
S FE) | FM FTOM | COV. NE
BOT- RI
MA- FM
RIAL TOM
G/G TE | ESE, F
ECOV. FN
BOT- TO
MA- T
ERIAL | ERCURY
ECOV.
I BOT-
OM MA-
PERIAL
UG/G
AS HG) | NICKEL,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS NI) | ZINC,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS ZN) | |----------------------------|---|--|--|---|--|--|----------------------------|--|--|-------------------------------|---|--|---|--|--| | SEP 1987
29 | 1000 | 7 | 340 | | <1 | <10 | | 7 | 3900 | | <10 | 73 | <0.10 | <10 | 20 | | SEP 1988
12 | 1645 | 15 | 100 | 130 | <10 | | | 20 | 150 | • | <100 | 23 | 0.02 | <100 | <10 | | DATE | AROC
122
IN
BOTT
MA
(UG/ | 1
I
OM
T. | AROCLOR
1248
PCB
BOT.MAT
(UG/KG) | AROCLOR
1254
PCB
BOT.MAT
(UG/KG) | AROCI
1260
PCE
BOT.M
(UG/K | IN E
TOM
IAT TER | TAL
SOT-
MA-
RIAL | ALPHA
BHC
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | ATRA
ZINE
TOTA
IN BO
TOM M
TERI
(UG/K | I,
AL
OT-
IA-
IAL | BETA
BENZENE
HEXA-
CHLOR-
IDE
BOT.MAT
(UG/KG) | CHLOR-
DANE,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | CHLO
PYRI
IN B | BENT
R- HE:
FOS CHI
OT. II | LTA LENE KA- LOR- DE MAT /KG) | | SEP 1987
29
SEP 1988 | - | - | | | | - | | | | | | | _ | | | | 12 | ND |) | ND | ND | ND | NI |) | ND | ND | | ND | ND | ND | N |) | | DATE | DI
AZIN
TOT
IN B
TOM
TER
(UG/ | ON,
PAL
SOT-
MA-
LIAL | DI-
ELDRIN,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | ENDO-
SULFAN
ALPHA
BOT.MAT
(UG/KG) | ENDO
SULFA
BETA
BOT.M | N SULFIAT BOT. | FAN
ATE
MAT | ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) | ENDRI
ALDE
HYD
BOT.M
(UG/K | :-
E
IAT | ETHION,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | HEPTA-
CHLOR,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | CHLO
EPOX
TOT.
BOT | OR THE | | | SEP 1987
29
SEP 1988 | _ | - | | | | - | | | | | | | | | | | 12 | ND |) | ND | ND | ND | NE |) | ND | ND | | ND | ND | ND | N |) | Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued). # 04295000 RICHELIEU RIVER (LAKE CHAMPLAIN) AT ROUSES POINT, NY - continued # BED MATERIAL ANALYSES (continued) | DATE | METH-
OXY-
CHLOR,
TOT. IN
BOTTOM
MATL.
(UG/KG) | MIREX,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | P,P'DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) | P,P' DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) | P,P' DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) | PARA-
THION,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | TOXA-
PHENE,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | BED
MAT.
FALL
DIAM.
% FINER
THAN
.004 MM | BED
MAT.
SIEVE
DIAM.
% FINER
THAN
.062 MM | BED
MAT.
SIEVE
DIAM.
% FINER
THAN
.125 MM | BED
MAT.
SIEVE
DIAM.
% FINER
THAN
2.00 MM | |----------------------------|--|--|---|--|--|---|---|--|---|---|---| | SEP 1987
29
SEP 1988 | | | | | | | | 0
 1 | 17 | 100 | | 12 | ND 1 | 6 | 100 | | Table 5.--Result of analyses of quality-assurance samples. [Abbreviations used in table: AL - Aluminum, CA - Calcium, CACO3 - Calcium carbonate, CD - Cadmium, CL - Chloride, CU - Copper, F - Fluoride, FE - Iron, HG - Mercury, K - Potassium, LAB - laboratory, MG - Magnesium, MG/L - milligram per liter, MN - Manganese, NA - Sodium, NI - Nickel, PB - Lead, SO4 - Sulfate, UG/L - microgram per liter, US/CM - microsiemens per centimeter, ZN - Zinc.] ### Field blanks | | | | | FIE | TO DIADER | | | | | | |------------------|---|--|--|---|---|--|---|---|---|---| | DATE | TIME | SPE-
CIFIC
CON-
DUCT-
ANCE
LAB
(US/CM) | PH
LAB
(STAND-
ARD
UNITS) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K) | ALKA-
LINITY
LAB
(MG/L
AS
CACO3) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4) | | APR 1988 | | | | | | | | | | | | 05 | 1230 | 1 | 5.8 | | | | | | 2.0 | <0.20 | | 14 | 1345 | 3 | 7.1 | 0 | 0.03 | 0.01 | <0.20 | 0.10 | 1.0 | 0.30 | | 20 | 1230 | 2 | 5.9 | 0 | 0.10 | 0.04 | <0.20 | 0.10 | 2.0 | <0.20 | | 21 | 1145 | 1 | 6.1 | 0 | 0.08 | 0.04 | <0.20 | <0.10 | 1.0 | <0.20 | | MAY
04 | 1130 | 1 | 6.8 | | 0,06 | <0.01 | <0.20 | 0.10 | 9.0 | <0.20 | | 12 | 1300 | 1 | 6.0 | | 0.11 | <0.01 | <0.20 | 0.10 | 2.0 | <0.20 | | 18 | 1000 | 2 | 6.7 | 1 | 0.21 | 0.05 | <0.20 | 0.20 | 1.0 | <0.20 | | JUN | 1400 | _ | | | | | | | | | | 09
16 | 1100
1230 | 2
2 | 6.0
7.6 | 1 | 0.08
0.18 | 0.07
<0.01 | <0.20
<0.20 | 0.10
0.10 | 1.5 | <0.20
1.0 | | 21 | 0930 | ī | 6.3 | 1 | 0.15 | 0.05 | <0.20 | 0.10 | 2.0 | <0.20 | | 23 | 1230 | 1 | 7.8 | 0 | 0.07 | 0.05 | <0.20 | 0.10 | 1.0 | 0.60 | | JUL | | | | | | | | | | | | 21
AUG | 1100 | 2 | 7.4 | 1 | 0.41 | 0.06 | 0.40 | 0.10 | 2.0 | <0.20 | | 19
SEP | 0945 | 2 | 7.9 | | 0.11 | <0.01 | <0.20 | 0.10 | 1.0 | <0.20 | | 12
OCT | 1900 | 1 | 7.6 | 0 | 0.06 | 0.01 | <0.20 | 0.10 | 1.0 | <0.20 | | 06 | 0800 | 2 | 7.1 | 1 | 0.35 | 0.08 | 0.30 | 0.20 | 1.0 | <0.20 | | 06 | 1500 | 1 | 7.5 | 1 | 0.20 | 0.04 | <0.20 | 0.10 | 2.0 | <0.20 | | 20 | 1000 | 2 | 7.3 | 0 | 0.11 | 0.01 | <0.20 | 0.10 | 2.0 | <0.20 | | NOV
09 | 1130 | 2 | 7.3 | 1 | 0.12 | 0.09 | <0.20 | 0.10 | 2.0 | <0.20 | | 17 | 1200 | 2 | 6.8 | | 0.12 | <0.03 | <0.20 | 0.10 | 1.0 | <0.20 | | DATE | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F) | ALUM-
INUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS AL) | ALUM-
INUM,
DIS-
SOLVED
(UG/L
AS AL) | CADMIUM
TOTAL
RECOV-
ERABLE
(UG/L
AS CD) | CADMIUM
DIS-
SOLVED
(UG/L
AS CD) | COPPER,
TOTAL
RECOV-
ERABLE
(UG/L
AS CU) | COPPER,
DIS-
SOLVED
(UG/L
AS CU) | IRON,
TOTAL
RECOV-
ERABLE
(UG/L
AS FE) | IRON,
DIS-
SOLVED
(UG/L
AS FE) | | | | | | | | | | | | | | APR 1988 | | | | | | | | | | | | 05 | 0.10 | 0.10 | <10 | | <1 | | 3 | | <10 | | | 1 4
20 | 0.10
0.10 | 0.10
0.10 | 10
<10 | <10 | <1
1 | <1.0 | 1
<1 | <1 | >10
<10 | <3 | | 21 | 0.10 | 0.10 | <10 | | 2 | | <1 | | <10 | | | MAY | | | | | | | | _ | | | | 04
12 | 0.10
0.20 | 0.10
0.10 | 10
<10 | <10 | <1
<1 | <1.0 | 10
2 | 1 | <10
<10 | <3 | | 18 | 0.10 | 0.10 | <10 | <10 | 6 | <1.0 | 5 | 2 | 20 | <3 | | JUN | | | | | | | | | | | | 09 | <0.10 | 0.20 | <10 | <10 | 1 | <1.0 | 2 | 2 | 20 | <3 | | 16
21 | 0.40 | 0.10 | 20
<10 | | <1
<1 | | 4
2 | | 10
10 | | | 23 | 0.30 | 0.20 | <10 | | <1 | | 2 | | <10 | | | JUL | | | | | | | | | | | | 21
AUG | <0.10 | 0.10 | <10 | | 3 | | 3 | | 20 | | | 19
SEP | 0.10 | <0.10 | 30 | | <1 | | 3 | | 60 | | | 12
OCT | 0.20 | <0.10 | <10 | | 1 | | 2 | | 180 | | | 06 | <0.10 | 0.10 | 10 | <10 | <1 | <1.0 | 2 | <1 | <10 | <3 | | 06 | 0.10 | <0.10 | 40 | <10 | <1 | <1.0 | 5 | 3 | 50 | 8 | | 20 | 0.10 | <0.10 | <10 | <10 | 1 | <1.0 | 4 | 1 | 20 | 6 | | NOV
09 | <0.10 | 0.10 | 10 | <10 | <1 | <1.0 | 5 | 5 | 40 | 7 | | 17 | 0.20 | <0.10 | 20 | | 1 | | 8 | | 40 | | Table 5.--Result of analyses of quality-assurance samples (continued). ## Field blanks (cont'd) | DATE | LEAD,
TOTAL
RECOV-
ERABLE
(UG/L
AS PB) | LEAD,
DIS-
SOLVED
(UG/L
AS PB) | MANGA-
NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN) | MERCURY
TOTAL
RECOV-
ERABLE
(UG/L
AS HG) | NICKEL,
TOTAL
RECOV-
ERABLE
(UG/L
AS NI) | NICKEL,
DIS-
SOLVED
(UG/L
AS NI) | ZINC,
TOTAL
RECOV-
ERABLE
(UG/L
AS ZN) | ZINC,
DIS-
SOLVED
(UG/L
AS ZN) | |----------|---|--|---|--|---|---|--|---|--| | APR 1988 | | | | | | | | | | | 05 | <5 | | <10 | | <0.10 | 5 | | <10 | | | 14 | <5 | | <10 | | <0.10 | 2 | | <10 | | | 20 | <5 | <5 | <10 | <1 | <0.10 | 5 | <1 | <10 | <3 | | 21 | <5 | | <10 | | <0.10 | 4 | | <10 | | | MAY | | | | | | | | | | | 04 | <5 | <5 | <10 | <1 | <0.10 | 5 | <1 | <10 | 7 | | 12 | <5 | | <10 | | <0.10 | 5 | | <10 | | | 18 | 5 | <5 | <10 | <1 | <0.10 | 6 | <1 | <10 | <3 | | JUN | | | | | | | | | | | 09 | < 5 | <5 | <10 | <1 | <0.10 | 2 | 1 | <10 | <3 | | 16 | <5 | | <10 | | <0.10 | 2 | | <10 | | | 21 | <5 | | 20 | | 1.6 | 2 | | <10 | ~- | | 23 | <5 | | <10 | | <0.10 | <1 | | <10 | | | JUL | | | | | | | | | | | 21 | 5 | | <10 | | <0.10 | 1 | | <10 | | | AUG | | | | | | | | | | | 19 | < 5 | | <10 | | <0.10 | 5 | | <10 | | | SEP | | | | | | | | | | | 12 | <5 | | <10 | | <0.10 | 4 | | <10 | | | OCT | | | | | | | | | | | 06 | <5 | <5 | <10 | <1 | 0.30 | 2 | 1 | <10 | 4 | | 06 | <5 | <5 | <10 | <1 | <0.10 | 4 | 1 | <10 | 4 | | 20 | <5 | 5 | <10 | <1 | <0.10 | 3 | 1 | <10 | 6 | | NOA | | | | | | | | | | | 09 | 7 | <5 | <10 | 1 | <0.10 | 2 | 1 | 10 | 6 | | 17 | <5 | | <10 | | <0.10 | 11 | | <10 | | Table 5.--Result of analyses of quality-assurance samples (continued). # Paired duplicate samples | DATE | TIME | SPE-
CIFIC
CON-
DUCT-
ANCE
LAB
(US/CM) | PH
LAB
(STAND-
ARD
UNITS) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K) | ALKA-
LINITY
LAB
(MG/L
AS
CACO3) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4) | |----------------------|--------------|--|---------------------------------------|---|--|--|--|---|---|---| | 01317395 | | SCHROON RIV | er, state | HIGHWAY | 418, AT V | VARRENSBU | RG NY | | | | | MAY 1988
12
12 | 1200
1200 | 72
72 | 7.8
7.9 | 23
23 | 7.3
7.4 | 1.2 | 3.7
3.8 | 0.30
0.30 | 18
18 | 9.0
9.0 | | 01422642 | | WEST BRANC | H DELAWAR | E RIVER | AT DE LANG | CEY NY | | | | | | APR 1988
21 | 1100 | 91 | 7.5 | 30 | 8.8 | 1.9 | 4.4 | 0.90 | 19 | 11 | | 21 | 1100 | 91 | 7.5 | 29 | 8.5 | 1.9 | 4.4 | 0.90 | 19 | 11 | | | 37500 | NEVE | RSINK RIV | er at go | DEFFROY NY | ť | | | | | | JUN 1988
23 | 1100 | 98 | 7.5 | 27 | 8.3 | 1.6 | 6.7 | 1.0 | 21 | 11 | | 23 | 1100 | 98 | 7.4 | 28 | 8.4 | 1.6 | 6.7 | 1.0 | 17 | 10 | | MAY 1988 | .3320 | CHAUT | AUQUA CRE | EK AT BA | RCELONA N | (| | | | | | 04 | 1115
1115 | 268
268 | 8.1
8.0 | | | | | | 8 4
86 | | | | 213378 | | ADAWAY CR | | UNKIRK NY | | | | 00 | | | MAY 1988 | | | | | | | | | | | | 19
19 | 1020
1020 | 264
264 | 7.8
7.8 | 100
100 | 32
32 | 5.5
5.5 | 11
11 | 1.3
1.5 | 75
7 4 | 25
25 | | 042 | 14500 | BUFF. | ALO CREEK | AT GARD | ENVILLE NY | | | | | | | NOV 1988 | | | | | | | | | | | | 15
15 | 0900
0900 | 411
412 | 8.3
8.3 | 180
170 | 5 4
53 | 10
10 | 16
16 | 2.4
2.5 | 118
118 | 53
53 | | 042 | 18054 | TONA | WANDA CRE | EK AT PEI | NDLETON NY | ! | | | | | | APR 1988
18 | 1330 | 637 | 8.2 | 280 | 85 | 16 | 20 | 1.8 | 194 | 88 | | 18 | 1330 | 637 | 8.2 | 290 | 89 | 17 | 21 | 1.9 | 194 | 88 | | 04219640 | N | IIAGARA RIVE | R (LAKE O | NTARIO) | AT FORT N | AGARA NY | | | | | | MAY 1988
03 | 0845 | 287 | 8.0 | | | | | | 97 | | | 03
JUN | 0845 | 287 | 8.0 | | | | ~- | | 97 | | | 29
29 | 1230
1230 | 291
 | 8.4 | 120 | 35 | 8.3 | 9.1
 | 1.3 | 97
 | 26 | | 042 | 73500 | SARA | NAC RIVER | AT PLAT | rsburgh Ny | | | | | | | OCT 1988
20 | 0815 | 94 | 7.7 | 38 | 10 |
3.1 | 4.3 | 0.70 | 30 | 11 | | 20
NOV | 0815 | 94 | 7.7 | 38 | 10 | 3.1 | 4.3 | 0.70 | 30 | 11 | | 17
17 | 0900
0900 | 73
73 | 7.4
7.4 | 2 7
26 | 7.2
7.1 | 2.1 | 3.2
3.2 | 0.60
0.70 | 17
17 | 14
14 | | 04295000 | | RICHELIEU R | | | | | | | | | | APR 1988 | | | | | | | | | | | | 07
07 | 0915
0915 | 154
153 | 7.9
7.7 | 57
57 | 16
16 | 4.1 | 6.2
6.2 | 1.3
1.3 | 46
47 | 14
15 | | JUN
09 | 0900 | 163 | 8.0 | 63 | 18 | 4.3 | 7.1 | 1.4 | 51 | 14 | | 09
JUL | 0900 | 158 | 8.0 | 62 | 18 | 4.2 | 6.9 | 1.3 | 51 | 14 | | 21
21
SEP | 0900
0900 | 167
170 | 7.8
8.2 | 64
61 | 18
17 | 4.6
4.5 | 7.3 | 1.2 | 51
51 | 14
14 | | 12 | 1645
1645 | 162
163 | 8.4
8.6 | 62
64 | 17
18 | 4.7 | 7.5
7.2 | 1.2 | 49
50 | 14
14 | Table 5.--Result of analyses of quality-assurance samples (continued). # Paired duplicate samples (cont'd) | D ATE | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | ALUM-
INUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS AL) | ALUM-
INUM,
DIS-
SOLVED
(UG/L
AS AL) | CADMIUM
TOTAL
RECOV-
ERABLE
(UG/L
AS CD) | CADMIUM
DIS-
SOLVED
(UG/L
AS CD) | COPPER,
TOTAL
RECOV-
ERABLE
(UG/L
AS CU) | COPPER,
DIS-
SOLVED
(UG/L
AS CU) | IRON,
TOTAL
RECOV-
ERABLE
(UG/L
AS FE) | |----------------------|---|--|---|--|---|---|--|---|--|---| | 01317395 | s | CHROON RIV | /ER, STATE | HIGHWAY | 418, AT | WARRENSBU | RG NY | | | | | MAY 1988
12
12 | 6.4
6.4 | 0.10
0.10 | 39
39 | 50
50 | | 1
1 | | 2 2 | | 110
90 | | 01422642 | : 1 | WEST BRAN | CH DELAWAR | E RIVER A | AT DE LAN | CEY NY | | | | | | APR 1988
21
21 | 7.4
7.3 | 0.10
0.10 | 46
45 | 60
20 | | 2 2 | | 6
4 | | 70
70 | | 01 | 437500 | NEV | ERSINK RIV | ER AT GOI | DEFFROY N | Y | | | | | | JUN 1988 | | | | | | | | | | | | 23
23 | 10
9.6 | 0.20
0.20 | 51
48 | 30
30 | | <1
<1 | | 4 | | 140
160 | | 042 | 13320 | CHAU | TAUQUA CRE | EK AT BAI | RCELONA N | Y | | | | | | MAY 1988
04
04 | | | | 260
2 4 0 | | <1
<1 | | 4 3 | | 6 40
600 | | | 04213378 | CA | NADAWAY CR | | UNKIRK NY | | | | | | | MAY 1988
19 | 18 | 0.20 | 138 | 1100 | <10 | <1 | <1.0 | 14 | 2 | 2300 | | 19 | 17 | 0.20 | 137 | 20 | 20 | <1 | <1.0 | 30 | 2 | 120 | | | 214500 | BUF | FALO CREEK | AT GARDI | ENVILLE N | Y | | | | | | NOV 1988
15
15 | 23
22 | 0.10
0.10 | 229
227 | 40
40 | | 1
<1 | | 4 2 | | 180
200 | | 04 | 218054 | TON | AWANDA CRE | EK AT PE | NDLETON N | Y | | | | | | APR 1988
18 | 26 | 0.20 | 262 | 100 | 10 | | -1.0 | 11 | 2 | 420 | | 18 | 36
34 | 0.20
0.20 | 363
367 | 100
100 | 10
10 | 1 | <1.0
<1.0 | 11 | 3
2 | 430 | | 04219640 | NI. | AGARA RIV | ER (LAKE C | NTARIO) | AT FORT N | IAGARA NY | | | | | | MAY 1988
03 | | | | 60 | | <1 | | 8 | | 540 | | 03
JUN | | | | 60 | | 44 | | 17 | | 120 | | 29
29 | 14 | 0.30 | 152 | 50
60 | | <1
28 | | . 11
11 | | 100
170 | | 04 | 273500 | SAR | ANAC RIVER | AT PLAT | TSBURGH N | Y | | | | | | OCT 1988 | 6 1 | -0.10 | E 2 | 50 | 10 | -1 | -1 0 | 6 | 2 | 250 | | 20
20
NOV | 6.1 | <0.10
<0.10 | 53
53 | 50
50 | 10
10 | <1
<1 | <1.0
<1.0 | 6 | 3 | 350
350 | | 17
17 | 5.2
5.2 | <0.10
<0.10 | 42
42 | 110
110 | | 1
2 | | 8
9 | | 320
330 | | 04295000 | R | ICHELIEU | RIVER (LAK | E CHAMPL | AIN) AT R | ouses poi | NT NY | | | | | APR 1988
07 | 9.6
9.9 | 0.10
0.10 | 79
81 | 10
20 | <10
10 | <1
<1 | <1.0
<1.0 | 2 2 | 3 | 40
40 | | JUN
09
09 | 9.9
10 | 0.20
0.30 | 86
85 | 40
40 | <10
<10 | 2 2 | <1.0
<1.0 | 6 | 2 3 | 80
70 | | JUL
21
21 | 10
9.9 | 0.10
0.10 | 86
84 | <10
<10 | | <1
<1 | | 3
4 | | 80
100 | | SEP
12
12 | 10
10 | 0.10
0.10 | 84
85 | 10
4 0 | | 1
<1 | | 1 3 | | 20
20 | Table 5.--Result of analyses of quality-assurance samples (continued). # Paired duplicate samples (cont'd) | | IRON
TOTAL | LEAD,
TOTAL | LEAD, | MANGA-
NESE,
TOTAL | MANGA-
NESE, | MERCURY
TOTAL | NICKEL,
TOTAL | NICKEL, | ZINC,
TOTAL | ZINC, | |----------------------|-----------------------------------|-------------------------------------|-----------------------------------|-------------------------------------|-----------------------------------|-------------------------------------|---------------------------|-------------------------|---------------------------|-------------------------| | DATE | DIS-
SOLVED
(UG/L
AS FE) | RECOV-
ERABLE
(UG/L
AS PB) | DIS-
SOLVED
(UG/L
AS PB) | RECOV-
ERABLE
(UG/L
AS MN) | DIS-
SOLVED
(UG/L
AS MN) | RECOV-
ERABLE
(UG/L
AS HG) | RECOV-
ERABLE
(UG/L | DIS-
SOLVED
(UG/L | RECOV-
ERABLE
(UG/L | DIS-
SOLVED
(UG/L | | 01317395 | | | | HIGHWAY 4 | | | AS NI) | AS NI) | AS ZN) | AS ZN) | | MAY 1988 | | | | | | | | | | | | 12
12 | | <5
<5 | | 10
10 | | <0.10
<0.10 | 6
4 | | <10
<10 | | | 01422642 | WE | ST BRANCH | DELAWARE | RIVER AT | DE LANCE | Y NY | | | | | | APR 1988
21
21 | | <5
<5 | | 20
20 | | <0.10
<0.10 | 7
5 | | <10
<10 | | | 014 | 37500 | NEVERS | SINK RIVE | R AT GODE | FFROY NY | | | | | | | JUN 1988 | | .e | | 40 | | 0.10 | 4 | | 10 | | | 23
23 | | < 5
<5 | | 40
50 | | <0.10
<0.10 | <1
<1 | | 10
<10 | | | | 3320 | CHAUTAU | JQUA CREE | K AT BARCI | ELONA NY | | | | | | | MAY 1988
04 | | <5 | | 20 | | | <1 | | 20 | | | 04 | | <5 | | 20 | | <0.10 | <1 | | 10 | | | 04
MAY 1988 | 1213378 | CANAI | DAWAY CRE | EK AT DUN | KIRK NY | | | | | | | 19 | 33 | <5 | <5 | 50 | 13 | <0.10 | 14 | 2 | <10 | 7 | | 19 | 50 | <5 | <5 | 20 | 13 | <0.10 | 4 | 2 | 20 | 9 | | NOV 1988 | 214500 | BUFFAL | LO CREEK | AT GARDEN | AILLE NY | | | | | | | 15 | | <5 | | 30 | | <0.10 | 2 | | <10 | | | 15 | 10054 | <5 | | 30 | | <0.10 | 1 | | <10 | | | 042 | 218054 | TONAW | ANDA CREE | K AT PEND | PETON NA | | | | | | | APR 1988
18 | 17 | <5 | < 5 | 60 | 40 | <0.10 | 5 | 2 | <10 | <3 | | 18 | 15 | <5 | <5 | 50 | 39 | <0.10 | 5 | 1 | <10 | <3 | | 04219640 | NIAG | ARA RIVER | (LAKE ON | TARIO) AT | FORT NIA | GARA NY | | | | | | MAY 1988
03 | | <5 | | 10 | | | 6 | | <10 | | | 03 | | <5 | | <10 | | <0.10 | 3 | | <10 | | | JUN
29
29 | | 8
<5 | | 50
20 | | 0.40
<0.10 | 2
5 | | <10
20 | | | | 273500 | SARAN | AC RIVER | AT PLATTS | BURGH NY | | | | | | | OCT 1988 | | | | | | | | | | | | 20
20 | 240
240 | <5
<5 | <5
<5 | 10
<10 | 8 | 0.10
0.10 | 1
1 | <1
<1 | <10
<10 | 5
5 | | NOV | | | | | | | | | | | | 17
17 | | <5
<5 | | 30
30 | | <0.10
<0.10 | 8
10 | | <10
<10 | | | 04295000 | RIC | HELIEU RI | VER (LAKE | CHAMPLAI | N) | | | | | | | APR 1988 | 12 | | | -10 | | -0.10 | ^ | 4 | -10 | r | | 07
07 | 13
17 | <5
<5 | <5
<5 | <10
10 | 4
4 | <0.10
<0.10 | 2
3 | 1
1 | <10
<10 | 5
5 | | JUN
09 | 17 | < 5 | < 5 | 20 | 4 | <0.10 | 4 | 3 | <10 | 5 | | 09 | 11 | <5 | <5 | 30 | 4 | <0.10 | 3 | 3 | <10 | 4 | | JUL
21 | | <5
.F | | 40 | | <0.10 | 2 | | <10 | | | 21
SEP | | <5 | | 40 | | <0.10 | 1 | | <10 | | | 12
12 | | <5
<5 | | <10
<10 | | <0.10
<0.10 | 2
4 | | <10
<10 | | | | | | | | | | | | | |